Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Más filtros

Intervalo de año de publicación
1.
Plant Cell ; 36(8): 2834-2850, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-38701348

RESUMEN

Salt stress is an environmental factor that limits plant growth and crop production. With the rapid expansion of salinized arable land worldwide, investigating the molecular mechanisms underlying the salt stress response in plants is urgently needed. Here, we report that GROWTH REGULATING FACTOR 7 (OsGRF7) promotes salt tolerance by regulating arbutin (hydroquinone-ß-D-glucopyranoside) metabolism in rice (Oryza sativa). Overexpression of OsGRF7 increased arbutin content, and exogenous arbutin application rescued the salt-sensitive phenotype of OsGRF7 knockdown and knockout plants. OsGRF7 directly promoted the expression of the arbutin biosynthesis genes URIDINE DIPHOSPHATE GLYCOSYLTRANSFERASE 1 (OsUGT1) and OsUGT5, and knockout of OsUGT1 or OsUGT5 reduced rice arbutin content, salt tolerance, and grain size. Furthermore, OsGRF7 degradation through its interaction with F-BOX AND OTHER DOMAINS CONTAINING PROTEIN 13 reduced rice salinity tolerance and grain size. These findings highlight an underexplored role of OsGRF7 in modulating rice arbutin metabolism, salt stress response, and grain size, as well as its broad potential use in rice breeding.


Asunto(s)
Arbutina , Regulación de la Expresión Génica de las Plantas , Oryza , Proteínas de Plantas , Tolerancia a la Sal , Oryza/genética , Oryza/metabolismo , Oryza/fisiología , Oryza/efectos de los fármacos , Oryza/crecimiento & desarrollo , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Arbutina/metabolismo , Arbutina/farmacología , Plantas Modificadas Genéticamente , Estrés Salino
2.
Mol Biol Rep ; 51(1): 532, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637360

RESUMEN

BACKGROUND: Doxorubicin is an effective antineoplastic agent but has limited clinical application because of its cumulative toxicities, including cardiotoxicity. Cardiotoxicity causes lipid peroxidation, genetic impairment, oxidative stress, inhibition of autophagy, and disruption of calcium homeostasis. Doxorubicin-induced cardiotoxicity is frequently tried to be mitigated by phytochemicals, which are derived from plants and possess antioxidant, anti-inflammatory, and anti-apoptotic properties. Arbutin, a natural antioxidant found in the leaves of the bearberry plant, has numerous pharmacological benefits, including antioxidant, anti-bacterial, anti-hyperglycemic, anti-inflammatory, and anti-tumor activity. METHODS AND RESULTS: The study involved male Wistar rats divided into three groups: a control group, a group treated with doxorubicin (20 mg/kg) to induce cardiac toxicity, a group treated with arbutin (100 mg/kg) daily for two weeks before doxorubicin administration. After treatment, plasma and heart tissue samples were collected for analysis. The samples were evaluated for oxidative stress parameters, including superoxide dismutase, malondialdehyde, and catalase, as well as for cardiac biomarkers, including CK, CK-MB, and LDH. The heart tissues were also analyzed using molecular (TNF-α, IL-1ß and Caspase 3), histopathological and immunohistochemical methods (8-OHDG, 4 Hydroxynonenal, and dityrosine). The results showed that arbutin treatment was protective against doxorubicin-induced oxidative damage by increasing SOD and CAT activity and decreasing MDA level. Arbutin treatment was similarly able to reverse the inflammatory response caused by doxorubicin by reducing TNF-α and IL-1ß levels and also reverse the apoptosis by decreasing caspase-3 levels. It was able to prevent doxorubicin-induced cardiac damage by reducing cardiac biomarkers CK, CK-MB and LDH levels. In addition to all these results, histopathological analyzes also show that arbutin may be beneficial against the damage caused by doxorubicin on heart tissue. CONCLUSION: The study suggests that arbutin has the potential to be used to mitigate doxorubicin-induced cardiotoxicity in cancer patients.


Asunto(s)
Antioxidantes , Cardiotoxicidad , Humanos , Ratas , Animales , Antioxidantes/metabolismo , Cardiotoxicidad/tratamiento farmacológico , Cardiotoxicidad/prevención & control , Cardiotoxicidad/etiología , Arbutina/farmacología , Arbutina/metabolismo , Arbutina/uso terapéutico , Miocardio/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Ratas Wistar , Doxorrubicina/efectos adversos , Estrés Oxidativo , Antiinflamatorios/farmacología , Apoptosis , Biomarcadores/metabolismo
3.
J Toxicol Environ Health A ; 87(22): 879-894, 2024 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-39221705

RESUMEN

Melanoma is the most aggressive type of skin cancer, with few therapeutic alternatives following metastasis development. In recent years, drug delivery-associated nanotechnology has shown promising targeted results with diminished adverse effects compared to conventional treatments. This study aimed to (1) examine the effects of plant-derived α-arbutin, a natural compound and (2) compare these findings with bioactively developed liposomes containing α-arbutin utilizing the B16-F10 murine melanoma cell line as a model. Liposomes were obtained through reversed-phase evaporation by applying a spray dryer to assess their stability. The following biologic assays were measured cytotoxicity/antiproliferative (MTT, Neutral Red, and dsDNA PicoGreen). In addition, the levels of melanin and purinergic enzymes were also measured. The production of reactive oxygen species (ROS) and nitric oxide (NO) was determined as a measure of oxidative state. Treatment with nano-liposome containing alpha-arbutin induced a significant 68.4% cytotoxicity, similar to the positive control, in the B16-F10 murine melanoma cell line at 72 hr. Further, arbutin and liposomes containing alpha-arbutin increased levels of ROS and nitrite formation at 72 hr at the highest concentration (100 and 300 µg/ml) of treatments. Arbutin and liposomes containing alpha-arbutin reduced melanin levels at all tested concentrations. In addition, arbutin and alpha-arbutin containing liposomes lowered nucleotides (AMP, ADP, and ATP) and nucleoside (adenosine) levels in melanoma cells. Evidence suggests that α-arbutin containing liposome can be considered as an alternative immunosuppressive agent stimulated in melanoma treatment.


Asunto(s)
Arbutina , Liposomas , Melanoma Experimental , Animales , Ratones , Arbutina/farmacología , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo
4.
Int J Mol Sci ; 25(14)2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39063002

RESUMEN

Arbutin and 6'-O-caffeoylarbutin (CA) from Vaccinium dunalianum Wight are known for their ability to inhibit melanin synthesis. To boost the production of arbutin and CA, precursor feeding with hydroquinone (HQ) was studied in V. dunalianum suspension cells. The effect of HQ on the biosynthesis of arbutin and CA in the suspension cells was investigated using high-performance liquid chromatography (HPLC), and possible molecular mechanisms were analyzed using metabolomics and transcriptomics analyses. HPLC analysis only showed that the addition of HQ significantly enhanced arbutin synthesis in cells, peaking at 15.52 ± 0.28 mg·g-1 after 0.5 mmol·L-1 HQ treatment for 12 h. Subsequently, metabolomics identified 78 differential expression metabolites (DEMs), of which arbutin and CA were significantly up-regulated metabolites. Moreover, transcriptomics found a total of 10,628 differential expression genes (DEGs). The integrated transcriptomics and metabolomics revealed that HQ significantly enhanced the expression of two arbutin synthase (AS) genes (Unigene0063512 and Unigene0063513), boosting arbutin synthesis. Additionally, it is speculated that CA was generated from arbutin and 3,4,5-tricaffeoylquinic acid catalyzed by caffeoyl transferase, with Unigene0044545, Unigene0043539, and Unigene0017356 as potentially associated genes with CA synthesis. These findings indicate that the precursor feeding strategy offers a promising approach for the mass production of arbutin and CA in V. dunalianum suspension cells and provides new insights for CA biosynthesis in V. dunalianum.


Asunto(s)
Arbutina , Perfilación de la Expresión Génica , Hidroquinonas , Metabolómica , Arbutina/farmacología , Arbutina/análogos & derivados , Arbutina/metabolismo , Arbutina/biosíntesis , Hidroquinonas/metabolismo , Metabolómica/métodos , Transcriptoma , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Metaboloma , Cromatografía Líquida de Alta Presión , Células Cultivadas
5.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731413

RESUMEN

Ultraviolet radiation can heighten tyrosinase activity, stimulate melanocyte production, impede the metabolism of numerous melanocytes, and result in the accumulation of plaques on the skin surface. α-Arbutin, a bioactive substance extracted from the arbutin plant, has been widely used for skin whitening. In this study, the whitening effect of α-arbutin by inhibiting tyrosinase activity and alleviating the photoaging effect induced by UVB are investigated. The results indicate that α-arbutin can inhibit skin inflammation, and its effectiveness is positively correlated with concentration. Moreover, α-arbutin can reduce the skin epidermal thickness, decrease the number of inflammatory cells, and down-regulate the expression levels of IL-1ß, IL-6 and TNF-α, which are inflammatory factors. It also promotes the expression of COL-1 collagen, thus playing an important role in anti-inflammatory action. Network pharmacology, metabolomics and transcriptomics further confirm that α-arbutin is related to the L-tyrosine metabolic pathway and may interfere with various signaling pathways related to melanin and other photoaging by regulating metabolic changes. Therefore, α-arbutin has a potential inhibitory effect on UVB-induced photoaging and possesses a whitening effect as a cosmetic compound.


Asunto(s)
Arbutina , Envejecimiento de la Piel , Rayos Ultravioleta , Arbutina/farmacología , Rayos Ultravioleta/efectos adversos , Animales , Envejecimiento de la Piel/efectos de los fármacos , Envejecimiento de la Piel/efectos de la radiación , Ratones , Monofenol Monooxigenasa/metabolismo , Monofenol Monooxigenasa/antagonistas & inhibidores , Humanos , Piel/efectos de la radiación , Piel/efectos de los fármacos , Piel/metabolismo , Piel/patología
6.
Inflammopharmacology ; 32(4): 2377-2394, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38748385

RESUMEN

Arbutin, a naturally soluble glycosylated phenol has antioxidant, antimicrobial, antitumor and anti-inflammatory properties. The current exploration appraises the treatment of arthritis by use of Arbutin (25, 50 and 100 mg/kg) orally in CFA-induced rat arthritis model. Body weight changes, paw size, and joint diameter were recorded till the 28th day in the arthritic-induced rats. Hematological, biochemical, oxidative and inflammatory biomarkers were measured through the blood samples of anesthetized rats. Arbutin markedly decreased paw volume, PGE-2, anti-CCP and 5-LOX levels, however, maintained metabolic and hematological balance and prevented weight loss. Radiology and histology changes improved significantly in the ankle joints of rats. Moreover, Arbutin increased gene pointers such as IL-10 and IL-4 while significantly reducing the levels of CRP and WBCs, whereas Hb, platelets and RBCs count markedly raised in post-treatments. Antioxidant levels of SOD, CAT and GSH were improved and MDA level was reduced in treated groups. Rt-PCR investigation showed a significant reduction of the interleukin-1ß, TNF-α, interleukin-6, cyclooxygenase-2, NF-κB and IL-17 and increased expression of gene pointers like IL-4, and IL-10 in treated groups. Assessment of molecular docking revealed a strong binding interaction of Arbutin against 5-LOX, IL-17, TNF-alpha and interleukin-6, cyclooxygenase-2, nuclear factor-κB, IL-4 and iNOS providing a strong association between experimental and theoretical results. As a result, Arbutin has significantly reduced CFA-induced arthritis by modulation of anti-inflammatory cytokines, i.e., IL-10 and IL-4, the pro-inflammatory cytokines panel such as NF-κB, TNF-alpha, IL-1ß, IL-6, PGE-2, 5-LOX and COX-2 and oxidative biomarkers.


Asunto(s)
Araquidonato 5-Lipooxigenasa , Arbutina , Artritis Experimental , Dinoprostona , Interleucina-17 , FN-kappa B , Factor de Necrosis Tumoral alfa , Animales , Ratas , FN-kappa B/metabolismo , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Artritis Experimental/patología , Arbutina/farmacología , Arbutina/administración & dosificación , Factor de Necrosis Tumoral alfa/metabolismo , Masculino , Araquidonato 5-Lipooxigenasa/metabolismo , Dinoprostona/metabolismo , Interleucina-17/metabolismo , Ratas Wistar , Antioxidantes/farmacología , Antiinflamatorios/farmacología , Simulación del Acoplamiento Molecular/métodos
7.
J Biochem Mol Toxicol ; 37(2): e23248, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36284482

RESUMEN

This study aimed to investigate the protective effects of arbutin (ARB) against brain injury induced in rats with potassium bromate (KBrO3 ). The rats were divided into four groups as Group 1: Control (0.9% NaCl ml/kg/day p.), Group 2: KBrO3 (100 mg/kg (gavage), Group 3: ARB (50 mg/kg/day p.), and Group 4: KBrO3 + ARB (100 mg/kg (gavage) + 50 mg/kg/day p.). At the end of the fifth day of the study, the rats in all groups were killed, and their brain tissues were collected. In the collected brain tissues, malondialdehyde (MDA), superoxide dismutase (SOD), and catalase (CAT) levels were measured, and routine histopathological examinations were made. The MDA levels in the group that was exposed to KBrO3 were significantly higher than those in the control group (p ˂ 0.001). In comparison to the KBrO3 group, the MDA levels in the KBrO3 + ARB group were significantly lower (p ˂ 0.001). It was observed that SOD and CAT enzyme activity levels were significantly lower in the KBrO3 group compared to the control group (p ˂ 0.001), while these levels were significantly higher in the KBrO3 + ARB group than in the KBrO3 group (p ˂ 0.001). Additionally, the group that was subjected to KBrO3 toxicity, as well as ARB administration, had much lower levels of histopathologic signs than the group that was subjected to KBrO3 toxicity only. Consequently, it was found that KBrO3 exposure led to injury in the brain tissues of the rats, and using ARB was effective in preventing this injury.


Asunto(s)
Antagonistas de Receptores de Angiotensina , Arbutina , Ratas , Animales , Arbutina/farmacología , Antagonistas de Receptores de Angiotensina/farmacología , Peroxidación de Lípido , Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Antioxidantes/farmacología , Estrés Oxidativo , Superóxido Dismutasa/metabolismo , Encéfalo/metabolismo
8.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046986

RESUMEN

The inhibition of tyrosinase (TYR) activity is an effective measure to inhibit melanin synthesis. At present, there are many methods with discrepant details that study the TYR inhibitory activity of samples. Under the same experimental conditions, this paper systematically studies whether enzyme species and sample addition methods are the key factors that determine the TYR inhibitory activity of samples. TYRs extracted from B16F10 cells, apple and mushroom, called BTYR, ATYR and MTYR, respectively, were selected to implement this study. Results showed that TYR inhibitory activities of samples were obviously affected by the above two factors. It was necessary to select the appropriate enzyme according to the problems to be explained. It was speculated that indirectly inhibitory activity reflected the comprehensive effects of samples on TYR catalytic activity and intracellular TYR synthesis pathway, while directly inhibitory activity reflected the effects of samples on TYR catalytic activity. Additionally, kojic acid could be used as a positive control for both B16F10 cells and MTYR models. The TYR inhibitory activity of ß-arbutin was complicated and fickle, while that of epigallocatechin gallate (EGCG) was universal and stable, which is to say, EGCG always inhibited TYR activity in a dose-dependent manner. In conclusion, the TYR inhibitory activities of samples were affected by enzyme species and sample addition methods. Compared with the unstable ß-arbutin, EGCG was more valuable for clinical research.


Asunto(s)
Agaricales , Monofenol Monooxigenasa , Monofenol Monooxigenasa/metabolismo , Arbutina/farmacología , Inhibidores Enzimáticos/farmacología , Melaninas/metabolismo
9.
Phytopathology ; 112(10): 2198-2206, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35578737

RESUMEN

Poplar anthracnose caused by Colletotrichum gloeosporioides is one of the most important diseases widely distributed in poplar-growing areas in China, causing serious economic and ecological losses. In this study, three poplar species showed different resistance to poplar anthracnose: Populus × canadensis was resistant, Populus tomentosa was susceptible, and P. × beijingensis showed intermediate resistance. However, it remains uncertain whether phenolic compounds in poplar are involved in this resistance. Therefore, we determined the concentrations of phenolic compounds and their antifungal activity. Before and after the C. gloeosporioides inoculation, 20 phenolic compounds were detected in P. × canadensis and the number increased from 12 to 14 in P. × beijingensis but decreased from seven to four in P. tomentosa. Thus, phenolic compounds may be positively correlated with the degree of disease resistance. We selected seven phenolic compounds for further analysis, which varied considerably in content after inoculation with C. gloeosporioides. These seven compounds were salicin, arbutin, benzoic acid, salicylic acid, chlorogenic acid, ferulic acid, and naringenin, which helped poplar trees to limit the growth of C. gloeosporioides and differed in their antifungal effects, with phenolic acids having the strongest inhibitory effect. In addition, the optimal concentrations of different substances varied. We demonstrate that these phenolic compounds produced by poplar do play a certain role in the process of poplar resistance to anthracnose. These findings lay a foundation for future research into the antifungal mechanism of poplar trees and may be useful for enhancing the prevention and control of poplar anthracnose.


Asunto(s)
Colletotrichum , Populus , Antifúngicos/farmacología , Arbutina/farmacología , Ácido Clorogénico/farmacología , Fenoles , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Ácido Salicílico/farmacología
10.
Cell Biochem Funct ; 40(4): 417-425, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35575602

RESUMEN

It has been well known that oxidative stress and increased intracellular reactive oxygen species (ROS) have a pivotal role in disrupting the insulin signaling pathways leading to cellular insulin resistance. In this study, we evaluated arbutin's effects on glucose uptake by GLUT4 and cytoprotective properties in the L6 skeletal muscle cell line. The effect of arbutin and tertiary butyl hydrogen peroxide (t-BHP) on glucose uptake in cultured L6 cells was investigated by flow cytometry. We also evaluated gene expression levels of GLUT1 and GLUT4 in the L6 cells by quantitative real-time polymerase chain reaction analysis. The results from the study demonstrated that the optimum ROS generation occurred 3 h after 100 µM t-BHP treatment and pretreatment with arbutin (500 and 1000 µM) significantly inhibited the t-BHP induced ROS generation (p < .05). Our result indicated that 3 h pretreatment of L6 cells with 1000 µM of arbutin before 50 µM t-BHP significantly increased glucose uptake than the 50 µM t-BHP alone group (p < .05). Our findings may suggest that an increase in the uptake of 2-NBDG by L6 cells with arbutin pretreatment can be associated with increased expression of GLUT4 and GLUT1 under oxidative stress.


Asunto(s)
Arbutina , Glucosa , Arbutina/metabolismo , Arbutina/farmacología , Línea Celular , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Insulina/farmacología , Músculo Esquelético/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Exp Parasitol ; 242: 108397, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36195177

RESUMEN

Botanical medicinal plants have aroused our interest to deal with Toxoplasmosis which can causes serious public health problems. Nipagic acid, gallic acid, ethyl gallate, phloretic acid, protocatechuic acid, methyl p-coumarate, arbutin, and homoprotocatechuic acid are first isolated from Orostachys malacophylla (Pallas) Fischer, their inhibition rate, survival rate, biochemical and viscera index are evaluated using gastric epithelia strain-1(GES-1). Among them, arbutin can effectively prolong the survival time of mice acutely infected with T. gondii, and exhibit the same curative effect as Spiramycin (Spi) group in terms of the glutathione (GSH) and malondialdehyde (MDA) content, alleviate hepatomegaly and splenomegaly. Structure-activity relationship (SAR) and molecular docking implies that phenolic hydroxyl group would be preferred for improvement of activity. In a summary, arbutin is a potential anti-T. gondii candidate for clinical application.


Asunto(s)
Espiramicina , Toxoplasma , Animales , Ratones , Espiramicina/farmacología , Simulación del Acoplamiento Molecular , Arbutina/farmacología , Ácido 3,4-Dihidroxifenilacético/farmacología , Malondialdehído , Glutatión , Ácido Gálico/farmacología , Ácido Gálico/uso terapéutico
12.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163427

RESUMEN

The cryptic ß-glucoside GFB (bglGFB) operon in Escherichia coli (E. coli) can be activated by mutations arising under starvation conditions in the presence of an aromatic ß-glucoside. This may involve the insertion of an insertion sequence (IS) element into a "stress-induced DNA duplex destabilization" (SIDD) region upstream of the operon promoter, although other types of mutations can also activate the bgl operon. Here, we show that increased expression of the bglG gene, encoding a well-characterized transcriptional antiterminator, dramatically increases the frequency of both IS-mediated and IS-independent Bgl+ mutations occurring on salicin- and arbutin-containing agar plates. Both mutation rates increased with increasing levels of bglG expression but IS-mediated mutations were more prevalent at lower BglG levels. Mutations depended on the presence of both BglG and an aromatic ß-glucoside, and bglG expression did not influence IS insertion in other IS-activated operons tested. The N-terminal mRNA-binding domain of BglG was essential for mutational activation, and alteration of BglG's binding site in the mRNA nearly abolished Bgl+ mutant appearances. Increased bglG expression promoted residual bgl operon expression in parallel with the increases in mutation rates. Possible mechanisms are proposed explaining how BglG enhances the frequencies of bgl operon activating mutations.


Asunto(s)
Arbutina/farmacología , Proteínas Bacterianas/genética , Alcoholes Bencílicos/farmacología , Escherichia coli/crecimiento & desarrollo , Glucósidos/farmacología , Mutagénesis Insercional/métodos , Proteínas de Unión al ARN/genética , Proteínas Bacterianas/química , Técnicas Bacteriológicas , Medios de Cultivo/química , Elementos Transponibles de ADN , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Glucósidos/metabolismo , Operón , Motivos de Unión al ARN , Proteínas de Unión al ARN/química
13.
Molecules ; 27(15)2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35897958

RESUMEN

Japanese pharmaceutical cosmetics, often referred to as quasi-drugs, contain skin-lightening active ingredients formulated to prevent sun-induced pigment spots and freckles. Their mechanisms of action include suppressing melanin production in melanocytes and promoting epidermal growth to eliminate melanin more rapidly. For example, arbutin and rucinol are representative skin-lightening active ingredients that inhibit melanin production, and disodium adenosine monophosphate and dexpanthenol are skin-lightening active ingredients that inhibit melanin accumulation in the epidermis. In contrast, oral administration of vitamin C and tranexamic acid in pharmaceutical products can lighten freckles and melasma, and these products are more effective than quasi-drugs. On the basis of their clinical effectiveness, skin-lightening active ingredients can be divided into four categories according to their effectiveness and adverse effects. This review discusses academic research and development regarding skin-lightening ingredients in Japan.


Asunto(s)
Melaninas , Melanosis , Arbutina/farmacología , Humanos , Japón , Piel
14.
Molecules ; 27(24)2022 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-36557918

RESUMEN

Arbutin, a hydroquinone glucoside, has been detected in ca. 50 plant families, especially in the plants of the Asteraceae, Ericaceae, Proteaceae and Rosaceae families. It is one of the most widely used natural skin-whitening agents. In addition to its skin whitening property, arbutin possesses other therapeutically relevant biological properties, e.g., antioxidant, antimicrobial and anti-inflammatory, as well as anticancer potential. This review presents, for the first time, a comprehensive overview of the distribution of arbutin in the plant kingdom and critically appraises its therapeutic potential as an anticancer agent based on the literature published until the end of August 2022, accessed via several databases, e.g., Web of Science, Science Direct, Dictionary of Natural Products, PubMed and Google Scholar. The keywords used in the search were arbutin, cancer, anticancer, distribution and hydroquinone. Published outputs suggest that arbutin has potential anticancer properties against bladder, bone, brain, breast, cervix, colon, liver, prostate and skin cancers and a low level of acute or chronic toxicity.


Asunto(s)
Antineoplásicos , Arbutina , Femenino , Humanos , Arbutina/farmacología , Arbutina/uso terapéutico , Hidroquinonas , Glucósidos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
15.
Biochem Biophys Res Commun ; 547: 75-81, 2021 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-33610043

RESUMEN

Excessive melanin formation has been linked to various skin disorders such as hyperpigmentation and skin cancer. Tyrosinase is the most prominent target for inhibitors of melanin production. In this study, we investigated whether arbutin and its prodrug, arbutin undecylenic acid ester, might inhibit phenoloxidase (PO), a tyrosinase-like enzyme. Molecular docking simulation results suggested that arbutin and arbutin undecylenic acid ester can bind to the substrate-binding pocket of PO. Arbutin undecylenic acid ester with an IC50 6.34 mM was effective to inhibit PO compared to arbutin (IC50 29.42 mM). In addition, arbutin undecylenic acid ester showed low cytotoxicity in Drosophila S2 cells and the compound inhibited the melanization reaction. Therefore, the results of this study have demonstrated that arbutin undecylenic acid ester as a potential inhibitor of PO. We successfully designed a new platform utilizing Drosophila melanogaster and Bombyx mori as animal models propounding fast, cheap, and high effectiveness in method to screen tyrosinase inhibitors.


Asunto(s)
Arbutina/análogos & derivados , Arbutina/química , Arbutina/farmacología , Monofenol Monooxigenasa/antagonistas & inhibidores , Monofenol Monooxigenasa/química , Ácidos Undecilénicos/química , Ácidos Undecilénicos/farmacología , Animales , Bombyx , Drosophila melanogaster , Hiperpigmentación/tratamiento farmacológico , Hiperpigmentación/metabolismo , Melaninas/biosíntesis , Simulación del Acoplamiento Molecular
16.
Biochem Biophys Res Commun ; 577: 52-57, 2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34507065

RESUMEN

Focal ischemia causes irreversible brain damage if cerebral blood flow is not restored promptly. Acute phase excitotoxicity and pro-oxidant and inflammatory events in the sub-chronic phase elicit coagulative necrosis, vascular injury, cerebral oedema, and neurobehavioral deficits. Earlier, in pre-clinical studies arbutin protected behavioral functions and improved therapeutic outcomes in different models of brain and metabolic disorders. Arbutin is natural hydroquinone that might protect against ischemia-reperfusion (I/R) injury. In this study, cerebro-protective effects of arbutin were evaluated in the middle cerebral artery occlusion-reperfusion (MCAo/R) mouse model. Mice were administered arbutin (50, 100 mg/kg, i.p.) for 21 days, and subjected to MCAo/R or sham surgery on day 14. Results showed brain infarction, blood-brain barrier dysfunction, oedema, and neurological deficits 24 h post-MCAo/R injury that were prevented by arbutin. Behavioral evaluations over the sub-chronic phase revealed MCAo/R triggered spatial and working memory deficits. Arbutin protected the memory against MCAo/R injury and decreased hydroxy-2'-deoxyguanosine, protein carbonyls, inflammatory cytokines (tumor necrosis factor-α, myeloperoxidase, matrix metalloproteinase-9, inducible nitric oxide synthase), and enhanced glutathione levels in the ischemia ipsilateral hemisphere. Arbutin decreased brain acetylcholinesterase activity, glutamate, and enhanced GABA levels against MCAo/R. Arbutin can alleviate I/R pathogenesis and protects neurobehavioral functions in the MCAo/R mouse model.


Asunto(s)
Arbutina/farmacología , Encéfalo/efectos de los fármacos , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/prevención & control , Daño por Reperfusión/prevención & control , Animales , Barrera Hematoencefálica/efectos de los fármacos , Barrera Hematoencefálica/fisiología , Encéfalo/fisiopatología , Cromatografía Líquida de Alta Presión , Ácido Glutámico/metabolismo , Humanos , Infarto de la Arteria Cerebral Media/fisiopatología , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Memoria a Corto Plazo/efectos de los fármacos , Memoria a Corto Plazo/fisiología , Ratones , Fármacos Neuroprotectores/farmacología , Neurotransmisores/metabolismo , Permeabilidad/efectos de los fármacos , Daño por Reperfusión/fisiopatología , Ácido gamma-Aminobutírico/metabolismo
17.
Mol Cell Biochem ; 476(1): 349-360, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32964394

RESUMEN

Arbutin is one of the active ingredients employed in cosmetics as a skin whitening agent. In the present study, the possible effects of arbutin on breast cancer were determined with human breast adenocarcinoma (MCF-7) cells. α and ß-arbutin cytotoxicity levels in MCF-7 cells were determined with the MTT method. At low (1-10 mM) doses, α-arbutin appears to be more toxic than ß-arbutin. At higher (5-200 mM) and LD50 doses beta arbutin toxicity appears to be higher than alpha arbutin. Thus, the study was continued with ß -arbutin. The effects of low and high doses of ß-arbutin was determined on oxidative stress, genotoxicity, inflammation, apoptosis, proliferation, endoplasmic reticulum stress and estrogen receptor-α in MCF-7 cells. The results demonstrated that the ß-arbutin doses administered to MCF-7 cells did not affect oxidative and endoplasmic reticulum stress in the experimental groups. However, it was found that administration of LD50 dose ß-arbutin induced inflammation in these cells via proinflammatory cytokine levels (TNF-α, IFN-γ and IL-1ß). It was observed that LD10 and LD50 doses of ß-arbutin increased genotoxicity in MCF-7 cells. The gene expression analysis conducted with RT-PCR device and immunocytochemical analysis revealed that ß-arbutin at LD50 dose induced apoptosis in MCF-7 cells via p53 and Caspase 3. Furthermore, it was determined that all ß-arbutin doses inhibited estrogen receptor-α in MCF-7 cells. Considering that arbutin increased the activation of apoptotic Caspase 3 through p53, which was stimulated by genotoxic and inflammatory effects at LD50 dose in MCF-7 cells. Determination of this mechanism behind these effects of ß-arbutin may contribute to the development of a new perspective in treatment.


Asunto(s)
Anticarcinógenos/farmacología , Arbutina/farmacología , Neoplasias de la Mama/dietoterapia , Receptor alfa de Estrógeno/metabolismo , Apoptosis , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Ensayo Cometa , Daño del ADN/efectos de los fármacos , Estrés del Retículo Endoplásmico , Femenino , Humanos , Inflamación , Células MCF-7 , Pruebas de Micronúcleos , Mutágenos , Estrés Oxidativo , Transducción de Señal
18.
J Biochem Mol Toxicol ; 35(9): e22857, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34338399

RESUMEN

Gliomas are a type of brain cancer that occurs in the supporting glial cells of the brain. It is highly malignant and accounts for 80% of brain tumors with high mortality and morbidity. Phytomedicines are potent alternatives for allopathic drugs which cause side effects. They have been used from ancient times by traditional Chinese, Ayurveda, and Siddha medicine. Arubtin is a glycoside phytochemical extracted from plants and belongs to the family of Ericaceae. Arbutin possesses various pharmacological properties such as anti-inflammatory, antioxidant, antitumor, and so on. Hence in the present study, we analyzed the anticancer potency of arbutin against rat C6 glioma cells. Rat C6 glioma cells were procured from American Type Culture Collection and the cells were cultured in Roswell Park Memorial Institute-1640 medium. To assess the cytotoxicity effect of the arbutin against C6 glioma cells, an 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide test was performed with different doses from 10 to 60 µM. Arbutin effectively induced apoptosis in the cells and the IC50 dose was obtained at 30 µM. For further studies, we selected the 30 µM IC50 dose and a higher dose of 40 µM. Reactive oxygen species (ROS) generated were analyzed with DCFDA/H2DCFDA stain and the destruction of mitochondrial membrane permeability which is the initiator of apoptosis was analyzed with a cationic stain Rhodamine 123. Dual staining with acridine orange and ethidium bromide was performed to assess the viable and dead cells. Cell adhesion properties of glioma cells were analyzed with Matrigel assay. The apoptotic, inflammatory, and phosphoinositide 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling molecules were analyzed with quantitative polymerase chain reaction (qPCR) analysis to confirm the anticancer effect of arbutin. Arbutin generated excessive ROS and disrupted the mitochondrial membrane, which induced apoptosis in cells, it also inhibited the cell adhesion property of C6 glioma cells. qPCR analysis clearly indicates arbutin increases the apoptotic genes and decreased the inflammatory and PI3K/mTOR signaling molecules. Overall, our results authentically confirm that arbutin can be a potent alternative for treating glioma.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Arbutina/farmacología , Glioma , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Animales , Línea Celular Tumoral , Glioma/tratamiento farmacológico , Glioma/metabolismo , Glioma/patología , Ratas
19.
Phytother Res ; 35(8): 4136-4154, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33724594

RESUMEN

Cosmetic dermatology preparations such as bleaching agents are ingredients with skin-related biological activities for increasing and improving skin beauty. The possibility of controlling skin hyperpigmentation disorders is one of the most important research goals in cosmetic preparations. Recently, cosmetics containing herbal and botanical ingredients have attracted many interests for consumers of cosmetic products because these preparations are found safer than other preparations with synthetic components. However, high-quality trial studies in larger samples are needed to confirm safety and clinical efficacy of phytotherapeutic agents with high therapeutic index. Arbutin (p-hydroxyphenyl-ß-d-glucopyranoside) is a bioactive hydrophilic polyphenol with two isomers including alpha-arbutin (4-hydroxyphenyl-α-glucopyranoside) and ß-arbutin (4-hydroxyphenyl-ß-glucopyranoside). It is used as a medicinal plant in phytopharmacy. Studies have shown that alpha-arbutin is 10 times more effective than natural arbutin. A comparison of IC50 values showed that α-arbutin (with concentration 2.0 mM) has a more potent inhibitory activity on human tyrosinase against natural arbutin (with higher concentration than 30 mM). A review of recent studies showed that arbutin could be beneficial in treatment of various diseases such as hyperpigmentation disorders, types of cancers, central nervous system disorders, osteoporosis, diabetes, etc. This study was designed to describe the therapeutic efficiencies of arbutin.


Asunto(s)
Arbutina , Cosméticos , Hiperpigmentación , Arbutina/farmacología , Humanos , Hiperpigmentación/tratamiento farmacológico , Monofenol Monooxigenasa/antagonistas & inhibidores , Piel
20.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34884914

RESUMEN

DeoxyArbutin (dA) is a tyrosinase inhibitor that has effective skin-lightening activity and has no obvious cytotoxicity toward melanocytes. With the aim of directly evaluating the effects of microemulsions containing dA on cells, we developed oil-in-water (O/W) microemulsions with relatively lower cytotoxicities by using polysorbate-series surfactants. Measurement of the transparent properties and particle size analysis at different storage time periods revealed that the developed microemulsions were stable. Moreover, the developed microemulsions had direct effects on B16-F10 mouse melanoma cells. The anti-melanogenesis activities of dA-containing microemulsions were evidently better than that of the free dA group. The results demonstrated that the developed microemulsion encapsulating dA may allow the use of deoxyArbutin instead of hydroquinone to treat dermal hyperpigmentation disorders in the future.


Asunto(s)
Arbutina/análogos & derivados , Cosméticos/farmacología , Melaninas/metabolismo , Melanoma Experimental/metabolismo , Animales , Arbutina/química , Arbutina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cosméticos/química , Composición de Medicamentos , Emulsiones , Melanoma Experimental/tratamiento farmacológico , Ratones , Tamaño de la Partícula
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA