Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 298(3): 101643, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35093382

RESUMEN

Heme is a critical biomolecule that is synthesized in vivo by several organisms such as plants, animals, and bacteria. Reflecting the importance of this molecule, defects in heme biosynthesis underlie several blood disorders in humans. Aminolevulinic acid synthase (ALAS) initiates heme biosynthesis in α-proteobacteria and nonplant eukaryotes. Debilitating and painful diseases such as X-linked sideroblastic anemia and X-linked protoporphyria can result from one of more than 91 genetic mutations in the human erythroid-specific enzyme ALAS2. This review will focus on recent structure-based insights into human ALAS2 function in health and how it dysfunctions in disease. We will also discuss how certain genetic mutations potentially result in disease-causing structural perturbations. Furthermore, we use thermodynamic and structural information to hypothesize how the mutations affect the human ALAS2 structure and categorize some of the unique human ALAS2 mutations that do not respond to typical treatments, that have paradoxical in vitro activity, or that are highly intolerable to changes. Finally, we will examine where future structure-based insights into the family of ALA synthases are needed to develop additional enzyme therapeutics.


Asunto(s)
5-Aminolevulinato Sintetasa , Anemia Sideroblástica , Enfermedades Genéticas Ligadas al Cromosoma X , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Ácido Aminolevulínico/química , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Animales , Hemo , Humanos , Relación Estructura-Actividad
2.
Protein Expr Purif ; 183: 105860, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33689857

RESUMEN

The ATP-binding cassette sub-family B member 7 (ABCB7) is a membrane transport protein located on the inner membrane of mitochondria, which could be involved in the transport of heme from the mitochondria to the cytosol. ABCB7 also plays a central role in the maturation of cytosolic iron-sulfur (Fe/S) cluster-containing proteins, and mutations can cause a series of mitochondrial defects. X-linked sideroblastic anemia and ataxia (XLSA-A) is a rare cause of early onset ataxia, which may be overlooked due to the usually mild asymptomatic anemia. The genetic defect has been identified as a mutation in the ABCB7 gene at Xq12-q13. Here, we report the expression, purification and the 2D projections derived from negatively stained electron micrographs of recombinant H. sapiens ABCB7 (hABCB7), paving the way from an atomic structure determination of ABCB7.


Asunto(s)
Transportadoras de Casetes de Unión a ATP , Mutación , Transportadoras de Casetes de Unión a ATP/biosíntesis , Transportadoras de Casetes de Unión a ATP/química , Transportadoras de Casetes de Unión a ATP/genética , Transportadoras de Casetes de Unión a ATP/aislamiento & purificación , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Humanos , Conformación Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Ataxias Espinocerebelosas/enzimología , Ataxias Espinocerebelosas/genética
3.
Mol Genet Metab ; 128(3): 342-351, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30660387

RESUMEN

Non-syndromic microcytic congenital sideroblastic anemia (cSA) is predominantly caused by defective genes encoding for either ALAS2, the first enzyme of heme biosynthesis pathway or SLC25A38, the mitochondrial importer of glycine, an ALAS2 substrate. Herein we explored a new case of cSA with two mutations in GLRX5, a gene for which only two patients have been reported so far. The patient was a young female with biallelic compound heterozygous mutations in GLRX5 (p.Cys67Tyr and p.Met128Lys). Three-D structure analysis confirmed the involvement of Cys67 in the coordination of the [2Fe2S] cluster and suggested a potential role of Met128 in partner interactions. The protein-level of ferrochelatase, the terminal-enzyme of heme process, was increased both in patient-derived lymphoblastoid and CD34+ cells, however, its activity was drastically decreased. The activity of ALAS2 was found altered and possibly related to a defect in the biogenesis of its co-substrate, the succinyl-CoA. Thus, the patient exhibits both a very low ferrochelatase activity without any accumulation of porphyrins precursors in contrast to what is reported in erythropoietic protoporphyria with solely impaired ferrochelatase activity. A significant oxidative stress was evidenced by decreased reduced glutathione and aconitase activity, and increased MnSOD protein expression. This oxidative stress depleted and damaged mtDNA, decreased complex I and IV activities and depleted ATP content. Collectively, our study demonstrates the key role of GLRX5 in modulating ALAS2 and ferrochelatase activities and in maintaining mitochondrial function.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Anemia Sideroblástica/genética , Ferroquelatasa/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Glutarredoxinas/genética , Hemo/biosíntesis , Mutación Missense , 5-Aminolevulinato Sintetasa/metabolismo , Aconitato Hidratasa/metabolismo , Adolescente , Secuencia de Aminoácidos , Anemia Sideroblástica/enzimología , Línea Celular Transformada , Femenino , Ferroquelatasa/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Glutatión/metabolismo , Humanos , Mitocondrias/enzimología , Estrés Oxidativo , Linaje , Estructura Terciaria de Proteína
4.
Mol Genet Metab ; 128(3): 190-197, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30737140

RESUMEN

Recently, new genes and molecular mechanisms have been identified in patients with porphyrias and sideroblastic anemias (SA). They all modulate either directly or indirectly the δ-aminolevulinic acid synthase (ALAS) activity. ALAS, is encoded by two genes: the erythroid-specific (ALAS2), and the ubiquitously expressed (ALAS1). In the liver, ALAS1 controls the rate-limiting step in the production of heme and hemoproteins that are rapidly turned over in response to metabolic needs. Several heme regulatory targets have been identified as regulators of ALAS1 activity: 1) transcriptional repression via a heme-responsive element, 2) post-transcriptional destabilization of ALAS1 mRNA, 3) post-translational inhibition via a heme regulatory motif, 4) direct inhibition of the activity of the enzyme and 5) breakdown of ALAS1 protein via heme-mediated induction of the protease Lon peptidase 1. In erythroid cells, ALAS2 is a gatekeeper of production of very large amounts of heme necessary for hemoglobin synthesis. The rate of ALAS2 synthesis is transiently increased during the period of active heme synthesis. Its gene expression is determined by trans-activation of nuclear factor GATA1, CACC box and NF-E2-binding sites in the promoter areas. ALAS2 mRNA translation is also regulated by the iron-responsive element (IRE)/iron regulatory proteins (IRP) binding system. In patients, ALAS enzyme activity is affected in most of the mutations causing non-syndromic SA and in several porphyrias. Decreased ALAS2 activity results either directly from loss-of-function ALAS2 mutations as seen in X-linked sideroblastic anemia (XLSA) or from defect in the availability of one of its two mitochondrial substrates: glycine in SLC25A38 mutations and succinyl CoA in GLRX5 mutations. Moreover, ALAS2 gain of function mutations is responsible for X-linked protoporphyria and increased ALAS1 activity lead to acute attacks of hepatic porphyrias. A missense dominant mutation in the Walker A motif of the ATPase binding site in the gene coding for the mitochondrial protein unfoldase CLPX also contributes to increasing ALAS and subsequently protoporphyrinemia. Altogether, these recent data on human ALAS have informed our understanding of porphyrias and sideroblastic anemias pathogeneses and may contribute to new therapeutic strategies.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/genética , Regulación de la Expresión Génica , Porfirias/genética , 5-Aminolevulinato Sintetasa/metabolismo , Anemia Sideroblástica/enzimología , Animales , Sitios de Unión , Factor de Transcripción GATA1/genética , Hemo/biosíntesis , Humanos , Hígado/metabolismo , Ratones , Mutación Missense , Porfirias/enzimología , Regiones Promotoras Genéticas
5.
Mol Genet Metab ; 128(3): 309-313, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31395332

RESUMEN

Erythropoietic protoporphyria (EPP), the most common porphyria of childhood and the third most common porphyria of adulthood, is characterized clinically by painful, non-blistering cutaneous photosensitivity. Two distinct inheritance patterns involving mutations affecting genes that encode enzymes of the heme biosynthetic pathway underlie the clinical phenotype. Aminolevulinic acid synthase 2 (ALAS2), the rate limiting enzyme of the heme pathway in the erythron, is a therapeutic target in EPP because inhibiting enzyme function would reduce downstream production of protoporphyrin IX (PPIX), preventing accumulation of the toxic molecule and thereby ameliorating symptoms. Isoniazid (INH) is widely used for treatment of latent and active M. tuberculosis (TB). Sideroblastic anemia is observed in some patients taking INH, and studies have shown that this process is a consequence of inhibition of ALAS2 by INH. Based on these observations, we postulated that INH might have therapeutic activity in patients with EPP. We challenged this hypothesis in a murine model of EPP and showed that, after 4 weeks of treatment with INH, both plasma PPIX and hepatic PPIX were significantly reduced. Next, we tested the effect of INH on patients with EPP. After eight weeks, no significant difference in plasma or red cell PPIX was observed among the 15 patients enrolled in the study. These results demonstrate that while INH can lower PPIX in an animal model of EPP, the standard dose used to treat TB is insufficient to affect levels in humans.


Asunto(s)
5-Aminolevulinato Sintetasa/antagonistas & inhibidores , Isoniazida/uso terapéutico , Protoporfiria Eritropoyética/tratamiento farmacológico , Protoporfirinas/sangre , Anemia Sideroblástica/enzimología , Animales , Modelos Animales de Enfermedad , Femenino , Humanos , Hígado/química , Hígado/efectos de los fármacos , Masculino , Ratones , Proyectos Piloto , Prueba de Estudio Conceptual , Protoporfiria Eritropoyética/genética , Protoporfirinas/metabolismo
6.
Haematologica ; 103(12): 2008-2015, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30026338

RESUMEN

YARS2 variants have previously been described in patients with myopathy, lactic acidosis and sideroblastic anemia 2 (MLASA2). YARS2 encodes the mitochondrial tyrosyl-tRNA synthetase, which is responsible for conjugating tyrosine to its cognate mt-tRNA for mitochondrial protein synthesis. Here we describe 14 individuals from 11 families presenting with sideroblastic anemia and YARS2 variants that we identified using a sideroblastic anemia gene panel or exome sequencing. The phenotype of these patients ranged from MLASA to isolated congenital sideroblastic anemia. As in previous cases, inter- and intra-familial phenotypic variability was observed, however, this report includes the first cases with isolated sideroblastic anemia and patients with biallelic YARS2 variants that have no clinically ascertainable phenotype. We identified ten novel YARS2 variants and three previously reported variants. In vitro amino-acylation assays of five novel missense variants showed that three had less effect on the catalytic activity of YARS2 than the most commonly reported variant, p.(Phe52Leu), associated with MLASA2, which may explain the milder phenotypes in patients with these variants. However, the other two missense variants had a more severe effect on YARS2 catalytic efficiency. Several patients carried the common YARS2 c.572 G>T, p.(Gly191Val) variant (minor allele frequency =0.1259) in trans with a rare deleterious YARS2 variant. We have previously shown that the p.(Gly191Val) variant reduces YARS2 catalytic activity. Consequently, we suggest that biallelic YARS2 variants, including severe loss-of-function alleles in trans of the common p.(Gly191Val) variant, should be considered as a cause of isolated congenital sideroblastic anemia, as well as the MLASA syndromic phenotype.


Asunto(s)
Acidosis Láctica/genética , Anemia Sideroblástica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Mutación de Línea Germinal , Síndrome MELAS/genética , Proteínas Mitocondriales/genética , Tirosina-ARNt Ligasa/genética , Acidosis Láctica/enzimología , Adolescente , Anemia Sideroblástica/enzimología , Femenino , Estudios de Asociación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Humanos , Lactante , Síndrome MELAS/enzimología , Masculino , Persona de Mediana Edad , Mutación Missense , Adulto Joven
7.
Biochim Biophys Acta Mol Basis Dis ; 1863(2): 428-439, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27838491

RESUMEN

Mutations in the C-terminus of human erythroid 5-aminolevulinate synthase (hALAS2), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, are associated with two different blood disorders, X-linked sideroblastic anemia (XLSA) and X-linked protoporphyria (XLPP). XLSA-causing mutations yield hALAS2 variants with decreased activity, while XLPP-causing mutations result in a gain-of-function of hALAS2. There are no specific treatments for XLPP. Isonicotinic acid hydrazide (isoniazid, INH), an antituberculosis agent, can cause sideroblastic anemia as a side-effect, by limiting PLP availability to hALAS2, via inhibition of pyridoxal kinase or reaction with pyridoxal to form pyridoxal isonicotinoyl hydrazone. We hypothesized that INH also binds and directly inhibits hALAS2. Using fluorescence-activated cell sorting and confocal fluorescence microscopy, we demonstrate that INH reduces protoporphyrin IX levels in HeLa cells expressing either wild-type hALAS2 or XLPP variants. In addition, PLP and pyridoxamine 5'-phosphate (PMP) reversed the cellular inhibition of hALAS2 activity by INH. Steady-state kinetic analyses with purified hALAS2 indicated that INH directly inhibits the enzyme, noncompetitively or uncompetitively, with an apparent Ki of 1.2µM. Circular dichroism spectroscopy revealed that INH triggered tertiary structural changes in hALAS2 that altered the microenvironment of the PLP cofactor and hampered the association of PLP with apo-hALAS2. Treatment of four XLPP patients with INH (5mg·kg-1·day-1) over a six-month period was well tolerated but without statistically significant modification of PPIX levels. These results, taken together, permit us to further an INH inhibition kinetic mechanism for ALAS, which suggests the possible use of INH-derived drugs in treating patients with XLPP and potentially other protoporphyrin-accumulating porphyrias.


Asunto(s)
5-Aminolevulinato Sintetasa/deficiencia , Inhibidores Enzimáticos/farmacología , Enfermedades Genéticas Ligadas al Cromosoma X/tratamiento farmacológico , Isoniazida/farmacología , Protoporfiria Eritropoyética/tratamiento farmacológico , 5-Aminolevulinato Sintetasa/antagonistas & inhibidores , 5-Aminolevulinato Sintetasa/sangre , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/metabolismo , Anemia Sideroblástica/enzimología , Inhibidores Enzimáticos/uso terapéutico , Enfermedades Genéticas Ligadas al Cromosoma X/sangre , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Células HeLa , Humanos , Isoniazida/uso terapéutico , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína/efectos de los fármacos , Protoporfiria Eritropoyética/sangre , Protoporfiria Eritropoyética/enzimología , Protoporfirinas/sangre , Fosfato de Piridoxal/metabolismo , Piridoxina/farmacología , Complejo Vitamínico B/farmacología
8.
Blood ; 124(18): 2867-71, 2014 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-25193871

RESUMEN

Mutations in genes encoding proteins that are involved in mitochondrial heme synthesis, iron-sulfur cluster biogenesis, and mitochondrial protein synthesis have previously been implicated in the pathogenesis of the congenital sideroblastic anemias (CSAs). We recently described a syndromic form of CSA associated with B-cell immunodeficiency, periodic fevers, and developmental delay (SIFD). Here we demonstrate that SIFD is caused by biallelic mutations in TRNT1, the gene encoding the CCA-adding enzyme essential for maturation of both nuclear and mitochondrial transfer RNAs. Using budding yeast lacking the TRNT1 homolog, CCA1, we confirm that the patient-associated TRNT1 mutations result in partial loss of function of TRNT1 and lead to metabolic defects in both the mitochondria and cytosol, which can account for the phenotypic pleiotropy.


Asunto(s)
Anemia Sideroblástica/congénito , Anemia Sideroblástica/genética , Discapacidades del Desarrollo/complicaciones , Fiebre/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Síndromes de Inmunodeficiencia/complicaciones , Mutación/genética , ARN Nucleotidiltransferasas/genética , Alelos , Anemia Sideroblástica/complicaciones , Anemia Sideroblástica/enzimología , Discapacidades del Desarrollo/genética , Fiebre/genética , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Células HEK293 , Humanos , Síndromes de Inmunodeficiencia/genética
9.
J Biol Chem ; 287(34): 28943-55, 2012 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-22740690

RESUMEN

Mutations in the erythroid-specific aminolevulinic acid synthase gene (ALAS2) cause X-linked sideroblastic anemia (XLSA) by reducing mitochondrial enzymatic activity. Surprisingly, a patient with the classic XLSA phenotype had a novel exon 11 mutation encoding a recombinant enzyme (p.Met567Val) with normal activity, kinetics, and stability. Similarly, both an expressed adjacent XLSA mutation, p.Ser568Gly, and a mutation (p.Phe557Ter) lacking the 31 carboxyl-terminal residues also had normal or enhanced activity, kinetics, and stability. Because ALAS2 binds to the ß subunit of succinyl-CoA synthetase (SUCLA2), the mutant proteins were tested for their ability to bind to this protein. Wild type ALAS2 bound strongly to a SUCLA2 affinity column, but the adjacent XLSA mutant enzymes and the truncated mutant did not bind. In contrast, vitamin B6-responsive XLSA mutations p.Arg452Cys and p.Arg452His, with normal in vitro enzyme activity and stability, did not interfere with binding to SUCLA2 but instead had loss of positive cooperativity for succinyl-CoA binding, an increased K(m) for succinyl-CoA, and reduced vitamin B6 affinity. Consistent with the association of SUCLA2 binding with in vivo ALAS2 activity, the p.Met567GlufsX2 mutant protein that causes X-linked protoporphyria bound strongly to SUCLA2, highlighting the probable role of an ALAS2-succinyl-CoA synthetase complex in the regulation of erythroid heme biosynthesis.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Anemia Sideroblástica , Enfermedades Genéticas Ligadas al Cromosoma X , Mutación Missense , Succinato-CoA Ligasas/metabolismo , 5-Aminolevulinato Sintetasa/genética , Adulto , Sustitución de Aminoácidos , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Estabilidad de Enzimas/genética , Enfermedades Genéticas Ligadas al Cromosoma X/enzimología , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hemo/biosíntesis , Hemo/genética , Humanos , Masculino , Unión Proteica , Protoporfiria Eritropoyética/enzimología , Protoporfiria Eritropoyética/genética , Succinato-CoA Ligasas/genética , Vitamina B 6/genética , Vitamina B 6/metabolismo
11.
Nat Genet ; 20(3): 244-50, 1998 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-9806542

RESUMEN

Many human anaemias are caused by defects in haemoglobin synthesis. The zebrafish mutant sauternes (sau) has a microcytic, hypochromic anaemia, suggesting that haemoglobin production is perturbed. During embryogenesis, sau mutants have delayed erythroid maturation and abnormal globin gene expression. Using positional cloning techniques, we show that sau encodes the erythroid-specific isoform of delta-aminolevulinate synthase (ALAS2; also known as ALAS-E), the enzyme required for the first step in haem biosynthesis. As mutations in ALAS2 cause congenital sideroblastic anaemia (CSA) in humans, sau represents the first animal model of this disease.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Isoenzimas/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Anemia Sideroblástica/congénito , Animales , Secuencia de Bases , Clonación Molecular , ADN Complementario/genética , Modelos Animales de Enfermedad , Hemoglobinas/biosíntesis , Hemoglobinas/genética , Humanos , Modelos Genéticos , Datos de Secuencia Molecular , Mutación , Fenotipo , Homología de Secuencia de Aminoácido
12.
Acta Haematol ; 125(4): 193-7, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21252495

RESUMEN

BACKGROUND/AIMS: Congenital sideroblastic anemias (SA) are characterized by the presence of ringed sideroblasts in the bone marrow. The most common form is X-linked SA, which results from mutations in erythroid-specific δ-aminolevulinate synthase (ALAS2), the first enzyme in heme biosynthesis. In addition, autosomal recessive mutations in the erythroid-specific mitochondrial transporter SLC25A38 and glutaredoxin 5 (GLRX5) have recently been identified in SA patients with isolated erythroid phenotype. MATERIALS AND METHODS: We studied 5 young males with congenital SA from the Czech Republic. Mutation analysis was performed on the complete coding regions of 3 candidate genes (ALAS2, SLC25A38 and GLRX5), and the enzyme activity of ALAS2 was measured by a continuous spectrophotometric assay. RESULTS: We found the previously published R452H and R452C ALAS2 mutations in 3 patients. A novel K156E substitution in ALAS2 was discovered in 1 pyridoxine-responsive patient. The functional study showed that this substitution severely decreases ALAS2 enzyme activity. In 1 pyridoxine-refractory patient, no mutations were detected in ALAS2, SLC25A38 or GLRX5. CONCLUSION: Our report extends the list of known ALAS2 mutations, with the addition of a novel K156E substitution that is responsive to pyridoxine treatment and contributes to the general knowledge of congenital SA cases characterized worldwide.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , 5-Aminolevulinato Sintetasa/metabolismo , Adulto , Anemia Sideroblástica/tratamiento farmacológico , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Secuencia de Bases , Enfermedades Genéticas Ligadas al Cromosoma X , Humanos , Masculino , Mutación , Piridoxina/uso terapéutico , Alineación de Secuencia
13.
Cell Mol Biol (Noisy-le-grand) ; 55(1): 102-10, 2009 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-19268008

RESUMEN

5-Aminolevulinate synthase is a homodimeric pyridoxal 5'-phosphate-dependent enzyme that catalyzes the first step of the heme biosynthetic pathway in animals, fungi, and the alpha-subclass of the photosynthetic purple bacteria. The reaction cycle involves condensation of glycine with succinyl-coenzyme A to yield 5-aminolevulinate, carbon dioxide, and CoA. Mutations in the human erythroid-specific aminolevulinate synthase gene are associated with the erythropoietic disorder X-linked sideroblastic anemia. Recent kinetic and crystallographic data have facilitated an unprecedented understanding of how this important enzyme produces 5-aminolevulinate, and suggest possible directions for future research that may lead to treatments not only for X-linked sideroblastic anemia, but also other diseases.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Hemo/biosíntesis , 5-Aminolevulinato Sintetasa/química , 5-Aminolevulinato Sintetasa/genética , Ácido Aminolevulínico/metabolismo , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/genética , Humanos , Cinética , Modelos Moleculares , Mutación , Relación Estructura-Actividad
14.
J Med Genet ; 44(3): 173-80, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17056637

RESUMEN

INTRODUCTION: Myopathy, lactic acidosis and sideroblastic anaemia (MLASA) is a rare condition that combines early-onset myopathy with lactic acidosis and sideroblastic anaemia. MLASA has been associated with a missense mutation in pseudouridylate synthase 1 (PUS1), an enzyme located in both nucleus and mitochondria, which converts uridine into pseudouridine in several cytosolic and mitochondrial tRNA positions and increases the efficiency of protein synthesis in both compartments. SUBJECTS AND METHODS: We have identified two Italian brothers, offspring of distantly related parents, both of whom are affected by MLASA. The six exons of the PUS1 gene were analysed by automated sequencing. RESULTS: We found combined defects in mitochondrial respiratory chain complexes in muscle and fibroblast homogenates of both patients, and low levels of mtDNA translation products in fibroblast mitochondria. A novel, homozygous stop mutation was present in PUS1 (E220X). We have investigated the structural and mechanistic aspects of the double localisation of PUS1, demonstrating that the isoform located in the nucleus contains an N-terminal extension which is absent in the mature mitochondrial isoform. CONCLUSIONS: The stop mutation in PUS1 is likely to determine the loss of function of the protein, since it predicts the synthesis of a protein missing 208/427 amino acid residues on the C terminus, and was associated with low mtDNA translation. The structural differences in nuclear versus mitochondrial isoforms of PUS1 may be implicated in the variability of the clinical presentations in MLASA.


Asunto(s)
Acidosis Láctica/genética , Anemia Sideroblástica/genética , Codón sin Sentido , Hidroliasas/genética , Miopatías Mitocondriales/genética , Acidosis Láctica/enzimología , Secuencia de Aminoácidos , Anemia Sideroblástica/enzimología , Núcleo Celular/enzimología , Consanguinidad , Deficiencia de Citocromo-c Oxidasa/genética , Complejo I de Transporte de Electrón/deficiencia , Resultado Fatal , Fibroblastos/enzimología , Fibroblastos/patología , Células HeLa , Hormona de Crecimiento Humana/deficiencia , Humanos , Hidroliasas/química , Hidroliasas/deficiencia , Recién Nacido , Discapacidad Intelectual/genética , Masculino , Mitocondrias Musculares/enzimología , Miopatías Mitocondriales/enzimología , Datos de Secuencia Molecular , Músculo Esquelético/enzimología , Músculo Esquelético/patología , Fenotipo , Isoformas de Proteínas/análisis , Isoformas de Proteínas/genética , Precursores de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Transporte de Proteínas/efectos de los fármacos , Síndrome , Transcripción Genética , Transfección , Valinomicina/farmacología
15.
J Clin Invest ; 66(1): 43-9, 1980 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-6249845

RESUMEN

Activities of mitochondrial enzymes in blood cells from 69 patients with primary sideroblastic anemia were determined to elucidate the pathogenesis of the disease. In erythroblasts of patients with primary acquired type the activities of both delta-aminolevulinic acid synthetase and mitochondrial serine protease were inevitably decreased. The susceptibility to the protease of apo-delta-aminolevulinic acid synthetase prepared from erythroblasts of patients with this type was within the normal range, in contrast to that of pyridoxine-responsive anemia. The activities of mitochondrial enzymes such as cytochrome oxidase, serine protease, and oligomycin-sensitive ATPase, except citrate synthetase, were usually decreased in mature granulocytes of the patients. Patients with hereditary sideroblastic anemia also had decreased delta-aminolevulinic acid synthetase activity in erythroblasts, and decreased serine protease activity in both erythroblasts and mature granulocytes. Mature granulocytes obtained from patients with pyridoxine-responsive anemia before therapy had decreased cytochrome oxidase activity, however, the activity increased to a normal level when the patients were in remission. The activities of other mitochondrial enzymes in mature granulocytes were within normal range in these patients before pyridoxine therapy. The activities of these mitochondrial enzymes in lymphocytes were within normal range in all groups of patients with primary sideroblastic anemia. We suggest that patients with primary acquired, and possibly also those with hereditary sideroblastic anemia have impaired mitochondrial function in both erythroblasts and granulocytes. That only anemia is observed in these patients is because a functional abnormality of mitochondria in erythroblasts is most important because of the role of mitochondria in the formation of heme in erythrocyte development. In contrast to these two types of sideroblastic anemia, only delta-aminolevulinic acid synthetase in both erythroblasts and granulocytes seems to be impaired in patients with pyridoxine-responsive anemia.


Asunto(s)
Anemia Sideroblástica/enzimología , Células Sanguíneas/enzimología , Mitocondrias/enzimología , 5-Aminolevulinato Sintetasa/metabolismo , Adenosina Trifosfatasas/metabolismo , Citrato (si)-Sintasa/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Eritroblastos/enzimología , Granulocitos/enzimología , Humanos , Linfocitos/enzimología , Masculino , Oligomicinas/farmacología , Péptido Hidrolasas/metabolismo , Fosfato de Piridoxal/farmacología
16.
J Clin Invest ; 64(5): 1196-203, 1979 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-500806

RESUMEN

Properties of delta-aminolevulinic acid synthetase in erythroblasts of patients with pyridoxine-responsive anemia were investigated with special reference to the protease in mitochondria of erythroblasts. delta-Aminolevulinic acid synthetase activity in erythroblasts of patients with this disease before treatment was extremely decreased, whereas it gradually increased in parallel with the improvement of anemia by the therapy with pyridoxal phosphate. The amount of apo-delta-aminolevulinic acid synthetase in erythroblasts before treatment was also extremely diminished. Apparent affinity to pyridoxal phosphate of the apo-delta-aminolevulinic acid synthetase obtained from erythroblasts of the patients was almost the same as that of normal controls. The activity of a new protease which is considered to be engaged in the regulation of delta-aminolevulinic acid synthetase levels in mitochondria of erythroblasts was shown to be in normal range in erythroblasts of the patients. On the other hand, apo-delta-aminolevulinic acid synthetase obtained from the patients was extremely sensitive to the protease. These results indicate that disturbance of heme synthesis characteristic to pyridoxine-responsive anemia could be ascribed to the hypercatabolism of delta-aminolevulinic acid synthetase caused by the increased susceptibility to the controlling protease in erythroblasts.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Anemia Hipocrómica/enzimología , Anemia Sideroblástica/enzimología , Médula Ósea/enzimología , Mitocondrias/enzimología , Anemia Hipocrómica/tratamiento farmacológico , Anemia Sideroblástica/tratamiento farmacológico , Médula Ósea/ultraestructura , Células de la Médula Ósea , Endopeptidasas/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Fosfato de Piridoxal/uso terapéutico , Deficiencia de Vitamina B 6/tratamiento farmacológico , Deficiencia de Vitamina B 6/metabolismo
17.
J Clin Invest ; 105(6): 757-64, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10727444

RESUMEN

The first and the rate-limiting enzyme of heme biosynthesis is delta-aminolevulinate synthase (ALAS), which is localized in mitochondria. There are 2 tissue-specific isoforms of ALAS, erythroid-specific (ALAS-E) and nonspecific ALAS (ALAS-N). To identify possible mitochondrial factors that modulate ALAS-E function, we screened a human bone marrow cDNA library, using the mitochondrial form of human ALAS-E as a bait protein in the yeast 2-hybrid system. Our screening led to the isolation of the beta subunit of human ATP-specific succinyl CoA synthetase (SCS-betaA). Using transient expression and coimmunoprecipitation, we verified that mitochodrially expressed SCS-betaA associates specifically with ALAS-E and not with ALAS-N. Furthermore, the ALAS-E mutants R411C and M426V associated with SCS-betaA, but the D190V mutant did not. Because the D190V mutant was identified in a patient with pyridoxine-refractory X-linked sideroblastic anemia, our findings suggest that appropriate association of SCS-betaA and ALAS-E promotes efficient use of succinyl CoA by ALAS-E or helps translocate ALAS-E into mitochondria.


Asunto(s)
5-Aminolevulinato Sintetasa/metabolismo , Anemia Sideroblástica/enzimología , Hemo/biosíntesis , Isoenzimas/metabolismo , Succinato-CoA Ligasas/metabolismo , 5-Aminolevulinato Sintetasa/genética , Acilcoenzima A/metabolismo , Adenosina Trifosfato/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Médula Ósea/química , Células CHO , Cricetinae , Cricetulus , ADN Complementario/genética , Inducción Enzimática , Células Precursoras Eritroides/enzimología , Humanos , Isoenzimas/genética , Sustancias Macromoleculares , Mitocondrias Cardíacas/enzimología , Datos de Secuencia Molecular , Miocardio/química , Mutación Puntual , ARN Mensajero/biosíntesis , Técnicas del Sistema de Dos Híbridos
18.
Antioxid Redox Signal ; 8(7-8): 1217-25, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16910769

RESUMEN

Iron overload is a feature of an array of human disorders such as sideroblastic anemias, a heterogeneous group of erythropoietic disorders without identified cause in most cases. However, sideroblastic anemias appear to result from a disturbance at the interface between mitochondrial function and iron metabolism. A defining feature is excessive iron deposition within mitochondria of developing red cells, the consequences of which are an increase in cellular free radicals production, increased damage to proteins, and reduced cell survival. Because of its mitochondrial location, superoxide dismutase (SOD2) is the principal defense against the toxicity of superoxide anions generated by the oxidative phosphorylation. We have used hematopoietic stem cell transplantation to study blood cells lacking SOD2. We became interested in the role SOD2 plays in the metabolism of superoxide anions during erythroid development, as anemia is the major phenotype in transplanted animals. Our exploration of this model suggests that oxidative stress-and in particular, mitochondrial- derived oxidants-plays an important role in the pathogenesis of the human disorder, sideroblastic anemia. Here we review the relation between mitochondrial dysfunction and sideroblastic anemia, describe several methods for assessing oxidative damage to mature or developing red cells, present data on, and discuss the potential of antioxidant therapy for this disorder.


Asunto(s)
Anemia Sideroblástica/metabolismo , Anemia Sideroblástica/patología , Antioxidantes/metabolismo , Estrés Oxidativo , Superóxido Dismutasa/deficiencia , Anemia Sideroblástica/enzimología , Anemia Sideroblástica/etiología , Anemia Sideroblástica/genética , Animales , Antioxidantes/farmacología , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritrocitos/patología , Humanos , Manganeso/administración & dosificación , Manganeso/uso terapéutico , Manganeso/toxicidad , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Superóxido Dismutasa/genética , Superóxido Dismutasa/metabolismo , Superóxidos/metabolismo
19.
Haematologica ; 91(5): 719-20, 2006 May.
Artículo en Inglés | MEDLINE | ID: mdl-16670082
20.
Int J Biochem Cell Biol ; 31(10): 1153-67, 1999 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-10582344

RESUMEN

Erythroid tissue is the major site of heme production in the body. The synthesis of heme and globin chains is coordinated at both the transcriptional and post-transcriptional levels to ensure that virtually no free heme or globin protein accumulates. The key rate-controlling enzyme of the heme biosynthetic pathway is 5-aminolevulinate synthase (ALAS) and an erythroid-specific isoform (ALAS2) is up-regulated during erythropoiesis. Differentiation of embryonic stem cells with a disrupted ALAS2 gene has established that expression of this gene is critical for erythropoiesis and cannot be compensated by expression of the ubiquitous isoform of the enzyme (ALAS1). Interestingly, heme appears to be important for expression of globin and other late erythroid genes and for erythroid cell differentiation although the mechanism of this effect is not clear. Transcriptional control elements that regulate the human gene for ALAS2 have been identified both in the promoter and in intronic enhancer regions. Subsequent translation of the ALAS2 mRNA is dependent on an adequate iron supply. The mechanism by which transcription of the gene for ALAS2 is increased by erythropoietin late in erythropoiesis remains an interesting issue. Erythropoietin action may result in altered levels of critical erythroid transcription factors or modulate the phosphorylation/acetylation status of these factors. Defects in the coding region of the gene for ALAS2 underlie the disease state X-linked sideroblastic anemia. In this review, we focus on the regulation and function of erythroid-specific 5-aminolevulinate synthase during erythropoiesis and its role in the X-linked sideroblastic anemia.


Asunto(s)
5-Aminolevulinato Sintetasa/genética , Eritropoyesis/fisiología , Regulación Enzimológica de la Expresión Génica , Anemia Sideroblástica/enzimología , Animales , Diferenciación Celular , Elementos de Facilitación Genéticos , Células Precursoras Eritroides/enzimología , Hemo/biosíntesis , Hemo/fisiología , Humanos , Intrones , Hierro/metabolismo , Biosíntesis de Proteínas , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA