Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 779
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Clin Microbiol Rev ; 36(3): e0016422, 2023 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-37306571

RESUMEN

Bordetella pertussis and Bordetella bronchiseptica belong to the genus Bordetella, which comprises 14 other species. B. pertussis is responsible for whooping cough in humans, a severe infection in children and less severe or chronic in adults. These infections are restricted to humans and currently increasing worldwide. B. bronchiseptica is involved in diverse respiratory infections in a wide range of mammals. For instance, the canine infectious respiratory disease complex (CIRDC), characterized by a chronic cough in dogs. At the same time, it is increasingly implicated in human infections, while remaining an important pathogen in the veterinary field. Both Bordetella can evade and modulate host immune responses to support their persistence, although it is more pronounced in B. bronchiseptica infection. The protective immune responses elicited by both pathogens are comparable, while there are important characteristics in the mechanisms that differ. However, B. pertussis pathogenesis is more difficult to decipher in animal models than those of B. bronchiseptica because of its restriction to humans. Nevertheless, the licensed vaccines for each Bordetella are different in terms of formulation, route of administration and immune responses induced, with no known cross-reaction between them. Moreover, the target of the mucosal tissues and the induction of long-lasting cellular and humoral responses are required to control and eliminate Bordetella. In addition, the interaction between both veterinary and human fields are essential for the control of this genus, by preventing the infections in animals and the subsequent zoonotic transmission to humans.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Infecciones del Sistema Respiratorio , Vacunas , Tos Ferina , Niño , Animales , Perros , Humanos , Bordetella pertussis/fisiología , Bordetella bronchiseptica/fisiología , Tos Ferina/prevención & control , Infecciones por Bordetella/prevención & control , Mamíferos
2.
Mol Microbiol ; 119(2): 174-190, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36577696

RESUMEN

Bordetella species cause lower respiratory tract infections in mammals. B. pertussis and B. bronchiseptica are the causative agents of whooping cough and kennel cough, respectively. The current acellular vaccine for B. pertussis protects against disease but does not prevent transmission or colonization. Cases of pertussis are on the rise even in areas of high vaccination. The PlrSR two-component system, is required for persistence in the mouse lung. A partial plrS deletion strain and a plrS H521Q strain cannot survive past 3 days in the lung, suggesting PlrSR works in a phosphorylation-dependent mechanism. We characterized the biochemistry of B. bronchiseptica PlrSR and found that both proteins function as a canonical two-component system. His521 was essential and Glu522 was critical for PlrS autophosphorylation. Asn525 was essential for phosphatase activity. The PAS domain was critical for both PlrS autophosphorylation and phosphatase activities. PlrS could both phosphotransfer to and exert phosphatase activity toward PlrR. Unexpectedly, PlrR formed a tetramer when unphosphorylated and a dimer upon phosphorylation. Finally, we demonstrated the importance of PlrS phosphatase activity for persistence within the murine lung. By characterizing PlrSR we hope to guide future in vivo investigation for development of new vaccines and therapeutics.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Tos Ferina , Ratones , Animales , Fosforilación , Bordetella pertussis , Sistema Respiratorio/microbiología , Monoéster Fosfórico Hidrolasas , Infecciones por Bordetella/microbiología , Mamíferos
3.
Microbiol Immunol ; 68(2): 36-46, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38105571

RESUMEN

The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Bordetella , Animales , Humanos , Bordetella bronchiseptica/genética , ARN Polimerasa Sigma 54 , Bordetella pertussis/genética , Factores de Virulencia de Bordetella/genética , Factores de Virulencia/genética , Mamíferos
4.
PLoS Pathog ; 17(8): e1009735, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34347835

RESUMEN

Whooping cough is resurging in the United States despite high vaccine coverage. The rapid rise of Bordetella pertussis isolates lacking pertactin (PRN), a key vaccine antigen, has led to concerns about vaccine-driven evolution. Previous studies showed that pertactin can mediate binding to mammalian cells in vitro and act as an immunomodulatory factor in resisting neutrophil-mediated clearance. To further investigate the role of PRN in vivo, we examined the functions of pertactin in the context of a more naturally low dose inoculation experimental system using C3H/HeJ mice that is more sensitive to effects on colonization, growth and spread within the respiratory tract, as well as an experimental approach to measure shedding and transmission between hosts. A B. bronchiseptica pertactin deletion mutant was found to behave similarly to its wild-type (WT) parental strain in colonization of the nasal cavity, trachea, and lungs of mice. However, the pertactin-deficient strain was shed from the nares of mice in much lower numbers, resulting in a significantly lower rate of transmission between hosts. Histological examination of respiratory epithelia revealed that pertactin-deficient bacteria induced substantially less inflammation and mucus accumulation than the WT strain and in vitro assays verified the effect of PRN on the induction of TNF-α by murine macrophages. Interestingly, only WT B. bronchiseptica could be recovered from the spleen of infected mice and were further observed to be intracellular among isolated splenocytes, indicating that pertactin contributes to systemic dissemination involving intracellular survival. These results suggest that pertactin can mediate interactions with immune cells and augments inflammation that contributes to bacterial shedding and transmission between hosts. Understanding the relative contributions of various factors to inflammation, mucus production, shedding and transmission will guide novel strategies to interfere with the reemergence of pertussis.


Asunto(s)
Células Epiteliales Alveolares/microbiología , Proteínas de la Membrana Bacteriana Externa/metabolismo , Derrame de Bacterias , Infecciones por Bordetella/transmisión , Bordetella bronchiseptica/patogenicidad , Inflamación/patología , Factores de Virulencia de Bordetella/metabolismo , Animales , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Infecciones por Bordetella/metabolismo , Infecciones por Bordetella/microbiología , Femenino , Humanos , Inflamación/metabolismo , Inflamación/microbiología , Ratones , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Factores de Virulencia de Bordetella/genética
5.
J Appl Microbiol ; 134(9)2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37660236

RESUMEN

Until recently, members of the classical Bordetella species comprised only pathogenic bacteria that were thought to live exclusively in warm-blooded animals. The close phylogenetic relationship of Bordetella with Achromobacter and Alcaligenes, which include primarily environmental bacteria, suggests that the ancestral Bordetellae were probably free-living. Eventually, the Bordetella species evolved to infect and live within warm-blooded animals. The modern history of pathogens related to the genus Bordetella started towards the end of the 19th century when it was discovered in the infected respiratory epithelium of mammals, including humans. The first identified member was Bordetella pertussis, which causes whooping cough, a fatal disease in young children. In due course, B. bronchiseptica was recovered from the trachea and bronchi of dogs with distemper. Later, a second closely related human pathogen, B. parapertussis, was described as causing milder whooping cough. The classical Bordetellae are strictly host-associated pathogens transmitted via the host-to-host aerosol route. Recently, the B. bronchiseptica strain HT200 has been reported from a thermal spring exhibiting unique genomic features that were not previously observed in clinical strains. Therefore, it advocates that members of classical Bordetella species have evolved from environmental sources. This organism can be transmitted via environmental reservoirs as it can survive nutrient-limiting conditions and possesses a motile flagellum. This study aims to review the molecular basis of origin and virulence properties of obligate host-restricted and environmental strains of classical Bordetella.


Asunto(s)
Bordetella bronchiseptica , Tos Ferina , Animales , Preescolar , Perros , Humanos , Bordetella bronchiseptica/genética , Genómica , Mamíferos , Filogenia , Virulencia/genética
6.
J Biol Chem ; 296: 100607, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33789161

RESUMEN

The respiratory pathogens Bordetella pertussis and Bordetella bronchiseptica employ a type III secretion system (T3SS) to inject a 69-kDa BteA effector protein into host cells. This effector is known to contain two functional domains, including an N-terminal lipid raft targeting (LRT) domain and a cytotoxic C-terminal domain that induces nonapoptotic and caspase-1-independent host cell death. However, the exact molecular mechanisms underlying the interaction of BteA with plasma membrane (PM) as well as its cytotoxic activity in the course of Bordetella infections remain poorly understood. Using a protein-lipid overlay assay and surface plasmon resonance, we show here that the recombinant LRT domain binds negatively charged membrane phospholipids. Specifically, we determined that the dissociation constants of the LRT domain-binding liposomes containing phosphatidylinositol 4,5-bisphosphate, phosphatidic acid, and phosphatidylserine were ∼450 nM, ∼490 nM, and ∼1.2 µM, respectively. Both phosphatidylserine and phosphatidylinositol 4,5-bisphosphate were required to target the LRT domain and/or full-length BteA to the PM of yeast cells. The membrane association further involved electrostatic and hydrophobic interactions of LRT and depended on a leucine residue in the L1 loop between the first two helices of the four-helix bundle. Importantly, charge-reversal substitutions within the L1 region disrupted PM localization of the BteA effector without hampering its cytotoxic activity during B. bronchiseptica infection of HeLa cells. The LRT-mediated targeting of BteA to the cytosolic leaflet of the PM of host cells is, therefore, dispensable for effector cytotoxicity.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bordetella bronchiseptica/metabolismo , Membrana Celular/metabolismo , Membrana Dobles de Lípidos/metabolismo , Microdominios de Membrana/metabolismo , Fosfolípidos/metabolismo , Proteínas Bacterianas/genética , Bordetella bronchiseptica/genética , Bordetella bronchiseptica/crecimiento & desarrollo , Células HeLa , Humanos , Unión Proteica , Dominios Proteicos
7.
Infect Immun ; 90(6): e0010722, 2022 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-35612302

RESUMEN

The second messenger cyclic di-GMP (c-di-GMP) is a ubiquitous molecule in bacteria that regulates diverse phenotypes. Among them, motility and biofilm formation are the most studied. Furthermore, c-di-GMP has been suggested to regulate virulence factors, making it important for pathogenesis. Previously, we reported that c-di-GMP regulates biofilm formation and swimming motility in Bordetella bronchiseptica. Here, we present a multi-omics approach for the study of B. bronchiseptica strains expressing different cytoplasmic c-di-GMP levels, including transcriptome sequencing (RNA-seq) and shotgun proteomics with label-free quantification. We detected 64 proteins significantly up- or downregulated in either low or high c-di-GMP levels and 358 genes differentially expressed between strains with high c-di-GMP levels and the wild-type strain. Among them, we found genes for stress-related proteins, genes for nitrogen metabolism enzymes, phage-related genes, and virulence factor genes. Interestingly, we observed that a virulence factor like the type III secretion system (TTSS) was regulated by c-di-GMP. B. bronchiseptica with high c-di-GMP levels showed significantly lower levels of TTSS components like Bsp22, BopN, and Bcr4. These findings were confirmed by independent methods, such as quantitative reverse transcription-PCR (q-RT-PCR) and Western blotting. Higher intracellular levels of c-di-GMP correlated with an impaired capacity to induce cytotoxicity in a eukaryotic cell in vitro and with attenuated virulence in a murine model. This work presents data that support the role that the second messenger c-di-GMP plays in the pathogenesis of Bordetella.


Asunto(s)
Bordetella bronchiseptica , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Bordetella bronchiseptica/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica , Ratones , Sistemas de Secreción Tipo III/metabolismo , Virulencia/genética , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
8.
J Clin Pharm Ther ; 47(2): 139-145, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34328230

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: Live-attenuated bacterial veterinary vaccines can constitute an infection risk for individuals with any defect in their phagocytic function, including chronic granulomatous disease, leukocyte adhesion deficiency, myeloperoxidase deficiency, as well as Chediak-Higashi syndrome, from accidental acquisition of licenced attenuated live bacterial vaccine, at vaccination or from their vaccinated pet. Ownership of small companion animals, including cats and dogs, is popular within the cystic fibrosis (CF) community. These animals require vaccines as part of their routine care, which may involve live viral and bacterial vaccines, with potential for infection in the CF owner. This report examines the scope of current canine and feline vaccines, with particular emphasis on veterinary vaccination strategies against the Gram-negative pathogen, Bordetella bronchiseptica and describes new vaccine innovations offering protection to both pet and CF owner. COMMENT: The Gram-negative bacterium, Bordetella bronchoseptica, may cause respiratory disease in small companion animals, as well as in certain human vulnerable groups, including those with CF. Live licenced veterinary bacterial vaccines for Bordetella bronchiseptica (Kennel Cough) are available for cats and dogs, which are an infection concern for humans with CF who may come into contact with vaccinated animals. Live licenced veterinary bacterial vaccines for Bordetella bronchiseptica (Kennel Cough) are available for intranasal administration to cats and dogs. These vaccines require a withdrawal period of vaccinated animal from vulnerable owner, ranging from 35 days - 11 weeks. Recently, a new dead IM vaccine is now available not requiring exclusion of the vaccinated pet from CF owner. WHAT IS NEW & CONCLUSION: CF pharmacists, hospital pharmacists and community pharmacists are important custodians of vaccine-related advice to people with CF, who are frequently consulted for such advice. Pharmacists should be aware of the recent innovations in veterinary medicines, so that they can give appropriate advice to people with CF when asked. Immunocompromised patients, that is those with CF or those with any defect in their phagocytic function (chronic granulomatous disease, leukocyte adhesion deficiency, myeloperoxidase deficiency, Chediak-Higashi syndrome) should avoid exposure to live veterinary bacterial vaccines and seek animal vaccination utilising non-live vaccines. Most importantly, this manuscript highlights the development of a new veterinary vaccine for dogs, which we want to make the CF healthcare community aware of, which is an acellular dead vaccine, so that those patients with dogs needing annual vaccination can select this vaccine pathway, thereby minimising risk of infection from the vaccine strains and avoiding the social exclusion between CF patient and their pet. CF patients should understand the potential infection implications of live-attenuated viral and bacterial strains as vaccines, whether these are small companion animals, exotic animals or large farm animals. Patients should make their veterinarian aware of their CF status, so that a safe and efficacious vaccine strategy is used, both mitigating the potential infection risks from live vaccine components with the CF patient, but simultaneously offering maximum immunological protection to the animal.


Asunto(s)
Vacunas Bacterianas/administración & dosificación , Infecciones por Bordetella/prevención & control , Enfermedades de los Gatos/prevención & control , Fibrosis Quística/epidemiología , Enfermedades de los Perros/prevención & control , Zoonosis/prevención & control , Animales , Vacunas Bacterianas/inmunología , Bordetella bronchiseptica , Enfermedades de los Gatos/microbiología , Gatos , Enfermedades de los Perros/microbiología , Perros , Humanos , Mascotas , Medicina Veterinaria
9.
Biochemistry ; 60(36): 2727-2738, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34455776

RESUMEN

Zinc homeostasis in mammals is constantly and precisely maintained by sophisticated regulatory proteins. Among them, the Zrt/Irt-like protein (ZIP) regulates the influx of zinc into the cytoplasm. In this work, we have employed all-atom molecular dynamics simulations to investigate the Zn2+ transport mechanism in prokaryotic ZIP obtained from Bordetella bronchiseptica (BbZIP) in a membrane bilayer. Additionally, the structural and dynamical transformations of BbZIP during this process have been analyzed. This study allowed us to develop a hypothesis for the zinc influx mechanism and formation of the metal-binding site. We have created a model for the outward-facing form of BbZIP (experimentally only the inward-facing form has been characterized) that has allowed us, for the first time, to observe the Zn2+ ion entering the channel and binding to the negatively charged M2 site. It is thought that the M2 site is less favored than the M1 site, which then leads to metal ion egress; however, we have not observed the M1 site being occupied in our simulations. Furthermore, removing both Zn2+ ions from this complex resulted in the collapse of the metal-binding site, illustrating the "structural role" of metal ions in maintaining the binding site and holding the proteins together. Finally, due to the long Cd2+-residue bond distances observed in the X-ray structures, we have proposed the existence of an H3O+ ion at the M2 site that plays an important role in protein stability in the absence of the metal ion.


Asunto(s)
Bordetella bronchiseptica/metabolismo , Proteínas Portadoras/química , Proteínas de Transporte de Catión/metabolismo , Simulación por Computador/normas , Zinc/metabolismo , Proteínas Portadoras/metabolismo , Simulación de Dinámica Molecular , Elementos Estructurales de las Proteínas
10.
J Clin Pharm Ther ; 46(5): 1194-1198, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33470435

RESUMEN

WHAT IS KNOWN AND OBJECTIVE: The Gram-negative bacterium, Bordetella bronchiseptica, causes lower airway respiratory disease in people with cystic fibrosis (CF), as well as in companion animals, especially dogs. Presently, there are several acellular vaccines available for B. pertussis but no vaccine available for B. bronchiseptica. However given the shared protein homology between these two closely related species, we wished to explore whether pertussis vaccines may offer some cross-protection against B. bronchiseptica. COMMENT: Bordetella pertussis and B. bronchiseptica are closely related phylogenetically, as well as sharing protein homology in several pertussis vaccine components, including (i) pertussis toxin (PT), (ii) filamentous haemagglutinin (FHA), (iii) pertactin and (iv) fimbriae (types 2 and 3). Given that pertussis vaccine contains cross-reactive antigens with B. bronchiseptica, licensed pertussis vaccines may therefore offer cross-protection against B. bronchiseptica. WHAT IS NEW AND CONCLUSION: Cystic fibrosis pet owners should ensure that they have an up-to-date vaccination record relating to their pertussis vaccine. Although no monovalent human pertussis vaccines are currently available, licensed non-live booster vaccines for B. pertussis are available for individuals in the age range >10 years old. People with CF should ensure that they are adequately and currently protected against pertussis, to avoid whooping cough, which may also offer some cross-protection against B. bronchiseptica and therefore help further mitigate the risk of zoonotic infection of this organism from pets to their owners.


Asunto(s)
Bordetella bronchiseptica/inmunología , Bordetella pertussis/inmunología , Fibrosis Quística/epidemiología , Enfermedades de los Perros/inmunología , Vacuna contra la Tos Ferina/inmunología , Animales , Perros , Humanos , Mascotas , Factores de Virulencia de Bordetella/inmunología
11.
J Vet Pharmacol Ther ; 44(5): 836-841, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33963570

RESUMEN

Incidence of Bordetella pertussis, the causative agent of whooping cough, is rising in some global human populations despite high vaccination rates, and significant research is underway to address the issue. Baboons are an established model for pertussis research, but like many mammals, they can be naturally infected with Bordetella bronchiseptica. Because B. bronchiseptica interferes with B. pertussis research, it must be excluded from baboons under consideration for enrollment in pertussis studies. In addition to research-related concerns, B. bronchiseptica can sometimes cause clinical disease in baboons and other nonhuman primates. This study examined the use of antibiotics to clear B. bronchiseptica in naturally infected baboons. Thirty-five juvenile baboons were divided into five treatment groups: oral sulfamethoxazole/trimethoprim (TMS), nebulized gentamicin (gentamicin), combination (TMS + gentamicin) in positive animals, combination (TMS + gentamicin) as a prophylactic in exposed animals and no treatment (control). Combination of oral TMS and nebulized gentamicin given to positive animals was most effective, producing long-term clearance in 11 out of 12 treated animals. To avoid unnecessary use of antibiotics, our primary management strategy is screening and separating to allow natural clearance and limiting exposure to non-infected animals, but this study investigates an antibiotic regimen that could be used in special circumstances.


Asunto(s)
Bordetella bronchiseptica , Animales , Antibacterianos/uso terapéutico , Bordetella pertussis , Papio
12.
Int J Mol Sci ; 22(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34360770

RESUMEN

Eosinophils are granulocytes primarily associated with TH2 responses to parasites or immune hyper-reactive states, such as asthma, allergies, or eosinophilic esophagitis. However, it does not make sense from an evolutionary standpoint to maintain a cell type that is only specific for parasitic infections and that otherwise is somehow harmful to the host. In recent years, there has been a shift in the perception of these cells. Eosinophils have recently been recognized as regulators of immune homeostasis and suppressors of over-reactive pro-inflammatory responses by secreting specific molecules that dampen the immune response. Their role during parasitic infections has been well investigated, and their versatility during immune responses to helminths includes antigen presentation as well as modulation of T cell responses. Although it is known that eosinophils can present antigens during viral infections, there are still many mechanistic aspects of the involvement of eosinophils during viral infections that remain to be elucidated. However, are eosinophils able to respond to bacterial infections? Recent literature indicates that Helicobacter pylori triggers TH2 responses mediated by eosinophils; this promotes anti-inflammatory responses that might be involved in the long-term persistent infection caused by this pathogen. Apparently and on the contrary, in the respiratory tract, eosinophils promote TH17 pro-inflammatory responses during Bordetella bronchiseptica infection, and they are, in fact, critical for early clearance of bacteria from the respiratory tract. However, eosinophils are also intertwined with microbiota, and up to now, it is not clear if microbiota regulates eosinophils or vice versa, or how this connection influences immune responses. In this review, we highlight the current knowledge of eosinophils as regulators of pro and anti-inflammatory responses in the context of both infection and naïve conditions. We propose questions and future directions that might open novel research avenues in the future.


Asunto(s)
Infecciones por Bordetella/inmunología , Bordetella bronchiseptica/inmunología , Eosinófilos/inmunología , Infecciones por Helicobacter/inmunología , Helicobacter pylori/inmunología , Microbiota/inmunología , Animales , Humanos , Células Th17/inmunología , Células Th2/inmunología
13.
Can Vet J ; 62(7): 725-728, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34219781

RESUMEN

Bordetella bronchiseptica is a promiscuous bacterium that infects a variety of species but has not been reported in free-ranging polar bears (Ursus maritimus). Sera from 385 polar bears from the western Hudson Bay region, 1986 to 2017, were tested for reactivity to B. bronchiseptica with enzyme-linked immunosorbent assays using anti-canine IgG and Streptococcus protein G as secondary reagents. Sera from bears had variable reactivity to B. bronchiseptica antigens, and there was no difference among bears that had a history of coming near the town of Churchill, Manitoba, and bears that did not. Although the sources of exposure were not determined, equivalent results in both groups suggest that potential exposure to humans (aside from handling during sampling) and their animals (dogs) was not an important co-factor in sero-positivity to B. bronchiseptica.


Anticorps réactifs à Bordetella bronchiseptica chez les ours polaires du Canada. Bordetella bronchiseptica est une bactérie qui infecte une variété d'espèces mais qui n'a pas été signalée chez les ours polaires en liberté (Ursus maritimus). Les sérums de 385 ours polaires de la région ouest de la baie d'Hudson, de 1986 à 2017, ont été testés pour leur réactivité à B. bronchiseptica par une épreuve ELISA utilisant des anticorps anti-IgG canines et de la protéine G de Streptococcus comme réactifs secondaires. Les sérums d'ours avaient une réactivité variable aux antigènes de B. bronchiseptica, et il n'y avait aucune différence entre les ours qui avaient l'habitude de s'approcher de la ville de Churhill, au Manitoba, et les ours qui n'en avaient pas. Bien que les sources d'exposition n'aient pas été déterminées, des résultats équivalents dans les deux groupes suggèrent que l'exposition potentielle des humains (en dehors de la manipulation pendant l'échantillonnage) et de leurs animaux (chiens) n'était pas un cofacteur important de la séropositivité à B. bronchiseptica.(Traduit par Dr Serge Messier).


Asunto(s)
Bordetella bronchiseptica , Ursidae , Animales , Anticuerpos Antibacterianos , Canadá , Perros , Manitoba
14.
Proteomics ; 20(24): e2000117, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32820866

RESUMEN

Bordetella bronchiseptica (B. bronchiseptica) causes a respiratory disease in rabbits. To determine the proteins of B. bronchiseptica in rabbits related to the disease, differentially accumulated proteins in B. bronchiseptica-infected cells are identified by comparative proteomic analysis. Comparative proteomic analysis detects 5814 proteins and quantifies 4854 of these. Fifty eight upregulated and 38 downregulated proteins are identified in spleen tissue after B. bronchiseptica infection of rabbits (both p < 0.05). The significantly enriched Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways are ribosome, biosynthesis of amino acids, biosynthesis of amino acids, protein export, and carbon metabolism etc. (all p < 0.01). Significantly enriched KEGG pathways include 'ocu03010 ribosome' (a); 'ocu00260 glycine, serine threonine metabolism'. Analyses of control and infected spleen cells detect responses to B. bronchiseptica infection. Many differentially affected proteins are evident, and reflect different biological changes and diverse subcellular localizations between control and infected spleen cells. Infection markedly alters the expressions of proteins linked to the serine protease system, with the 'phagosome,' 'biosynthesis of amino acids,' 'glycine, serine threonine metabolism,' 'intestinal immune network for IgA production', and 'amino sugar and nucleotide sugar metabolism' associated with B. bronchiseptica infection. The result will inform studies of responses to B. bronchiseptica infections in rabbits.


Asunto(s)
Infecciones por Bordetella , Bordetella bronchiseptica , Proteómica , Animales , Conejos , Bazo
15.
J Biol Chem ; 294(36): 13327-13335, 2019 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-31320477

RESUMEN

Regulated ion diffusion across biological membranes is vital for cell function. In a nanoscale ion channel, the active role of discrete water molecules in modulating hydrodynamic behaviors of individual ions is poorly understood because of the technical challenge of tracking water molecules through the channel. Here we report the results of a hydroxyl radical footprinting analysis of the zinc-selective channel ZIPB from the Gram-negative bacterium, Bordetella bronchiseptica Irradiating ZIPB by microsecond X-ray pulses activated water molecules to form covalent hydroxyl radical adducts at nearby residues, which were identified by bottom-up proteomics to detect residues that interact either with zinc or water in response to zinc binding. We found a series of residues exhibiting reciprocal changes in water accessibility attributed to alternating zinc and water binding. Mapping these residues to the previously reported crystal structure of ZIPB, we identified a water-reactive pathway that superimposed on a zinc translocation pathway consisting of two binuclear metal centers and an interim zinc-binding site. The cotranslocation of zinc and water suggested that pore-lining residues undergo a mode switch between zinc coordination and water binding to confer zinc mobility. The unprecedented details of water-mediated zinc transport identified here highlight an essential role of solvated waters in driving zinc coordination dynamics and transmembrane crossing.


Asunto(s)
Bordetella bronchiseptica/metabolismo , Proteínas de Transporte de Catión/metabolismo , Agua/metabolismo , Zinc/metabolismo , Transporte Biológico , Bordetella bronchiseptica/química , Proteínas de Transporte de Catión/química , Difusión , Agua/química , Zinc/química
16.
Mol Microbiol ; 112(3): 820-836, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31152610

RESUMEN

Filamentous hemagglutinin (FHA) is a critically important virulence factor produced by Bordetella species that cause respiratory infections in humans and other animals. It is also a prototypical member of the widespread two partner secretion (TPS) pathway family of proteins. First synthesized as a ~370 kDa protein called FhaB, its C-terminal ~1,200 amino acid 'prodomain' is removed during translocation to the cell surface via the outer membrane channel FhaC. Here, we identify CtpA as a periplasmic protease that is responsible for the regulated degradation of the prodomain and for creation of an intermediate polypeptide that is cleaved by the autotransporter protease SphB1 to generate FHA. We show that the central prodomain region is required to initiate degradation of the prodomain and that CtpA degrades the prodomain after a third, unidentified protease (P3) first removes the extreme C-terminus of the prodomain. Stepwise proteolysis by P3, CtpA and SphB1 is required for maturation of FhaB, release of FHA into the extracellular milieu, and full function in vivo. These data support a substantially updated model for the mechanism of secretion, maturation and function of this model TPS protein.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas Algáceas/metabolismo , Proteínas Bacterianas/metabolismo , Bordetella bronchiseptica/metabolismo , Bordetella pertussis/enzimología , Carboxipeptidasas/metabolismo , Hemaglutininas/metabolismo , Proproteína Convertasas/metabolismo , Serina Endopeptidasas/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Proteínas Algáceas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bordetella bronchiseptica/química , Bordetella bronchiseptica/genética , Bordetella pertussis/genética , Bordetella pertussis/metabolismo , Carboxipeptidasas/genética , Hemaglutininas/química , Hemaglutininas/genética , Proproteína Convertasas/genética , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Serina Endopeptidasas/genética
17.
PLoS Biol ; 15(5): e2002460, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28463965

RESUMEN

Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a number of important ways, including temperature. A new study in PLOS Biology by Taylor-Mulneix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are activated depending on whether the bacterium finds itself in a hot mammalian or cool amoeba host environment. This study specifically shows that B. bronchiseptica not only inhabits amoebas but can persist and multiply through the social stage of an amoeba host, Dictyostelium discoideum.


Asunto(s)
Bordetella bronchiseptica/fisiología , Dictyostelium/microbiología , Animales
18.
PLoS Biol ; 15(4): e2000420, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28403138

RESUMEN

Multiple lines of evidence suggest that Bordetella species have a significant life stage outside of the mammalian respiratory tract that has yet to be defined. The Bordetella virulence gene (BvgAS) two-component system, a paradigm for a global virulence regulon, controls the expression of many "virulence factors" expressed in the Bvg positive (Bvg+) phase that are necessary for successful respiratory tract infection. A similarly large set of highly conserved genes are expressed under Bvg negative (Bvg-) phase growth conditions; however, these appear to be primarily expressed outside of the host and are thus hypothesized to be important in an undefined extrahost reservoir. Here, we show that Bvg- phase genes are involved in the ability of Bordetella bronchiseptica to grow and disseminate via the complex life cycle of the amoeba Dictyostelium discoideum. Unlike bacteria that serve as an amoeba food source, B. bronchiseptica evades amoeba predation, survives within the amoeba for extended periods of time, incorporates itself into the amoeba sori, and disseminates along with the amoeba. Remarkably, B. bronchiseptica continues to be transferred with the amoeba for months, through multiple life cycles of amoebae grown on the lawns of other bacteria, thus demonstrating a stable relationship that allows B. bronchiseptica to expand and disperse geographically via the D. discoideum life cycle. Furthermore, B. bronchiseptica within the sori can efficiently infect mice, indicating that amoebae may represent an environmental vector within which pathogenic bordetellae expand and disseminate to encounter new mammalian hosts. These data identify amoebae as potential environmental reservoirs as well as amplifying and disseminating vectors for B. bronchiseptica and reveal an important role for the Bvg- phase in these interactions.


Asunto(s)
Infecciones por Bordetella/transmisión , Bordetella bronchiseptica/fisiología , Dictyostelium/crecimiento & desarrollo , Animales , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/patogenicidad , Dictyostelium/microbiología , Vectores de Enfermedades , Estadios del Ciclo de Vida , Ratones Endogámicos C57BL , Viabilidad Microbiana , Factores de Virulencia/genética
19.
Vet Res ; 51(1): 46, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209128

RESUMEN

Infection with Bordetella bronchiseptica (Bb), a pathogen involved in canine infectious respiratory disease complex, can be confirmed using culture or qPCR. Studies about the canine lung microbiota (LM) are recent, sparse, and only one paper has been published in canine lung infection. In this study, we aimed to compare the LM between Bb infected and healthy dogs, and to correlate sequencing with culture and qPCR results. Twenty Bb infected dogs diagnosed either by qPCR and/or culture and 4 healthy dogs were included. qPCR for Mycoplasma cynos (Mc) were also available in 18 diseased and all healthy dogs. Sequencing results, obtained from bronchoalveolar lavage fluid after DNA extraction, PCR targeting the V1-V3 region of the 16S rDNA and sequencing, showed the presence of Bb in all diseased dogs, about half being co-infected with Mc. In diseased compared with healthy dogs, the ß-diversity changed (P = 0.0024); bacterial richness and α-diversity were lower (P = 0.012 and 0.0061), and bacterial load higher (P = 0.004). Bb qPCR classes and culture results correlated with the abundance of Bb (r = 0.71, P < 0.001 and r = 0.70, P = 0.0022). Mc qPCR classes also correlated with the abundance of Mc (r = 0.73, P < 0.001). Bb infection induced lung dysbiosis, characterized by high bacterial load, low richness and diversity and increased abundance of Bb, compared with healthy dogs. Sequencing results highly correlate with qPCR and culture results showing that sequencing can be reliable to identify microorganisms involved in lung infectious diseases.


Asunto(s)
Carga Bacteriana , Infecciones por Bordetella/veterinaria , Bordetella bronchiseptica/aislamiento & purificación , Enfermedades de los Perros/microbiología , Pulmón/microbiología , Infecciones del Sistema Respiratorio/veterinaria , Animales , Infecciones por Bordetella/microbiología , Coinfección/microbiología , Coinfección/veterinaria , Perros , Microbiota , Mycoplasma/aislamiento & purificación , Infecciones por Mycoplasma/microbiología , Infecciones por Mycoplasma/veterinaria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Infecciones del Sistema Respiratorio/microbiología
20.
Epidemiol Infect ; 148: e237, 2020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32829720

RESUMEN

Bordetella bronchiseptica is a potential zoonotic pathogen, which mainly causes respiratory diseases in humans and a variety of animal species. B. bronchiseptica is one of the important pathogens isolated from rabbits in Fujian Province. However, the knowledge of the epidemiology and characteristics of the B. bronchiseptica in rabbits in Fujian Province is largely unknown. In this study, 219 B. bronchiseptica isolates recovered from lung samples of dead rabbits with respiratory diseases in Fujian Province were characterised by multi-locus sequencing typing, screening virulence genes and testing antimicrobial susceptibility. The results showed that the 219 isolates were typed into 11 sequence types (STs) including five known STs (ST6, ST10, ST12, ST14 and ST33) and six new STs (ST88, ST89, ST90, ST91, ST92 and ST93) and the ST33 (30.14%, 66/219), ST14 (26.94%, 59/219) and ST12 (16.44%, 36/219) were the three most prevalent STs. Surprisingly, all the 219 isolates carried the five virulence genes (fhaB, prn, cyaA, dnt and bteA) in the polymerase chain reaction screening. Moreover, the isolates were resistant to cefixime, ceftizoxime, cefatriaxone and ampicillin at rates of 33.33%, 31.05%, 11.87% and 3.20%, respectively. This study showed the genetic diversity of B. bronchiseptica in rabbits in Fujian Province, and the colonisation of the human-associated ST12 strain in rabbits in Fujian Province. The results might be useful for monitoring the epidemic strains, developing preventive methods and preventing the transmission of epidemic strains from rabbits to humans.


Asunto(s)
Infecciones por Bordetella/veterinaria , Bordetella bronchiseptica/genética , Conejos/microbiología , Enfermedades Respiratorias/veterinaria , Animales , Antibacterianos/farmacología , Infecciones por Bordetella/epidemiología , Infecciones por Bordetella/microbiología , Bordetella bronchiseptica/efectos de los fármacos , Bordetella bronchiseptica/aislamiento & purificación , China/epidemiología , Farmacorresistencia Bacteriana , Variación Genética , Filogenia , Enfermedades Respiratorias/epidemiología , Enfermedades Respiratorias/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA