Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 418
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(19): 8565-8575, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38575864

RESUMEN

Benzo[a]pyrene is difficult to remove from soil due to its high octanol/water partition coefficient. The use of mixed surfactants can increase solubility but with the risk of secondary soil contamination, and the compounding mechanism is still unclear. This study introduced a new approach using environmentally friendly fatty acid methyl ester sulfonate (MES) and alkyl polyglucoside (APG) to solubilize benzo[a]pyrene. The best result was obtained when the ratio of MES/APG was 7:1 under 6 g/L total concentration, with an apparent solubility (Sw) of 8.58 mg/L and a molar solubilization ratio (MSR) of 1.31 for benzo[a]pyrene, which is comparable to that of Tween 80 (MSR, 0.95). The mechanism indicates that the hydroxyl groups (-OH) in APG form "O-H···OSO2-" hydrogen bonding with the sulfonic acid group (-SO3-) of MES, which reduces the electrostatic repulsion between MES molecules, thus facilitating the formation of large and stable micelles. Moreover, the strong solubilizing effect on benzo[a]pyrene should be ascribed to the low polarity of ester groups (-COOCH3) in MES. Functional groups capable of forming hydrogen bonds and having low polarity are responsible for the enhanced solubilization of benzo[a]pyrene. This understanding helps choose suitable surfactants for the remediation of PAH-contaminated soils.


Asunto(s)
Benzo(a)pireno , Solubilidad , Tensoactivos , Tensoactivos/química , Benzo(a)pireno/química , Contaminantes del Suelo/química
2.
Int J Mol Sci ; 24(4)2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36835172

RESUMEN

Benzo[a]pyrene (BaP) is noted as one of the main cancer-causing pollutants in human beings and may damage the development of crop plants. The present work was designed to explore more insights into the toxic effects of BaP on Solanum lycopersicum L. at various doses (20, 40, and 60 MPC) spiked in Haplic Chernozem. A dose-dependent response in phytotoxicity were noted, especially in the biomass of the roots and shoots, at doses of 40 and 60 MPC BaP and the accumulation of BaP in S. lycopersicum tissues. Physiological and biochemical response indices were severely damaged based on applied doses of BaP. During the histochemical analysis of the localization of superoxide in the leaves of S. lycopersicum, formazan spots were detected in the area near the leaf's veins. The results of a significant increase in malondialdehyde (MDA) from 2.7 to 5.1 times, proline 1.12- to 2.62-folds, however, a decrease in catalase (CAT) activity was recorded by 1.8 to 1.1 times. The activity of superoxide dismutase (SOD) increased from 1.4 to 2, peroxidase (PRX) from 2.3 to 5.25, ascorbate peroxidase (APOX) by 5.8 to 11.5, glutathione peroxidase (GP) from 3.8 to 7 times, respectively. The structure of the tissues of the roots and leaves of S. lycopersicum in the variants with BaP changed depending on the dose: it increased the intercellular space, cortical layer, and the epidermis, and the structure of the leaf tissues became looser.


Asunto(s)
Benzo(a)pireno , Solanum lycopersicum , Antioxidantes , Benzo(a)pireno/química , Benzo(a)pireno/toxicidad , Catalasa , Glutatión Peroxidasa , Suelo/química , Solanum lycopersicum/química , Solanum lycopersicum/metabolismo , Superóxido Dismutasa
3.
Molecules ; 28(13)2023 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-37446927

RESUMEN

Benzo[a]pyrene is a widespread environmental pollutant and a strong carcinogen. It is important to understand its bio-toxicity and degradation mechanism. Herein, we studied the excited state dynamics of benzo[a]pyrene by using time-resolved fluorescence and transient absorption spectroscopic techniques. For the first time, it is identified that benzo[a]pyrene in its singlet excited state could react with oxygen, resulting in fluorescence quenching. Additionally, effective intersystem crossing can occur from its singlet state to the triplet state. Furthermore, the interaction between the excited benzo[a]pyrene and ct-DNA can be observed directly and charge transfer between benzo[a]pyrene and ct-DNA may be the reason. These results lay a foundation for further understanding of the carcinogenic mechanism of benzo[a]pyrene and provide insight into the photo-degradation mechanism of this molecule.


Asunto(s)
Benzo(a)pireno , Oxígeno , Benzo(a)pireno/química , Cinética , Fenómenos Químicos , ADN
4.
Molecules ; 27(4)2022 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-35209168

RESUMEN

Benzo[a]pyrene (BaP) is a polycyclic aromatic hydrocarbon (PAH) primarily formed by burning of fossil fuels, wood and other organic materials. BaP as group I carcinogen shows mutagenic and carcinogenic effects. One of the important mechanisms of action of (BaP) is its free radical activity, the effect of which is the induction of oxidative stress in cells. BaP induces oxidative stress through the production of reactive oxygen species (ROS), disturbances of the activity of antioxidant enzymes, and the reduction of the level of non-enzymatic antioxidants as well as of cytokine production. Chemical compounds, such as vitamin E, curcumin, quercetin, catechin, cyanidin, kuromanin, berberine, resveratrol, baicalein, myricetin, catechin hydrate, hesperetin, rhaponticin, as well as taurine, atorvastatin, diallyl sulfide, and those contained in green and white tea, lower the oxidative stress induced by BaP. They regulate the expression of genes involved in oxidative stress and inflammation, and therefore can reduce the level of ROS. These substances remove ROS and reduce the level of lipid and protein peroxidation, reduce formation of adducts with DNA, increase the level of enzymatic and non-enzymatic antioxidants and reduce the level of pro-inflammatory cytokines. BaP can undergo chemical modification in the living cells, which results in more reactive metabolites formation. Some of protective substances have the ability to reduce BaP metabolism, and in particular reduce the induction of cytochrome (CYP P450), which reduces the formation of oxidative metabolites, and therefore decreases ROS production. The aim of this review is to discuss the oxidative properties of BaP, and describe protective activities of selected chemicals against BaP activity based on of the latest publications.


Asunto(s)
Antioxidantes/farmacología , Benzo(a)pireno/farmacología , Oxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Animales , Antioxidantes/química , Benzo(a)pireno/química , Biomarcadores , Susceptibilidad a Enfermedades , Metabolismo Energético/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Peroxidación de Lípido/efectos de los fármacos , Estructura Molecular , Oxidantes/química , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
5.
World J Microbiol Biotechnol ; 38(4): 61, 2022 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-35199223

RESUMEN

Benzo[a]pyrene (BaP) is a high molecular weight polycyclic aromatic hydrocarbon produced as a result of incomplete combustion of organic substances. Over the years, the release of BaP in the atmosphere has increased rapidly, risking human lives. BaP can form bonds with DNA leading to the formation of DNA adducts thereby causing cancer. Therefore addressing the problem of its removal from the environment is quite pertinent though it calls for a very cumbersome and tedious process owing to its recalcitrant nature. To resolve such issues many efforts have been made to develop physical and chemical technologies of BaP degradation which have neither been cost-effective nor eco-friendly. Microbial degradation of BaP, on the other hand, has gained much attention due to added advantage of the high level of microbial diversity enabling great potential to degrade the substance without impairing environmental sustainability. Microorganisms produce enzymes like oxygenases, hydrolases and cytochrome P450 that enable BaP degradation. However, microbial degradation of BaP is restricted due to several factors related to its bio-availability and soil properties. Technologies like bio-augmentation and bio-stimulation have served to enhance the degradation rate of BaP. Besides, advanced technologies such as omics and nano-technology have opened new doors for a better future of microbial degradation of BaP and related compounds.


Asunto(s)
Benzo(a)pireno , Hidrocarburos Policíclicos Aromáticos , Benzo(a)pireno/química , Biodegradación Ambiental , Humanos , Hidrocarburos Policíclicos Aromáticos/química , Suelo , Microbiología del Suelo
6.
Molecules ; 26(20)2021 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-34684744

RESUMEN

Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL-1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL-1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL-1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.


Asunto(s)
Benzo(a)pireno/química , Grafito/química , Extracción en Fase Sólida/métodos , Benzo(a)pireno/análisis , Calcio/análisis , Cromatografía Líquida de Alta Presión , Criogeles/química , Tecnología Química Verde/métodos , Límite de Detección , Nanopartículas/análisis , Hidrocarburos Policíclicos Aromáticos/análisis , Almidón/análisis , Contaminantes Químicos del Agua/análisis
7.
Molecules ; 26(11)2021 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-34072086

RESUMEN

Benzopyrene [B(a)P] is a well-recognized environmental carcinogen, which promotes oxidative stress, inflammation, and other metabolic complications. In the current study, the therapeutic effects of thymoquinone (TQ) against B(a)P-induced lung injury in experimental rats were examined. B(a)P used at 50 mg/kg b.w. induced lung injury that was investigated via the evaluation of lipid profile, inflammatory markers, nitric oxide (NO), and malondialdehyde (MDA) levels. B(a)P also led to a decrease in superoxide dismutase (SOD) (34.3 vs. 58.5 U/mg protein), glutathione peroxidase (GPx) (42.4 vs. 72.8 U/mg protein), catalase (CAT) (21.2 vs. 30.5 U/mg protein), and total antioxidant capacity compared to normal animals. Treatment with TQ, used at 50 mg/kg b.w., led to a significant reduction in triglycerides (TG) (196.2 vs. 233.7 mg/dL), total cholesterol (TC) (107.2 vs. 129.3 mg/dL), and inflammatory markers and increased the antioxidant enzyme level in comparison with the group that was administered B(a)P only (p < 0.05). B(a)P administration led to the thickening of lung epithelium, increased inflammatory cell infiltration, damaged lung tissue architecture, and led to accumulation of collagen fibres as studied through haematoxylin and eosin (H&E), Sirius red, and Masson's trichrome staining. Moreover, the recognition of apoptotic nuclei and expression pattern of NF-κB were evaluated through the TUNEL assay and immunohistochemistry, respectively. The histopathological changes were found to be considerably low in the TQ-treated animal group. The TUNEL-positive cells increased significantly in the B(a)P-induced group, whereas the TQ-treated group showed a decreased apoptosis rate. Significantly high cytoplasmic expression of NF-κB in the B(a)P-induced group was seen, and this expression was prominently reduced in the TQ-treated group. Our results suggest that TQ can be used in the protection against benzopyrene-caused lung injury.


Asunto(s)
Benzo(a)pireno/química , Benzoquinonas/análisis , Benzoquinonas/farmacología , Inflamación , Lípidos/química , Lesión Pulmonar/inducido químicamente , Pulmón/efectos de los fármacos , Nigella sativa/metabolismo , Óxido Nítrico/química , Estrés Oxidativo , Fibrosis Pulmonar/inducido químicamente , Animales , Antioxidantes/química , Colesterol/química , Fragmentación del ADN , Molécula 1 de Adhesión Intercelular/biosíntesis , Interleucina-1beta/biosíntesis , Interleucina-6/biosíntesis , Pulmón/patología , Masculino , Fibrosis Pulmonar/fisiopatología , Ratas , Resultado del Tratamiento , Factor de Necrosis Tumoral alfa/biosíntesis
8.
Proc Natl Acad Sci U S A ; 114(6): 1246-1251, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28115713

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have toxic impacts on humans and ecosystems. One of the most carcinogenic PAHs, benzo(a)pyrene (BaP), is efficiently bound to and transported with atmospheric particles. Laboratory measurements show that particle-bound BaP degrades in a few hours by heterogeneous reaction with ozone, yet field observations indicate BaP persists much longer in the atmosphere, and some previous chemical transport modeling studies have ignored heterogeneous oxidation of BaP to bring model predictions into better agreement with field observations. We attribute this unexplained discrepancy to the shielding of BaP from oxidation by coatings of viscous organic aerosol (OA). Accounting for this OA viscosity-dependent shielding, which varies with temperature and humidity, in a global climate/chemistry model brings model predictions into much better agreement with BaP measurements, and demonstrates stronger long-range transport, greater deposition fluxes, and substantially elevated lung cancer risk from PAHs. Model results indicate that the OA coating is more effective in shielding BaP in the middle/high latitudes compared with the tropics because of differences in OA properties (semisolid when cool/dry vs. liquid-like when warm/humid). Faster chemical degradation of BaP in the tropics leads to higher concentrations of BaP oxidation products over the tropics compared with higher latitudes. This study has profound implications demonstrating that OA strongly modulates the atmospheric persistence of PAHs and their cancer risks.


Asunto(s)
Atmósfera/química , Benzo(a)pireno/química , Carcinógenos/química , Neoplasias Pulmonares/inducido químicamente , Modelos Químicos , Aerosoles , Benzo(a)pireno/efectos adversos , Clima , Humanos , Oxidación-Reducción , Medición de Riesgo
9.
Environ Geochem Health ; 42(8): 2485-2494, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31264041

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) have been a major concern because of their carcinogenicity, mutagenicity, teratogenicity and wide distribution in the environment. Over 90% of PAHs in the environment exist on soil surface/sediment. Benzo[a]pyrene (BaP) is one of the predominant PAHs in soil. Thus, it is critically important to understand the patterns of BaP accumulation and transformation peculiarities in soil for the risk assessment. The studies were conducted in model experiment with Haplic Chernozem spiked with various doses of BaP (20, 200, 400 and 800 µg kg-1) equivalent to 1, 10, 20 and 40 levels of maximum permissible concentrations. The unique properties of Haplic Chernozem were studied allow to accumulate and transform BaP as well as barley plants ability to absorb of some BaP concentration. Extraction of BaP from the soil was carried out by the saponification method. The qualitative and quantitative determination of BaP and other polycyclic aromatic hydrocarbons (PAHs) was performed by high-performance liquid chromatography with fluorescence detection (Agilent 1260 Germany, 2014). BaP accumulation in soil depended on the applied BaP concentrations in Haplic Chernozem. Studying the features of PAHs transformation in the soil of a model experiment 1 year after the compound application showed the BaP content in the soil decreased up to 11-40%. Two years after the BaP application the content in the soil decreased up to 15-44% from the initial BaP content in the soil. The percentage of BaP concentration reduction in Haplic Chernozem increased with an increase in the dose of the applied xenobiotic. An increase in the dose of the applied pollutant to the soil of the model experiment contributed to an increase in all PAHs, which indicated a rapid BaP transformation in Haplic Chernozem. The PAHs content in the soils of model experiment in the first year of the research formed the following descending series: pyrene > chrysene > fluoranthene > phenanthrene. In the second year of research the phenanthrene content became higher than the fluoranthene content. The content of these compounds exceeded 20% of the total PAHs content in the soil samples in the first and second years of the model experiment. The features of PAHs accumulation and transformation in soils under artificial pollution showed the degradation of large-nuclear PAHs, starting from 5-ring polyarenes, and their structural reorganization into the less-nuclear polyarenes, such as 4-, 3-, and 2-ring PAHs. During the 2 years of the model experiment the BaP concentration in the soil decreased up to 15-44% from the initial BaP content in the soil.


Asunto(s)
Benzo(a)pireno/metabolismo , Contaminantes del Suelo/metabolismo , Benzo(a)pireno/química , Biodegradación Ambiental , Crisenos/química , Crisenos/metabolismo , Fluorenos/química , Fluorenos/metabolismo , Hordeum/metabolismo , Fenantrenos/química , Fenantrenos/metabolismo , Hidrocarburos Policíclicos Aromáticos/química , Hidrocarburos Policíclicos Aromáticos/metabolismo , Pirenos/química , Pirenos/metabolismo , Federación de Rusia , Suelo/química , Contaminantes del Suelo/química
10.
Invest New Drugs ; 37(2): 238-251, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29931584

RESUMEN

Epidemiological surveys have revealed that environmental and dietary factors contribute to most of the human cancers. Our earlier studies have shown that resveratrol (RVT), a phytochemical reduced the tumor number, size and incidence of dysplasias induced by benzo(a)pyrene (BaP), an environmental toxicant in the ApcMin/+ mouse model of colon cancer. In this study we investigated to ascertain whether the preventive effects of RVT on BaP-induced colon carcinogenesis is a result of altered BaP biotransformation by RVT. For the first group of mice, 100 µg BaP/kg bw was administered in peanut oil via oral gavage over a 60 day period. For the second group, 45 µg RVT/kg bw was co-administered with BaP. For the third group, RVT was administered for 1 week prior to BaP exposure. Blood, colon and liver were collected from control and BaP/RVT-treated mice at 60 days post-BaP & RVT exposure. We have assayed activities and expression (protein & mRNA) of drug metabolizing enzymes such as cytochrome P4501A1 (CYP1A1), CYP1B1, and glutathione-S-transferase (GST) in colon and liver samples from the treatment groups mentioned above. An increased expression of CYP1A1 in liver and colon and of CYP1B1 in liver of BaP-treated mice was seen, while RVT inhibited the extent of biotransformation mediated by these enzymes in the respective tissue samples. In the case of GST, an increased expression in colon of BaP alone-treated mice was noted when RVT was administered prior to BaP or simultaneously with BaP. However, there is no change in liver GST expression between BaP and RVT treatment groups. The concentrations of BaP aqueous (phase II) metabolites were found to be greater than the organic (phase I) metabolites, suggesting that RVT slows down the phase I metabolism (metabolic activation) of BaP, while enhancing phase II metabolism (detoxification). Additionally, the BaP-DNA adduct concentrations measured in colon and liver of BaP + RVT-treated mice were low relative to their BaP counterparts. Taken together, our findings strongly suggest that RVT alleviates BaP-induced colon carcinogenesis by impairing biotransformation pathways and DNA adduct formation, and therefore holds promise as a chemopreventive agent.


Asunto(s)
Benzo(a)pireno/toxicidad , Biotransformación/efectos de los fármacos , Carcinogénesis/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Resveratrol/farmacología , Animales , Antioxidantes/farmacocinética , Antioxidantes/farmacología , Apoptosis , Benzo(a)pireno/química , Benzo(a)pireno/farmacocinética , Carcinogénesis/metabolismo , Carcinogénesis/patología , Carcinógenos Ambientales/química , Carcinógenos Ambientales/farmacocinética , Carcinógenos Ambientales/toxicidad , Proliferación Celular , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Citocromo P-450 CYP1A1/metabolismo , Citocromo P-450 CYP1B1/metabolismo , Aductos de ADN/química , Aductos de ADN/farmacocinética , Aductos de ADN/toxicidad , Glutatión Transferasa/metabolismo , Humanos , Masculino , Ratones , Resveratrol/farmacocinética , Distribución Tisular , Células Tumorales Cultivadas
11.
Chem Res Toxicol ; 32(6): 1259-1267, 2019 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-30938511

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental contaminants generated from combustion of carbon-based matter. Upon ingestion, these molecules can be bioactivated by cytochrome P450 monooxygenases to oxidized toxic metabolites. Some of these metabolites are potent carcinogens that can form irreversible adducts with DNA and other biological macromolecules. Conjugative enzymes, such as glutathione S-transferases or UDP-glucuronosyltransferases, are responsible for the detoxification and/or facilitate the elimination of these carcinogens. While responses to PAH exposures have been extensively studied for the bioactivating cytochrome P450 enzymes, much less is known regarding the response of glutathione S-transferases in mammalian systems. In this study, we investigated the expression and activity responses of murine hepatic glutathione S-transferases to benzo[ a]pyrene exposure using global proteomics and activity-based protein profiling for chemoproteomics, respectively. Using this approach, we identified several enzymes exhibiting increased activity including GSTA2, M1, M2, M4, M6, and P1. The activity of one GST enzyme, GSTA4, was found to be downregulated with increasing B[ a]P dose. Activity responses of several of these enzymes were identified as being expression-independent when comparing global and activity-based data sets, possibly alluding to as of yet unknown regulatory post-translational mechanisms.


Asunto(s)
Benzo(a)pireno/farmacología , Glutatión Transferasa/metabolismo , Animales , Benzo(a)pireno/química , Inducción Enzimática/efectos de los fármacos , Femenino , Hígado/efectos de los fármacos , Hígado/metabolismo , Ratones , Ratones Endogámicos , Sondas Moleculares/química , Estructura Molecular , Proteómica , ARN Mensajero/efectos de los fármacos , ARN Mensajero/metabolismo
12.
Ecotoxicol Environ Saf ; 172: 1-10, 2019 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-30665150

RESUMEN

Benzo[a]pyrene (BaP) is a model compound of polycyclic aromatic hydrocarbons. The relationship between its toxicity and some target biomolecules has been investigated. To reveal the interactions of BaP biodegradation and metabolic network, BaP intermediates, proteome, carbon metabolism and ion transport were analyzed. The results show that 76% BaP was degraded by Brevibacillus brevis within 7 d through the cleavage of aromatic rings with the production of 1-naphthol and 2-naphthol. During this process, the expression of xylose isomerase was induced for xylose metabolism, whereas, α-cyclodextrin could no longer be metabolized. Lactic acid, acetic acid and oxalic acid at 0.1-1.2 mg dm-3 were released stemming from their enhanced biosynthesis in the pathways of pyruvate metabolism and citrate cycle, while 5-7 mg dm-3 of PO43- were transported for energy metabolism. The relative abundance of 43 proteins was significantly increased for pyruvate metabolism, citrate cycle, amino acid metabolism, purine metabolism, ribosome metabolism and protein synthesis.


Asunto(s)
Benzo(a)pireno/metabolismo , Brevibacillus/metabolismo , Bacillus/metabolismo , Benzo(a)pireno/química , Biodegradación Ambiental , Carbono/metabolismo , Metabolismo Energético , Naftoles/química , Naftoles/metabolismo , Proteoma/metabolismo , Proteómica
13.
Molecules ; 24(6)2019 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-30884744

RESUMEN

The formation of polycyclic aromatic hydrocarbons (PAHs) is a strong global concern due to their harmful effects. To help the reduction of their emissions, a crucial understanding of their formation and a deep exploration of their growth mechanism is required. In the present work, the formation of benzo(a)pyrene was investigated computationally employing chrysene and benz(a)anthracene as starting materials. It was assumed a type of methyl addition/cyclization (MAC) was the valid growth mechanism in this case. Consequently, the reactions implied addition reactions, ring closures, hydrogen abstractions and intramolecular hydrogen shifts. These steps of the mechanism were computed to explore benzo(a)pyene formation. The corresponding energies of the chemical species were determined via hybrid density funcional theory (DFT), B3LYP/6-31+G(d,p) and M06-2X/6-311++G(d,p). Results showed that the two reaction routes had very similar trends energetically, the difference between the energy levels of the corresponding molecules was just 6.13 kJ/mol on average. The most stable structure was obtained in the benzo(a)anthracene pathway.


Asunto(s)
Benzo(a)Antracenos/química , Benzo(a)pireno/química , Carcinógenos/química , Hidrocarburos Policíclicos Aromáticos/química , Benzo(a)Antracenos/toxicidad , Benzo(a)pireno/toxicidad , Carcinógenos/toxicidad , Crisenos/química , Humanos , Hidrógeno/química , Estructura Molecular , Hidrocarburos Policíclicos Aromáticos/toxicidad
14.
Chem Res Toxicol ; 31(11): 1260-1268, 2018 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-30284444

RESUMEN

Nucleotide excision repair (NER) excises a variety of environmentally derived DNA lesions. However, NER efficiencies for structurally different DNA lesions can vary by orders of magnitude; yet the origin of this variance is poorly understood. Our goal is to develop computational strategies that predict and identify the most hazardous, repair-resistant lesions from the plethora of such adducts. In the present work, we are focusing on lesion recognition by the xeroderma pigmentosum C protein complex (XPC), the first and required step for the subsequent assembly of factors needed to produce successful NER. We have performed molecular dynamics simulations to characterize the initial binding of Rad4, the yeast orthologue of human XPC, to a library of 10 different lesion-containing DNA duplexes derived from environmental carcinogens. These vary in lesion chemical structures and conformations in duplex DNA and exhibit a wide range of relative NER efficiencies from repair resistant to highly susceptible. We have determined a promising set of structural descriptors that characterize initial binding of Rad4 to lesions that are resistant to NER. Key initial binding requirements for successful recognition are absent in the repair-resistant cases: There is little or no duplex unwinding, very limited interaction between the ß-hairpin domain 2 of Rad4 and the minor groove of the lesion-containing duplex, and no conformational capture of a base on the lesion partner strand. By contrast, these key binding features are present to different degrees in NER susceptible lesions and correlate to their relative NER efficiencies. Furthermore, we have gained molecular understanding of Rad4 initial binding as determined by the lesion structures in duplex DNA and how the initial binding relates to the repair efficiencies. The development of a computational strategy for identifying NER-resistant lesions is grounded in this molecular understanding of the lesion recognition mechanism.


Asunto(s)
Reparación del ADN , Proteínas de Unión al ADN/química , Proteínas de Saccharomyces cerevisiae/química , Benzo(a)pireno/química , Benzo(a)pireno/metabolismo , Sitios de Unión , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/metabolismo , Isomerismo , Simulación de Dinámica Molecular , Unión Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
15.
Chem Res Toxicol ; 31(1): 22-36, 2018 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-29185724

RESUMEN

Parabens, phthalates, and perfluorinated compounds are pollutant compounds used in cosmetics, plastics, and fire-fighting foams. All three compounds have been studied over several years for toxicity mechanism; however, a clear view of their ability to bind to DNA has not been supplied empirically. In this work, a simulation study is done to reveal the interaction of three of these pollutants, bis(2-ethylhexyl)-phthalate (DEHP), butylparaben (BPRB), and the protonated form of perfluorooctanesulfonic acid (PFOS(H)), with DNA. The results show that the DEHP, PFOS(H), and BPRB bind with a probability of 1/5 to DNA, with respective bonding energies -23.96 kJ/mol (PFOS(H)), -94.92 kJ/mol (BPRB), and -216.52 kJ/mol (DEHP). The positive control, benzo[a]pyrene diol epoxide (BAP), which is known for its notorious DNA intercalation, binds at a rate of 3/5 simulations, with bonding energies of -6544.52, -7034.66, and -7578.67 kJ/mol. The results are compared to empirical studies and conclusively show that all these pollutants can interfere with transcription and DNA related mechanisms by forming noncovalent interactions with DNA. The results show also that these pollutants are unlikely to undergo strong noncovalent intercalation to DNA, such as BAP, and do not possess the frontier orbital profiles to undergo adduct formation. After many years of research and several unanswered questions on the action of these pollutants on DNA, a calculation on their properties hence to the DNA confirms that there is a low probability for these to undergo a strong intercalation with DNA. Literature shows however that the pollutants are strongly interfering with the protein machinery and receptors on the cell surface and are therefore still priority pollutants for ecotoxicity research.


Asunto(s)
Ácidos Alcanesulfónicos/química , Benzo(a)pireno/química , ADN/química , Dietilhexil Ftalato/química , Fluorocarburos/química , Sustancias Intercalantes/química , Parabenos/química , ADN/efectos de los fármacos , Sustancias Intercalantes/farmacología , Simulación de Dinámica Molecular , Teoría Cuántica
16.
J Fluoresc ; 28(5): 1225-1237, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30145784

RESUMEN

In the study a dyad (C6 probe), constructed of two dyes with highly different hydrophobicities, was investigated by steady-state and time-resolved spectroscopic techniques in chloroform, methanol, and in phospholipid vesicles, respectively. The dyad was built on two dyes: the lipophilic benzo[a]pyrene (BaP) and the hydrophilic sulforhodamine B (SRB). The dyes were linked via a short, but flexible alkyl chain (six C-atoms). Based on their spectroscopic properties, BaP and SRB showed a very efficient non-radiative resonance energy transfer in solution. Incorporation into a lipid bilayer limited the relative flexibility (degree of freedom) between donor and acceptor and was used for the investigation of fundamental photophysical aspects (especially of FRET) as well as to elucidate the potential of the dyad to probe the interface of vesicles (or cells). The location of the two dyes in vesicles and their respective accessibility for interactions with dye-specific antibodies was investigated. Based on the alteration of the anisotropy, on the rotational correlation time as well as on the diffusion coefficient the incorporation of the C6 probe into the vesicles was evaluated. Especially the limitation in the relative movements of the two dyes was considered and used to differentiate between potential parameters, that influence the energy transfer in the dyad. Transient absorption spectroscopy (TAS) and pulsed-interleave single molecule fluorescence experiments were performed to better understand the intramolecular interactions in the dyad. Finally, in a showcase for a biosensing application of the dyads, the binding of an SRB-specific antibody was investigated when the dyad was incorporated in vesicles. Graphical Abstract.


Asunto(s)
Membrana Celular/química , Colorantes Fluorescentes/química , Benzo(a)pireno/química , Interacciones Hidrofóbicas e Hidrofílicas , Fosfolípidos/química , Rodaminas/química , Espectrometría de Fluorescencia
17.
Ecotoxicol Environ Saf ; 160: 144-153, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29803189

RESUMEN

One of the crucial and unsolved problems of the airborne carbon nanoparticles is the role played by the adsorbed environmental pollutants on their toxicological effect. Indeed, in the urban areas, the carbon nanoparticles usually adsorb some atmospheric contaminants, whose one of the leading representatives is the benzo(α)pyrene. Herein, we used the proteomics to investigate the alteration of toxicological pathways due to the carbon nanopowder-benzo(α)pyrene complex in comparison with the two contaminants administered alone on human skin-derived fibroblasts (hSDFs) exposed for 8 days in semi-static conditions. The preliminary confocal microscopy observations highlighted that carbon-nanopowder was able to pass through the cell membranes and accumulate into the cytoplasm both when administered alone and with the adsorbed benzo(α)pyrene. Proteomics revealed that the effect of carbon nanopowder-benzo(α)pyrene complex seems to be related to a new toxicological behavior instead of simple additive or synergistic effects. In detail, the cellular pathways modulated by the complex were mainly related to energy shift (glycolysis and pentose phosphate pathway), apoptosis, stress response and cellular trafficking.


Asunto(s)
Benzo(a)pireno/toxicidad , Carbono/toxicidad , Contaminantes Ambientales/toxicidad , Fibroblastos/efectos de los fármacos , Nanopartículas/toxicidad , Adsorción , Benzo(a)pireno/química , Carbono/química , Membrana Celular/metabolismo , Células Cultivadas , Contaminantes Ambientales/química , Humanos , Nanopartículas/química , Proteómica , Piel/citología
18.
Water Sci Technol ; 77(9-10): 2407-2414, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29893729

RESUMEN

Organic micropollutants, in particular those of anthropogenic origin, may have a toxic influence on water organisms. Photochemical oxidation processes are one of the most effective methods of decomposition of a wide range of those compounds. During the oxidation process a large number of different by-products are generated, which can still be biologically active. The development of analytical techniques, including the reduction of the detection limit to several fg/L, allows the identification of even trace concentrations of compounds. The paper presents the determination of pentachlorophenol and benzo(a)pyrene degradation pathways during the process of heterogeneous photocatalysis carried out in the presence of titanium dioxide. The gas chromatography-mass spectrometry (GC-MS) analysis of post-processing samples indicated the formation of different by-products of the parent micropollutants. Moreover, the toxicity assessment demonstrates for both tested micropollutants an increase in the toxicity within the whole time of the UV irradiation process run.


Asunto(s)
Benzo(a)pireno/química , Pentaclorofenol/química , Procesos Fotoquímicos , Contaminantes Químicos del Agua/química , Catálisis , Cromatografía de Gases y Espectrometría de Masas , Oxidación-Reducción , Titanio , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos
19.
World J Microbiol Biotechnol ; 34(7): 88, 2018 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-29886516

RESUMEN

Benzo[a]pyrene (BaP) is recognized as a potentially carcinogenic and mutagenic hydrocarbon, and thus, its removal from the environment is a priority. The use of thermophilic bacteria capable of biodegrading or biotransforming this compound to less toxic forms has been explored in recent decades, since it provides advantages compared to mesophilic organisms. This study assessed the biotransformation of BaP by the thermophilic bacterium Bacillus licheniformis M2-7. Our analysis of the biotransformation process mediated by strain M2-7 on BaP shows that it begins during the first 3 h of culture. The gas chromatogram of the compound produced shows a peak with a retention time of 17.38 min, and the mass spectra shows an approximate molecular ion of m/z 167, which coincides with the molecular weight of the chemical formula C6H4(COOH)2, confirming a chemical structure corresponding to phthalic acid. Catechol 2,3-dioxygenase (C23O) enzyme activity was detected in minimal saline medium supplemented with BaP (0.33 U mg-1 of protein). This finding suggests that B. licheniformis M2-7 uses the meta pathway for biodegrading BaP using the enzyme C23O, thereby generating phthalic acid as an intermediate.


Asunto(s)
Bacillus licheniformis/enzimología , Bacillus licheniformis/metabolismo , Benzo(a)pireno/metabolismo , Bacillus licheniformis/crecimiento & desarrollo , Benzo(a)pireno/análisis , Benzo(a)pireno/química , Biodegradación Ambiental , Biotransformación , Catecol 2,3-Dioxigenasa/metabolismo , Cromatografía de Gases , Contaminantes Ambientales , Activación Enzimática , Espectrometría de Masas , Peso Molecular , Ácidos Ftálicos/metabolismo , Microbiología del Suelo
20.
J Environ Sci Health B ; 53(5): 313-318, 2018 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-29431582

RESUMEN

The objective of this study was to investigate the role of stabilized organic matter (vermicompost) and tropical soils in the sorption of naphthalene, anthracene and benzo[a]pyrene. The results obtained for the three compounds were extrapolated for the priority polycyclic aromatic hydrocarbons (PAHs) pollutants according to Environmental Protection Agency (US EPA). To evaluate the sorption process, high performance liquid chromatography was employed and the data was fitted by Freundlich isotherms. The results suggest that the sorption effect generally increases with the number of benzene rings of the PAHs, and that the persistence of PAHs in the environment is possibly related to the number of benzene rings in the PAH molecule. In addition, the pH of the vermicompost can strongly affect the adsorption process in this matrix.


Asunto(s)
Compostaje , Hidrocarburos Policíclicos Aromáticos/química , Contaminantes del Suelo/química , Adsorción , Antracenos/análisis , Antracenos/química , Benzo(a)pireno/análisis , Benzo(a)pireno/química , Concentración de Iones de Hidrógeno , Naftalenos/análisis , Naftalenos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Suelo/química , Contaminantes del Suelo/análisis , Clima Tropical
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA