Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.886
Filtrar
Más filtros

Colección Oncologia Uruguay
Intervalo de año de publicación
1.
Cell ; 184(15): 3915-3935.e21, 2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34174187

RESUMEN

Emerging evidence indicates a fundamental role for the epigenome in immunity. Here, we mapped the epigenomic and transcriptional landscape of immunity to influenza vaccination in humans at the single-cell level. Vaccination against seasonal influenza induced persistently diminished H3K27ac in monocytes and myeloid dendritic cells (mDCs), which was associated with impaired cytokine responses to Toll-like receptor stimulation. Single-cell ATAC-seq analysis revealed an epigenomically distinct subcluster of monocytes with reduced chromatin accessibility at AP-1-targeted loci after vaccination. Similar effects were observed in response to vaccination with the AS03-adjuvanted H5N1 pandemic influenza vaccine. However, this vaccine also stimulated persistently increased chromatin accessibility at interferon response factor (IRF) loci in monocytes and mDCs. This was associated with elevated expression of antiviral genes and heightened resistance to the unrelated Zika and Dengue viruses. These results demonstrate that vaccination stimulates persistent epigenomic remodeling of the innate immune system and reveal AS03's potential as an epigenetic adjuvant.


Asunto(s)
Epigenómica , Inmunidad/genética , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Análisis de la Célula Individual , Transcripción Genética , Vacunación , Adolescente , Adulto , Antibacterianos/farmacología , Antígenos CD34/metabolismo , Antivirales/farmacología , Reprogramación Celular , Cromatina/metabolismo , Citocinas/biosíntesis , Combinación de Medicamentos , Femenino , Regulación de la Expresión Génica , Histonas/metabolismo , Humanos , Inmunidad Innata/genética , Subtipo H5N1 del Virus de la Influenza A/efectos de los fármacos , Subtipo H5N1 del Virus de la Influenza A/inmunología , Interferón Tipo I/metabolismo , Masculino , Células Mieloides/metabolismo , Polisorbatos/farmacología , Escualeno/farmacología , Receptores Toll-Like/metabolismo , Factor de Transcripción AP-1/metabolismo , Transcriptoma/genética , Adulto Joven , alfa-Tocoferol/farmacología
2.
Cell ; 168(6): 1086-1100.e10, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283063

RESUMEN

Innate lymphoid cells (ILCs) represent innate versions of T helper and cytotoxic T cells that differentiate from committed ILC precursors (ILCPs). How ILCPs give rise to mature tissue-resident ILCs remains unclear. Here, we identify circulating and tissue ILCPs in humans that fail to express the transcription factors and cytokine outputs of mature ILCs but have these signature loci in an epigenetically poised configuration. Human ILCPs robustly generate all ILC subsets in vitro and in vivo. While human ILCPs express low levels of retinoic acid receptor (RAR)-related orphan receptor C (RORC) transcripts, these cells are found in RORC-deficient patients and retain potential for EOMES+ natural killer (NK) cells, interferon gamma-positive (IFN-γ+) ILC1s, interleukin (IL)-13+ ILC2s, and for IL-22+, but not for IL-17A+ ILC3s. Our results support a model of tissue ILC differentiation ("ILC-poiesis"), whereby diverse ILC subsets are generated in situ from systemically distributed ILCPs in response to local environmental signals.


Asunto(s)
Linfocitos/citología , Células Madre/citología , Animales , Antígenos CD34/análisis , Diferenciación Celular , Linaje de la Célula , Sangre Fetal/citología , Feto/citología , Humanos , Inmunidad Innata , Interleucina-17 , Hígado/citología , Pulmón/citología , Linfocitos/inmunología , Tejido Linfoide/citología , Ratones , Proteínas Proto-Oncogénicas c-kit/análisis , Transcripción Genética
3.
Immunity ; 54(10): 2417-2432.e5, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34453879

RESUMEN

Innate lymphoid cells (ILCs) are critical effectors of innate immunity and inflammation, whose development and activation pathways make for attractive therapeutic targets. However, human ILC generation has not been systematically explored, and previous in vitro investigations relied on the analysis of few markers or cytokines, which are suboptimal to assign lineage identity. Here, we developed a platform that reliably generated human ILC lineages from CD34+ hematopoietic progenitors derived from cord blood and bone marrow. We showed that one culture condition is insufficient to generate all ILC subsets, and instead, distinct combination of cytokines and Notch signaling are essential. The identity of natural killer (NK)/ILC1s, ILC2s, and ILC3s generated in vitro was validated by protein expression, functional assays, and both global and single-cell transcriptome analysis, recapitulating the signatures and functions of their ex vivo ILC counterparts. These data represent a resource to aid in clarifying ILC biology and differentiation.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Linaje de la Célula/inmunología , Células Madre Hematopoyéticas/inmunología , Inmunidad Innata/inmunología , Linfocitos/inmunología , Antígenos CD34/inmunología , Diferenciación Celular/inmunología , Células Madre Hematopoyéticas/citología , Humanos , Linfocitos/citología , Análisis de la Célula Individual/métodos
4.
Immunity ; 54(2): 259-275.e7, 2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33382972

RESUMEN

The study of human macrophages and their ontogeny is an important unresolved issue. Here, we use a humanized mouse model expressing human cytokines to dissect the development of lung macrophages from human hematopoiesis in vivo. Human CD34+ hematopoietic stem and progenitor cells (HSPCs) generated three macrophage populations, occupying separate anatomical niches in the lung. Intravascular cell labeling, cell transplantation, and fate-mapping studies established that classical CD14+ blood monocytes derived from HSPCs migrated into lung tissue and gave rise to human interstitial and alveolar macrophages. In contrast, non-classical CD16+ blood monocytes preferentially generated macrophages resident in the lung vasculature (pulmonary intravascular macrophages). Finally, single-cell RNA sequencing defined intermediate differentiation stages in human lung macrophage development from blood monocytes. This study identifies distinct developmental pathways from circulating monocytes to lung macrophages and reveals how cellular origin contributes to human macrophage identity, diversity, and localization in vivo.


Asunto(s)
Células Madre Hematopoyéticas/inmunología , Pulmón/inmunología , Macrófagos Alveolares/inmunología , Monocitos/inmunología , Antígenos CD34/metabolismo , Biodiversidad , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Sangre Fetal/citología , Humanos , Receptores de Lipopolisacáridos/metabolismo , Pulmón/irrigación sanguínea , Receptores de IgG/metabolismo , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Nicho de Células Madre
5.
Nature ; 629(8014): 1149-1157, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720070

RESUMEN

In somatic tissue differentiation, chromatin accessibility changes govern priming and precursor commitment towards cellular fates1-3. Therefore, somatic mutations are likely to alter chromatin accessibility patterns, as they disrupt differentiation topologies leading to abnormal clonal outgrowth. However, defining the impact of somatic mutations on the epigenome in human samples is challenging due to admixed mutated and wild-type cells. Here, to chart how somatic mutations disrupt epigenetic landscapes in human clonal outgrowths, we developed genotyping of targeted loci with single-cell chromatin accessibility (GoT-ChA). This high-throughput platform links genotypes to chromatin accessibility at single-cell resolution across thousands of cells within a single assay. We applied GoT-ChA to CD34+ cells from patients with myeloproliferative neoplasms with JAK2V617F-mutated haematopoiesis. Differential accessibility analysis between wild-type and JAK2V617F-mutant progenitors revealed both cell-intrinsic and cell-state-specific shifts within mutant haematopoietic precursors, including cell-intrinsic pro-inflammatory signatures in haematopoietic stem cells, and a distinct profibrotic inflammatory chromatin landscape in megakaryocytic progenitors. Integration of mitochondrial genome profiling and cell-surface protein expression measurement allowed expansion of genotyping onto DOGMA-seq through imputation, enabling single-cell capture of genotypes, chromatin accessibility, RNA expression and cell-surface protein expression. Collectively, we show that the JAK2V617F mutation leads to epigenetic rewiring in a cell-intrinsic and cell type-specific manner, influencing inflammation states and differentiation trajectories. We envision that GoT-ChA will empower broad future investigations of the critical link between somatic mutations and epigenetic alterations across clonal populations in malignant and non-malignant contexts.


Asunto(s)
Cromatina , Epigénesis Genética , Genotipo , Mutación , Análisis de la Célula Individual , Animales , Femenino , Humanos , Masculino , Ratones , Antígenos CD34/metabolismo , Diferenciación Celular/genética , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Epigénesis Genética/genética , Epigenoma/genética , Genoma Mitocondrial/genética , Técnicas de Genotipaje , Hematopoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/patología , Inflamación/genética , Inflamación/patología , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Megacariocitos/metabolismo , Megacariocitos/patología , Proteínas de la Membrana/genética , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Trastornos Mieloproliferativos/patología , ARN/genética , Células Clonales/metabolismo
6.
Immunity ; 53(2): 353-370.e8, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32735845

RESUMEN

The formation of mammalian dendritic cells (DCs) is controlled by multiple hematopoietic transcription factors, including IRF8. Loss of IRF8 exerts a differential effect on DC subsets, including plasmacytoid DCs (pDCs) and the classical DC lineages cDC1 and cDC2. In humans, cDC2-related subsets have been described including AXL+SIGLEC6+ pre-DC, DC2 and DC3. The origin of this heterogeneity is unknown. Using high-dimensional analysis, in vitro differentiation, and an allelic series of human IRF8 deficiency, we demonstrated that cDC2 (CD1c+DC) heterogeneity originates from two distinct pathways of development. The lymphoid-primed IRF8hi pathway, marked by CD123 and BTLA, carried pDC, cDC1, and DC2 trajectories, while the common myeloid IRF8lo pathway, expressing SIRPA, formed DC3s and monocytes. We traced distinct trajectories through the granulocyte-macrophage progenitor (GMP) compartment showing that AXL+SIGLEC6+ pre-DCs mapped exclusively to the DC2 pathway. In keeping with their lower requirement for IRF8, DC3s expand to replace DC2s in human partial IRF8 deficiency.


Asunto(s)
Antígenos CD34/metabolismo , Células Dendríticas/citología , Hematopoyesis/fisiología , Factores Reguladores del Interferón/metabolismo , Animales , Antígenos CD1/metabolismo , Línea Celular , Linaje de la Célula/inmunología , Células Dendríticas/inmunología , Glicoproteínas/metabolismo , Células Madre Hematopoyéticas/citología , Humanos , Subunidad alfa del Receptor de Interleucina-3/metabolismo , Receptores de Lipopolisacáridos/metabolismo , Ratones , Receptores Inmunológicos/metabolismo
7.
Cell ; 158(4): 849-860, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25126789

RESUMEN

Distal enhancers commonly contact target promoters via chromatin looping. In erythroid cells, the locus control region (LCR) contacts ß-type globin genes in a developmental stage-specific manner to stimulate transcription. Previously, we induced LCR-promoter looping by tethering the self-association domain (SA) of Ldb1 to the ß-globin promoter via artificial zinc fingers. Here, we show that targeting the SA to a developmentally silenced embryonic globin gene in adult murine erythroblasts triggers its transcriptional reactivation. This activity depends on the LCR, consistent with an LCR-promoter looping mechanism. Strikingly, targeting the SA to the fetal γ-globin promoter in primary adult human erythroblasts increases γ-globin promoter-LCR contacts, stimulating transcription to approximately 85% of total ß-globin synthesis, with a reciprocal reduction in adult ß-globin expression. Our findings demonstrate that forced chromatin looping can override a stringent developmental gene expression program and suggest a novel approach to control the balance of globin gene transcription for therapeutic applications.


Asunto(s)
Cromatina/metabolismo , Hemoglobina Fetal/genética , Técnicas Genéticas , Región de Control de Posición , Activación Transcripcional , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Cromatina/química , Embrión de Mamíferos/metabolismo , Eritroblastos/metabolismo , Hemoglobinopatías/genética , Hemoglobinopatías/terapia , Humanos , Ratones , Cultivo Primario de Células
8.
Nature ; 621(7978): 404-414, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37648862

RESUMEN

Despite the considerable efficacy observed when targeting a dispensable lineage antigen, such as CD19 in B cell acute lymphoblastic leukaemia1,2, the broader applicability of adoptive immunotherapies is hampered by the absence of tumour-restricted antigens3-5. Acute myeloid leukaemia immunotherapies target genes expressed by haematopoietic stem/progenitor cells (HSPCs) or differentiated myeloid cells, resulting in intolerable on-target/off-tumour toxicity. Here we show that epitope engineering of donor HSPCs used for bone marrow transplantation endows haematopoietic lineages with selective resistance to chimeric antigen receptor (CAR) T cells or monoclonal antibodies, without affecting protein function or regulation. This strategy enables the targeting of genes that are essential for leukaemia survival regardless of shared expression on HSPCs, reducing the risk of tumour immune escape. By performing epitope mapping and library screenings, we identified amino acid changes that abrogate the binding of therapeutic monoclonal antibodies targeting FLT3, CD123 and KIT, and optimized a base-editing approach to introduce them into CD34+ HSPCs, which retain long-term engraftment and multilineage differentiation ability. After CAR T cell treatment, we confirmed resistance of epitope-edited haematopoiesis and concomitant eradication of patient-derived acute myeloid leukaemia xenografts. Furthermore, we show that multiplex epitope engineering of HSPCs is feasible and enables more effective immunotherapies against multiple targets without incurring overlapping off-tumour toxicities. We envision that this approach will provide opportunities to treat relapsed/refractory acute myeloid leukaemia and enable safer non-genotoxic conditioning.


Asunto(s)
Epítopos , Edición Génica , Inmunoterapia , Leucemia Mieloide Aguda , Animales , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD34/metabolismo , Trasplante de Médula Ósea , Mapeo Epitopo , Epítopos/genética , Epítopos/inmunología , Hematopoyesis , Células Madre Hematopoyéticas/inmunología , Células Madre Hematopoyéticas/metabolismo , Xenoinjertos/inmunología , Inmunoterapia/efectos adversos , Inmunoterapia/métodos , Leucemia Mieloide Aguda/inmunología , Leucemia Mieloide Aguda/terapia , Receptores Quiméricos de Antígenos/inmunología , Recurrencia , Linfocitos T/inmunología , Acondicionamiento Pretrasplante , Escape del Tumor , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Cell ; 154(5): 1112-1126, 2013 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-23993099

RESUMEN

Consensus holds that hematopoietic stem cells (HSCs) give rise to multipotent progenitors (MPPs) of reduced self-renewal potential and that MPPs eventually produce lineage-committed progenitor cells in a stepwise manner. Using a single-cell transplantation system and marker mice, we unexpectedly found myeloid-restricted progenitors with long-term repopulating activity (MyRPs), which are lineage-committed to megakaryocytes, megakaryocyte-erythroid cells, or common myeloid cells (MkRPs, MERPs, or CMRPs, respectively) in the phenotypically defined HSC compartment together with HSCs. Paired daughter cell assays combined with transplantation revealed that HSCs can give rise to HSCs via symmetric division or directly differentiate into MyRPs via asymmetric division (yielding HSC-MkRP or HSC-CMRP pairs). These myeloid bypass pathways could be essential for fast responses to ablation stress. Our results show that loss of self-renewal and stepwise progression through specific differentiation stages are not essential for lineage commitment of HSCs and suggest a revised model of hematopoietic differentiation.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Progenitoras Mieloides/citología , Animales , Antígenos CD34 , Hematopoyesis , Células Madre Hematopoyéticas/metabolismo , Ratones , Ratones Endogámicos C57BL , Células Progenitoras Mieloides/metabolismo
10.
N Engl J Med ; 390(18): 1663-1676, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38657265

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis through ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of the erythroid-specific enhancer region of BCL11A in autologous CD34+ hematopoietic stem and progenitor cells (HSPCs). METHODS: We conducted an open-label, single-group, phase 3 study of exa-cel in patients 12 to 35 years of age with transfusion-dependent ß-thalassemia and a ß0/ß0, ß0/ß0-like, or non-ß0/ß0-like genotype. CD34+ HSPCs were edited by means of CRISPR-Cas9 with a guide mRNA. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was transfusion independence, defined as a weighted average hemoglobin level of 9 g per deciliter or higher without red-cell transfusion for at least 12 consecutive months. Total and fetal hemoglobin concentrations and safety were also assessed. RESULTS: A total of 52 patients with transfusion-dependent ß-thalassemia received exa-cel and were included in this prespecified interim analysis; the median follow-up was 20.4 months (range, 2.1 to 48.1). Neutrophils and platelets engrafted in each patient. Among the 35 patients with sufficient follow-up data for evaluation, transfusion independence occurred in 32 (91%; 95% confidence interval, 77 to 98; P<0.001 against the null hypothesis of a 50% response). During transfusion independence, the mean total hemoglobin level was 13.1 g per deciliter and the mean fetal hemoglobin level was 11.9 g per deciliter, and fetal hemoglobin had a pancellular distribution (≥94% of red cells). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No deaths or cancers occurred. CONCLUSIONS: Treatment with exa-cel, preceded by myeloablation, resulted in transfusion independence in 91% of patients with transfusion-dependent ß-thalassemia. (Supported by Vertex Pharmaceuticals and CRISPR Therapeutics; CLIMB THAL-111 ClinicalTrials.gov number, NCT03655678.).


Asunto(s)
Hemoglobina Fetal , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Talasemia beta , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Antígenos CD34 , Talasemia beta/terapia , Talasemia beta/genética , Transfusión Sanguínea , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica/métodos , Trasplante de Células Madre Hematopoyéticas/métodos , Células Madre Hematopoyéticas , Proteínas Represoras/genética , Acondicionamiento Pretrasplante , Trasplante Autólogo , Agonistas Mieloablativos/uso terapéutico , América del Norte , Europa (Continente)
11.
N Engl J Med ; 390(18): 1649-1662, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38661449

RESUMEN

BACKGROUND: Exagamglogene autotemcel (exa-cel) is a nonviral cell therapy designed to reactivate fetal hemoglobin synthesis by means of ex vivo clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing of autologous CD34+ hematopoietic stem and progenitor cells (HSPCs) at the erythroid-specific enhancer region of BCL11A. METHODS: We conducted a phase 3, single-group, open-label study of exa-cel in patients 12 to 35 years of age with sickle cell disease who had had at least two severe vaso-occlusive crises in each of the 2 years before screening. CD34+ HSPCs were edited with the use of CRISPR-Cas9. Before the exa-cel infusion, patients underwent myeloablative conditioning with pharmacokinetically dose-adjusted busulfan. The primary end point was freedom from severe vaso-occlusive crises for at least 12 consecutive months. A key secondary end point was freedom from inpatient hospitalization for severe vaso-occlusive crises for at least 12 consecutive months. The safety of exa-cel was also assessed. RESULTS: A total of 44 patients received exa-cel, and the median follow-up was 19.3 months (range, 0.8 to 48.1). Neutrophils and platelets engrafted in each patient. Of the 30 patients who had sufficient follow-up to be evaluated, 29 (97%; 95% confidence interval [CI], 83 to 100) were free from vaso-occlusive crises for at least 12 consecutive months, and all 30 (100%; 95% CI, 88 to 100) were free from hospitalizations for vaso-occlusive crises for at least 12 consecutive months (P<0.001 for both comparisons against the null hypothesis of a 50% response). The safety profile of exa-cel was generally consistent with that of myeloablative busulfan conditioning and autologous HSPC transplantation. No cancers occurred. CONCLUSIONS: Treatment with exa-cel eliminated vaso-occlusive crises in 97% of patients with sickle cell disease for a period of 12 months or more. (CLIMB SCD-121; ClinicalTrials.gov number, NCT03745287.).


Asunto(s)
Anemia de Células Falciformes , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Adolescente , Adulto , Niño , Femenino , Humanos , Masculino , Adulto Joven , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Busulfano/uso terapéutico , Sistemas CRISPR-Cas , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Edición Génica , Células Madre Hematopoyéticas , Proteínas Represoras , Acondicionamiento Pretrasplante , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Agonistas Mieloablativos/uso terapéutico , Europa (Continente) , América del Norte
12.
Development ; 151(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39136544

RESUMEN

Hematopoietic stem and progenitor cells (HSPCs) give rise to all cell types of the hematopoietic system through various processes, including asymmetric divisions. However, the contribution of stromal cells of the hematopoietic niches in the control of HSPC asymmetric divisions remains unknown. Using polyacrylamide microwells as minimalist niches, we show that specific heterotypic interactions with osteoblast and endothelial cells promote asymmetric divisions of human HSPCs. Upon interaction, HSPCs polarize in interphase with the centrosome, the Golgi apparatus, and lysosomes positioned close to the site of contact. Subsequently, during mitosis, HSPCs orient their spindle perpendicular to the plane of contact. This division mode gives rise to siblings with unequal amounts of lysosomes and of the differentiation marker CD34. Such asymmetric inheritance generates heterogeneity in the progeny, which is likely to contribute to the plasticity of the early steps of hematopoiesis.


Asunto(s)
Células Madre Hematopoyéticas , Humanos , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Hematopoyesis/fisiología , Diferenciación Celular , Mitosis , Osteoblastos/citología , Osteoblastos/metabolismo , Células Endoteliales/citología , Células Endoteliales/metabolismo , División Celular Asimétrica , Lisosomas/metabolismo , Centrosoma/metabolismo , Antígenos CD34/metabolismo , Aparato de Golgi/metabolismo , División Celular
13.
Immunity ; 49(3): 464-476.e4, 2018 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-30193847

RESUMEN

According to the established model of murine innate lymphoid cell (ILC) development, helper ILCs develop separately from natural killer (NK) cells. However, it is unclear how helper ILCs and NK cells develop in humans. Here we elucidated key steps of NK cell, ILC2, and ILC3 development within human tonsils using ex vivo molecular and functional profiling and lineage differentiation assays. We demonstrated that while tonsillar NK cells, ILC2s, and ILC3s originated from a common CD34-CD117+ ILC precursor pool, final steps of ILC2 development deviated independently and became mutually exclusive from those of NK cells and ILC3s, whose developmental pathways overlapped. Moreover, we identified a CD34-CD117+ ILC precursor population that expressed CD56 and gave rise to NK cells and ILC3s but not to ILC2s. These data support a model of human ILC development distinct from the mouse, whereby human NK cells and ILC3s share a common developmental pathway separate from ILC2s.


Asunto(s)
Células Asesinas Naturales/inmunología , Linfocitos/inmunología , Tonsila Palatina/inmunología , Animales , Antígenos CD34/metabolismo , Antígeno CD56/metabolismo , Diferenciación Celular , Linaje de la Célula , Células Cultivadas , Perfilación de la Expresión Génica , Humanos , Inmunidad Innata , Activación de Linfocitos , Ratones , Proteínas Proto-Oncogénicas c-kit/metabolismo
14.
Nature ; 595(7866): 295-302, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34079130

RESUMEN

Sickle cell disease (SCD) is caused by a mutation in the ß-globin gene HBB1. We used a custom adenine base editor (ABE8e-NRCH)2,3 to convert the SCD allele (HBBS) into Makassar ß-globin (HBBG), a non-pathogenic variant4,5. Ex vivo delivery of mRNA encoding the base editor with a targeting guide RNA into haematopoietic stem and progenitor cells (HSPCs) from patients with SCD resulted in 80% conversion of HBBS to HBBG. Sixteen weeks after transplantation of edited human HSPCs into immunodeficient mice, the frequency of HBBG was 68% and hypoxia-induced sickling of bone marrow reticulocytes had decreased fivefold, indicating durable gene editing. To assess the physiological effects of HBBS base editing, we delivered ABE8e-NRCH and guide RNA into HSPCs from a humanized SCD mouse6 and then transplanted these cells into irradiated mice. After sixteen weeks, Makassar ß-globin represented 79% of ß-globin protein in blood, and hypoxia-induced sickling was reduced threefold. Mice that received base-edited HSPCs showed near-normal haematological parameters and reduced splenic pathology compared to mice that received unedited cells. Secondary transplantation of edited bone marrow confirmed that the gene editing was durable in long-term haematopoietic stem cells and showed that HBBS-to-HBBG editing of 20% or more is sufficient for phenotypic rescue. Base editing of human HSPCs avoided the p53 activation and larger deletions that have been observed following Cas9 nuclease treatment. These findings point towards a one-time autologous treatment for SCD that eliminates pathogenic HBBS, generates benign HBBG, and minimizes the undesired consequences of double-strand DNA breaks.


Asunto(s)
Adenina/metabolismo , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Edición Génica , Trasplante de Células Madre Hematopoyéticas , Células Madre Hematopoyéticas/metabolismo , Globinas beta/genética , Animales , Antígenos CD34/metabolismo , Proteína 9 Asociada a CRISPR/metabolismo , Modelos Animales de Enfermedad , Femenino , Terapia Genética , Genoma Humano/genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/patología , Humanos , Masculino , Ratones
15.
Nature ; 592(7855): 606-610, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33658717

RESUMEN

Intestinal stromal cells are known to modulate the propagation and differentiation of intestinal stem cells1,2. However, the precise cellular and molecular mechanisms by which this diverse stromal cell population maintains tissue homeostasis and repair are poorly understood. Here we describe a subset of intestinal stromal cells, named MAP3K2-regulated intestinal stromal cells (MRISCs), and show that they are the primary cellular source of the WNT agonist R-spondin 1 following intestinal injury in mice. MRISCs, which are epigenetically and transcriptomically distinct from subsets of intestinal stromal cells that have previously been reported3-6, are strategically localized at the bases of colon crypts, and function to maintain LGR5+ intestinal stem cells and protect against acute intestinal damage through enhanced R-spondin 1 production. Mechanistically, this MAP3K2 specific function is mediated by a previously unknown reactive oxygen species (ROS)-MAP3K2-ERK5-KLF2 axis to enhance production of R-spondin 1. Our results identify MRISCs as a key component of an intestinal stem cell niche that specifically depends on MAP3K2 to augment WNT signalling for the regeneration of damaged intestine.


Asunto(s)
Mucosa Intestinal/citología , MAP Quinasa Quinasa Quinasa 2/metabolismo , Nicho de Células Madre , Células del Estroma/citología , Animales , Antígenos CD34 , Colitis/patología , Colitis/prevención & control , Epigénesis Genética , Femenino , Mucosa Intestinal/patología , Factores de Transcripción de Tipo Kruppel/metabolismo , Masculino , Ratones , Especies Reactivas de Oxígeno/metabolismo , Tetraspanina 28 , Trombospondinas/biosíntesis , Trombospondinas/metabolismo , Antígenos Thy-1
16.
N Engl J Med ; 389(9): 820-832, 2023 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-37646679

RESUMEN

BACKGROUND: Sickle cell disease is caused by a defect in the ß-globin subunit of adult hemoglobin. Sickle hemoglobin polymerizes under hypoxic conditions, producing deformed red cells that hemolyze and cause vaso-occlusion that results in progressive organ damage and early death. Elevated fetal hemoglobin levels in red cells protect against complications of sickle cell disease. OTQ923, a clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9-edited CD34+ hematopoietic stem- and progenitor-cell (HSPC) product, has a targeted disruption of the HBG1 and HBG2 (γ-globin) gene promoters that increases fetal hemoglobin expression in red-cell progeny. METHODS: We performed a tiling CRISPR-Cas9 screen of the HBG1 and HBG2 promoters by electroporating CD34+ cells obtained from healthy donors with Cas9 complexed with one of 72 guide RNAs, and we assessed the fraction of fetal hemoglobin-immunostaining erythroblasts (F cells) in erythroid-differentiated progeny. The gRNA resulting in the highest level of F cells (gRNA-68) was selected for clinical development. We enrolled participants with severe sickle cell disease in a multicenter, phase 1-2 clinical study to assess the safety and adverse-effect profile of OTQ923. RESULTS: In preclinical experiments, CD34+ HSPCs (obtained from healthy donors and persons with sickle cell disease) edited with CRISPR-Cas9 and gRNA-68 had sustained on-target editing with no off-target mutations and produced high levels of fetal hemoglobin after in vitro differentiation or xenotransplantation into immunodeficient mice. In the study, three participants received autologous OTQ923 after myeloablative conditioning and were followed for 6 to 18 months. At the end of the follow-up period, all the participants had engraftment and stable induction of fetal hemoglobin (fetal hemoglobin as a percentage of total hemoglobin, 19.0 to 26.8%), with fetal hemoglobin broadly distributed in red cells (F cells as a percentage of red cells, 69.7 to 87.8%). Manifestations of sickle cell disease decreased during the follow-up period. CONCLUSIONS: CRISPR-Cas9 disruption of the HBG1 and HBG2 gene promoters was an effective strategy for induction of fetal hemoglobin. Infusion of autologous OTQ923 into three participants with severe sickle cell disease resulted in sustained induction of red-cell fetal hemoglobin and clinical improvement in disease severity. (Funded by Novartis Pharmaceuticals; ClinicalTrials.gov number, NCT04443907.).


Asunto(s)
Anemia de Células Falciformes , Sistemas CRISPR-Cas , Eritrocitos , Hemoglobina Fetal , Trasplante de Células Madre Hematopoyéticas , Animales , Ratones , Anemia de Células Falciformes/genética , Anemia de Células Falciformes/terapia , Antígenos CD34 , Hemoglobina Fetal/biosíntesis , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , Hemoglobina Falciforme , Regiones Promotoras Genéticas
17.
Blood ; 143(16): 1599-1615, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38394668

RESUMEN

ABSTRACT: Treatment resistance of leukemia stem cells (LSCs) and suppression of the autologous immune system represent major challenges to achieve a cure in acute myeloid leukemia (AML). Although AML blasts generally retain high levels of surface CD38 (CD38pos), LSCs are frequently enriched in the CD34posCD38neg blast fraction. Here, we report that interferon gamma (IFN-γ) reduces LSCs clonogenic activity and induces CD38 upregulation in both CD38pos and CD38neg LSC-enriched blasts. IFN-γ-induced CD38 upregulation depends on interferon regulatory factor 1 transcriptional activation of the CD38 promoter. To leverage this observation, we created a novel compact, single-chain CD38-CD3 T-cell engager (BN-CD38) designed to promote an effective immunological synapse between CD38pos AML cells and both CD8pos and CD4pos T cells. We demonstrate that BN-CD38 engages autologous CD4pos and CD8pos T cells and CD38pos AML blasts, leading to T-cell activation and expansion and to the elimination of leukemia cells in an autologous setting. Importantly, BN-CD38 engagement induces the release of high levels of IFN-γ, driving the expression of CD38 on CD34posCD38neg LSC-enriched blasts and their subsequent elimination. Critically, although BN-CD38 showed significant in vivo efficacy across multiple disseminated AML cell lines and patient-derived xenograft models, it did not affect normal hematopoietic stem cell clonogenicity and the development of multilineage human immune cells in CD34pos humanized mice. Taken together, this study provides important insights to target and eliminate AML LSCs.


Asunto(s)
Interferón gamma , Leucemia Mieloide Aguda , Linfocitos T , Animales , Humanos , Ratones , ADP-Ribosil Ciclasa 1/inmunología , ADP-Ribosil Ciclasa 1/metabolismo , Antígenos CD34/metabolismo , Línea Celular Tumoral , Células Madre Hematopoyéticas/metabolismo , Interferón gamma/efectos de los fármacos , Interferón gamma/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células Madre Neoplásicas/metabolismo , Glicoproteínas de Membrana/inmunología , Glicoproteínas de Membrana/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , Activación de Linfocitos/efectos de los fármacos
18.
Cell ; 144(1): 92-105, 2011 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-21215372

RESUMEN

Here, we exploit the hair follicle to define the point at which stem cells (SCs) become irreversibly committed along a differentiation lineage. Employing histone and nucleotide double-pulse-chase and lineage tracing, we show that the early SC descendents en route to becoming transit-amplifying cells retain stemness and slow-cycling properties and home back to the bulge niche when hair growth stops. These become the primary SCs for the next hair cycle, whereas initial bulge SCs become reserves for injury. Proliferating descendents further en route irreversibly lose their stemness, although they retain many SC markers and survive, unlike their transit-amplifying progeny. Remarkably, these progeny also home back to the bulge. Combining purification and gene expression analysis with differential ablation and functional experiments, we define critical functions for these non-SC niche residents and unveil the intriguing concept that an irreversibly committed cell in an SC lineage can become an essential contributor to the niche microenvironment.


Asunto(s)
Folículo Piloso/citología , Folículo Piloso/crecimiento & desarrollo , Nicho de Células Madre/metabolismo , Células Madre/metabolismo , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Folículo Piloso/metabolismo , Humanos , Ratones , Piel/citología
19.
Cell ; 147(5): 1146-58, 2011 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-22118468

RESUMEN

Hematopoietic stem cells (HSCs) reside and self-renew in the bone marrow (BM) niche. Overall, the signaling that regulates stem cell dormancy in the HSC niche remains controversial. Here, we demonstrate that TGF-ß type II receptor-deficient HSCs show low-level Smad activation and impaired long-term repopulating activity, underlining the critical role of TGF-ß/Smad signaling in HSC maintenance. TGF-ß is produced as a latent form by a variety of cells, so we searched for those that express activator molecules for latent TGF-ß. Nonmyelinating Schwann cells in BM proved responsible for activation. These glial cells ensheathed autonomic nerves, expressed HSC niche factor genes, and were in contact with a substantial proportion of HSCs. Autonomic nerve denervation reduced the number of these active TGF-ß-producing cells and led to rapid loss of HSCs from BM. We propose that glial cells are components of a BM niche and maintain HSC hibernation by regulating activation of latent TGF-ß.


Asunto(s)
Médula Ósea/fisiología , Células Madre Hematopoyéticas/citología , Células de Schwann/citología , Factor de Crecimiento Transformador beta3/metabolismo , Animales , Antígenos CD34/metabolismo , Células Madre Hematopoyéticas/fisiología , Humanos , Ratones , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Células de Schwann/fisiología , Simpatectomía
20.
Cell ; 146(5): 697-708, 2011 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-21884932

RESUMEN

AKT activation is associated with many malignancies, where AKT acts, in part, by inhibiting FOXO tumor suppressors. We show a converse role for AKT/FOXOs in acute myeloid leukemia (AML). Rather than decreased FOXO activity, we observed that FOXOs are active in ∼40% of AML patient samples regardless of genetic subtype. We also observe this activity in human MLL-AF9 leukemia allele-induced AML in mice, where either activation of Akt or compound deletion of FoxO1/3/4 reduced leukemic cell growth, with the latter markedly diminishing leukemia-initiating cell (LIC) function in vivo and improving animal survival. FOXO inhibition resulted in myeloid maturation and subsequent AML cell death. FOXO activation inversely correlated with JNK/c-JUN signaling, and leukemic cells resistant to FOXO inhibition responded to JNK inhibition. These data reveal a molecular role for AKT/FOXO and JNK/c-JUN in maintaining a differentiation blockade that can be targeted to inhibit leukemias with a range of genetic lesions.


Asunto(s)
Factores de Transcripción Forkhead/metabolismo , Leucemia Mieloide/metabolismo , Leucemia Mieloide/patología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Animales , Antígenos CD34/metabolismo , Apoptosis , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Diferenciación Celular , Línea Celular Tumoral , Células Cultivadas , Modelos Animales de Enfermedad , Proteína Forkhead Box O3 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Ratones , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA