Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Intervalo de año de publicación
1.
Microb Ecol ; 87(1): 49, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38427046

RESUMEN

Moss-cyanobacteria symbioses were proposed to be based on nutrient exchange, with hosts providing C and S while bacteria provide N, but we still lack understanding of the underlying molecular mechanisms of their interactions. We investigated how contact between the ubiquitous moss Hylocomium splendens and its cyanobiont affects nutrient-related gene expression of both partners. We isolated a cyanobacterium from H. splendens and co-incubated it with washed H. splendens shoots. Cyanobacterium and moss were also incubated separately. After 1 week, we performed acetylene reduction assays to estimate N2 fixation and RNAseq to evaluate metatranscriptomes. Genes related to N2 fixation and the biosynthesis of several amino acids were up-regulated in the cyanobiont when hosted by the moss. However, S-uptake and the biosynthesis of the S-containing amino acids methionine and cysteine were down-regulated in the cyanobiont while the degradation of selenocysteine was up-regulated. In contrast, the number of differentially expressed genes in the moss was much lower, and almost no transcripts related to nutrient metabolism were affected. It is possible that, at least during the early stage of this symbiosis, the cyanobiont receives few if any nutrients from the host in return for N, suggesting that moss-cyanobacteria symbioses encompass relationships that are more plastic than a constant mutualist flow of nutrients.


Asunto(s)
Briófitas , Bryopsida , Cianobacterias , Simbiosis , Fijación del Nitrógeno , Bryopsida/genética , Bryopsida/metabolismo , Bryopsida/microbiología , Cianobacterias/metabolismo , Aminoácidos/metabolismo
2.
Microb Ecol ; 86(1): 419-430, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35859069

RESUMEN

Cyanobacteria associated with mosses play a key role in the nitrogen (N) cycle in unpolluted ecosystems. Mosses have been found to release molecules that induce morphophysiological changes in epiphytic cyanobionts. Nevertheless, the extent of moss influence on these microorganisms remains unknown. To evaluate how mosses or their metabolites influence N2 fixation rates by cyanobacteria, we assessed the nitrogenase activity, heterocyte frequency and biomass of a cyanobacterial strain isolated from the feather moss Hylocomium splendens and a non-symbiotic strain when they were either growing by themselves, together with H. splendens or exposed to H. splendens water, acetone, ethanol, or isopropanol extracts. The same cyanobacterial strains were added to another moss (Taxiphyllum barbieri) and a liverwort (Monosolenium tenerum) to assess if these bryophytes affect N2 fixation differently. Although no significant increases in nitrogenase activity by the cyanobacteria were observed when in contact with H. splendens shoots, both the symbiotic and non-symbiotic cyanobacteria increased nitrogenase activity as well as heterocyte frequency significantly upon exposure to H. splendens ethanol extracts. Contact with T. barbieri shoots, on the other hand, did lead to increases in nitrogenase activity, indicating low host-specificity to cyanobacterial activity. These findings suggest that H. splendens produces heterocyte-differentiating factors (HDFs) that are capable of stimulating cyanobacterial N2 fixation regardless of symbiotic competency. Based on previous knowledge about the chemical ecology and dynamics of moss-cyanobacteria interactions, we speculate that HDF expression by the host takes place in a hypothetical new step occurring after plant colonization and the repression of hormogonia.


Asunto(s)
Briófitas , Bryopsida , Cianobacterias , Ecosistema , Estimulación Química , Fijación del Nitrógeno/fisiología , Briófitas/fisiología , Bryopsida/metabolismo , Bryopsida/microbiología , Cianobacterias/metabolismo , Nitrogenasa/metabolismo , Extractos Vegetales
3.
Oecologia ; 201(3): 749-760, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36808304

RESUMEN

In the boreal forests, feather mosses such as Hylocomium splendens and Pleurozium schreberi are colonized by cyanobacteria, which provide large amounts of nitrogen to forest ecosystems through nitrogen fixation. Although these feather mosses are also ubiquitous in subalpine forests of East Asia, little is known regarding their associated cyanobacteria and their ability to fix nitrogen. In this study, we investigated (1) whether cyanobacteria co-exist and fix nitrogen in the two species of feather mosses that cover the ground surface in a subalpine forest of Mt. Fuji, (2) whether cyanobacteria belonging to a common cluster with boreal forests are found in feather mosses in Mt. Fuji, and (3) whether moss-associated nitrogen fixation rates differed among moss growing substrates, canopy openness, and moss nitrogen concentrations in the same forest area. Our results showed that cyanobacteria colonized feather mosses in the subalpine forests of Mt. Fuji and acetylene reduction rates as an index of nitrogen fixation tended to be higher in H. splendens than in P. schreberi. Based on analysis of the nifH gene, 43 bacterial operational taxonomic units (OTUs) were identified, 28 of which represented cyanobacteria. Among the five clusters of cyanobacteria classified based on their nifH gene and identified in northern Europe, four (Nostoc cluster I, Nostoc cluster II, Stigonema cluster, and nifH2 cluster) were also found at Mt. Fuji. The acetylene reduction rate differed depending on the moss growing substrate and the total nitrogen concentration of moss shoots, and a strong negative correlation was observed with the total nitrogen concentration.


Asunto(s)
Briófitas , Bryopsida , Cianobacterias , Fijación del Nitrógeno , Ecosistema , Bosques , Bryopsida/microbiología , Cianobacterias/genética , Nitrógeno/análisis , Acetileno
4.
Environ Microbiol ; 24(8): 3517-3528, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35416394

RESUMEN

The composition of ecologically important moss-associated bacterial communities seems to be mainly driven by host species but may also be shaped by environmental conditions related with tree dominance. The moss phyllosphere has been studied in coniferous forests while broadleaf forests remain understudied. To determine if host species or environmental conditions defined by tree dominance drives the bacterial diversity in the moss phyllosphere, we used 16S rRNA gene amplicon sequencing to quantify changes in bacterial communities as a function of host species (Pleurozium schreberi and Ptilium crista-castrensis) and forest type (coniferous black spruce versus deciduous broadleaf trembling aspen) in eastern Canada. The overall composition of moss phyllosphere was defined by the interaction of both factors, though most of the bacterial phyla were determined by a strong effect of forest type. Bacterial α-diversity was highest in spruce forests, while there was greater turnover (ß-diversity) and higher γ-diversity in aspen forests. Unexpectedly, Cyanobacteria were much more relatively abundant in aspen than in spruce forests, with the cyanobacteria family Nostocaceae differing the most between forest types. Our results advance the understanding of moss-associated microbial communities among coniferous and broadleaf deciduous forests, which are important with the increasing changes in tree dominance in the boreal system.


Asunto(s)
Briófitas/microbiología , Cianobacterias/fisiología , Picea/fisiología , Tracheophyta/crecimiento & desarrollo , Árboles/crecimiento & desarrollo , Bryopsida/microbiología , Cianobacterias/crecimiento & desarrollo , Bosques , Picea/crecimiento & desarrollo , Quebec , ARN Ribosómico 16S/química , ARN Ribosómico 16S/genética
5.
Plant Mol Biol ; 107(4-5): 365-385, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33521880

RESUMEN

KEY MESSAGE: Evolutionary conserved defense mechanisms present in extant bryophytes and angiosperms, as well as moss-specific defenses are part of the immune response of Physcomitrium patens. Bryophytes and tracheophytes are descendants of early land plants that evolved adaptation mechanisms to cope with different kinds of terrestrial stresses, including drought, variations in temperature and UV radiation, as well as defense mechanisms against microorganisms present in the air and soil. Although great advances have been made on pathogen perception and subsequent defense activation in angiosperms, limited information is available in bryophytes. In this study, a transcriptomic approach uncovered the molecular mechanisms underlying the defense response of the bryophyte Physcomitrium patens (previously Physcomitrella patens) against the important plant pathogen Botrytis cinerea. A total of 3.072 differentially expressed genes were significantly affected during B. cinerea infection, including genes encoding proteins with known functions in angiosperm immunity and involved in pathogen perception, signaling, transcription, hormonal signaling, metabolic pathways such as shikimate and phenylpropanoid, and proteins with diverse role in defense against biotic stress. Similarly as in other plants, B. cinerea infection leads to downregulation of genes involved in photosynthesis and cell cycle progression. These results highlight the existence of evolutionary conserved defense responses to pathogens throughout the green plant lineage, suggesting that they were probably present in the common ancestors of land plants. Moreover, several genes acquired by horizontal transfer from prokaryotes and fungi, and a high number of P. patens-specific orphan genes were differentially expressed during B. cinerea infection, suggesting that they are important players in the moss immune response.


Asunto(s)
Bryopsida/genética , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Enfermedades de las Plantas/genética , Plantas/genética , Botrytis/fisiología , Bryopsida/microbiología , Ontología de Genes , Interacciones Huésped-Patógeno , Redes y Vías Metabólicas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Plantas/clasificación , Plantas/microbiología , RNA-Seq/métodos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Especificidad de la Especie
6.
J Exp Bot ; 71(3): 837-849, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31665494

RESUMEN

Polarized exocytosis is essential for plant development and defence. The exocyst, an octameric protein complex that tethers exocytotic vesicles to the plasma membrane, targets exocytosis. Upon pathogen attack, secreted materials form papillae to halt pathogen penetration. To determine if the exocyst is directly involved in targeting exocytosis to infection sites, information about its localization is instrumental. Here, we investigated exocyst subunit localization in the moss Physcomitrella patens upon pathogen attack and infection by Phytophthora capsici. Time-gated confocal microscopy was used to eliminate autofluorescence of deposited material around infection sites, allowing the visualization of the subcellular localization of exocyst subunits and of v-SNARE Vamp72A1-labelled exocytotic vesicles during infection. This showed that exocyst subunits Sec3a, Sec5b, Sec5d, and Sec6 accumulated at sites of attempted pathogen penetration. Upon pathogen invasion, the exocyst subunits accumulated on the membrane surrounding papilla-like structures and hyphal encasements. Vamp72A1-labelled vesicles were found to localize in the cytoplasm around infection sites. The re-localization of exocyst subunits to infection sites suggests that the exocyst is directly involved in facilitating polarized exocytosis during pathogenesis.


Asunto(s)
Bryopsida/metabolismo , Exocitosis , Interacciones Huésped-Parásitos , Microscopía Confocal/métodos , Phytophthora/fisiología , Bryopsida/microbiología
7.
Plant Cell ; 28(6): 1328-42, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27268428

RESUMEN

MAP kinase (MPK) cascades in Arabidopsis thaliana and other vascular plants are activated by developmental cues, abiotic stress, and pathogen infection. Much less is known of MPK functions in nonvascular land plants such as the moss Physcomitrella patens Here, we provide evidence for a signaling pathway in P. patens required for immunity triggered by pathogen associated molecular patterns (PAMPs). This pathway induces rapid growth inhibition, a novel fluorescence burst, cell wall depositions, and accumulation of defense-related transcripts. Two P. patens MPKs (MPK4a and MPK4b) are phosphorylated and activated in response to PAMPs. This activation in response to the fungal PAMP chitin requires a chitin receptor and one or more MAP kinase kinase kinases and MAP kinase kinases. Knockout lines of MPK4a appear wild type but have increased susceptibility to the pathogenic fungi Botrytis cinerea and Alternaria brassisicola Both PAMPs and osmotic stress activate some of the same MPKs in Arabidopsis. In contrast, abscisic acid treatment or osmotic stress of P. patens does not activate MPK4a or any other MPK, but activates at least one SnRK2 kinase. Signaling via MPK4a may therefore be specific to immunity, and the moss relies on other pathways to respond to osmotic stress.


Asunto(s)
Bryopsida/inmunología , Bryopsida/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Inmunidad Innata/fisiología , Alternaria/inmunología , Alternaria/patogenicidad , Arabidopsis/efectos de los fármacos , Arabidopsis/inmunología , Arabidopsis/metabolismo , Arabidopsis/microbiología , Botrytis/inmunología , Botrytis/patogenicidad , Bryopsida/efectos de los fármacos , Bryopsida/microbiología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/genética , Inmunidad Innata/genética , Presión Osmótica/efectos de los fármacos , Moléculas de Patrón Molecular Asociado a Patógenos/farmacología , Fosforilación/efectos de los fármacos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
8.
New Phytol ; 216(2): 455-468, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28262967

RESUMEN

In seed plants, strigolactones (SLs) regulate architecture and induce mycorrhizal symbiosis in response to environmental cues. SLs are formed by combined activity of the carotenoid cleavage dioxygenases (CCDs) 7 and 8 from 9-cis-ß-carotene, leading to carlactone that is converted by cytochromes P450 (clade 711; MAX1 in Arabidopsis) into various SLs. As Physcomitrella patens possesses CCD7 and CCD8 homologs but lacks MAX1, we investigated if PpCCD7 together with PpCCD8 form carlactone and how deletion of these enzymes influences growth and interactions with the environment. We investigated the enzymatic activity of PpCCD7 and PpCCD8 in vitro, identified the formed products by high performance liquid chromatography (HPLC) and LC-MS, and generated and analysed ΔCCD7 and ΔCCD8 mutants. We defined enzymatic activity of PpCCD7 as a stereospecific 9-cis-CCD and PpCCD8 as a carlactone synthase. ΔCCD7 and ΔCCD8 lines showed enhanced caulonema growth, which was revertible by adding the SL analogue GR24 or carlactone. Wild-type (WT) exudates induced seed germination in Orobanche ramosa. This activity was increased upon phosphate starvation and abolished in exudates of both mutants. Furthermore, both mutants showed increased susceptibility to phytopathogenic fungi. Our study reveals the deep evolutionary conservation of SL biosynthesis, SL function, and its regulation by biotic and abiotic cues.


Asunto(s)
Evolución Biológica , Bryopsida/microbiología , Bryopsida/fisiología , Resistencia a la Enfermedad , Lactonas/metabolismo , Fosfatos/deficiencia , Enfermedades de las Plantas/microbiología , Carotenoides/química , Cromatografía Líquida de Alta Presión , Dioxigenasas/metabolismo , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Germinación , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Mutación/genética , Proteínas de Plantas/metabolismo , Estereoisomerismo
9.
Glob Chang Biol ; 23(11): 4884-4895, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28514080

RESUMEN

Data from remote sensing and Eddy towers indicate that forests are not always net sinks for atmospheric CH4 . However, studies describing specific sources within forests and functional analysis of microorganisms on sites with CH4 turnover are scarce. Feather moss stands were considered to be net sinks for carbon dioxide, but received little attention to their role in CH4 cycling. Therefore, we investigated methanogenic rates and pathways together with the methanogenic microbial community composition in feather moss stands from temperate and boreal forests. Potential rates of CH4 emission from intact moss stands (n = 60) under aerobic conditions ranged between 19 and 133 pmol CH4 h-1 gdw-1 . Temperature and water content positively influenced CH4 emission. Methanogenic potentials determined under N2 atmosphere in darkness ranged between 22 and 157 pmol CH4 h-1 gdw-1 . Methane production was strongly inhibited by bromoethane sulfonate or chloroform, showing that CH4 was of microbial origin. The moss samples tested contained fluorescent microbial cells and between 104 and 105 copies per gram dry weight moss of the mcrA gene coding for a subunit of the methyl CoM reductase. Archaeal 16S rRNA and mcrA gene sequences in the moss stands were characteristic for the archaeal families Methanobacteriaceae and Methanosarcinaceae. The potential methanogenic rates were similar in incubations with and without methyl fluoride, indicating that the CH4 was produced by the hydrogenotrophic rather than aceticlastic pathway. Consistently, the CH4 produced was depleted in 13 C in comparison with the moss biomass carbon and acetate accumulated to rather high concentrations (3-62 mM). The δ13 C of acetate was similar to that of the moss biomass, indicating acetate production by fermentation. Our study showed that the feather moss stands contained active methanogenic microbial communities producing CH4 by hydrogenotrophic methanogenesis and causing net emission of CH4 under ambient conditions, albeit at low rates.


Asunto(s)
Archaea/metabolismo , Bryopsida/metabolismo , Metano/metabolismo , Archaea/clasificación , Proteínas Arqueales/análisis , Bryopsida/microbiología , Alemania , Italia , Microbiota , ARN de Archaea/análisis , ARN Ribosómico 16S/análisis , Suecia
10.
Int J Syst Evol Microbiol ; 65(10): 3400-3406, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26296580

RESUMEN

A Gram-stain-positive, facultatively anaerobic and rod-shaped bacterium, designated strain XBT, was isolated from Physcomitrella patens growing in Beijing, China. The isolate was identified as a member of the genus Paenibacillus based on phenotypic characteristics and phylogenetic inferences. The novel strain was spore-forming, motile, catalase-negative and weakly oxidase-positive. Optimal growth of strain XBT occurred at 28°C and pH 7.0-7.5. The major polar lipids contained diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and several unidentified components, including one phospholipid, two aminophospholipids, three glycolipids, one aminolipid and one lipid. The predominant isoprenoid quinone was MK-7. The diamino acid found in the cell-wall peptidoglycan was meso-diaminopimelic acid. The major fatty acid components (>5 %) were anteiso-C15 : 0 (51.2 %), anteiso-C17 : 0 (20.6 %), iso-C16 : 0 (8.3 %) and C16 : 0 (6.7 %). The G+C content of the genomic DNA was 53.3 mol%. Phylogenetic analysis, based on the 16S rRNA gene sequence, showed that strain XBT fell within the evolutionary distances encompassed by the genus Paenibacillus; its closest phylogenetic neighbour was Paenibacillus yonginensis DCY84T (96.6 %). Based on phenotypic, chemotaxonomic and phylogenetic properties, strain XBT is considered to represent a novel species of the genus Paenibacillus, for which the name Paenibacillus physcomitrellae sp. nov., is proposed. The type strain is XBT ( = CGMCC 1.15044T = DSM 29851T).


Asunto(s)
Bryopsida/microbiología , Paenibacillus/clasificación , Filogenia , Técnicas de Tipificación Bacteriana , Composición de Base , Beijing , Pared Celular/química , ADN Bacteriano/genética , Ácido Diaminopimélico/química , Ácidos Grasos/química , Glucolípidos/química , Datos de Secuencia Molecular , Hibridación de Ácido Nucleico , Paenibacillus/genética , Paenibacillus/aislamiento & purificación , Peptidoglicano/química , Fosfolípidos/química , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
11.
J Proteome Res ; 13(2): 447-59, 2014 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-24295333

RESUMEN

Studies on extracellular proteins (ECPs) contribute to understanding of the multifunctional nature of apoplast. Unlike vascular plants (tracheophytes), little information about ECPs is available from nonvascular plants, such as mosses (bryophytes). In this study, moss plants (Physcomitrella patens) were grown in liquid culture and treated with chitosan, a water-soluble form of chitin that occurs in cell walls of fungi and insects and elicits pathogen defense in plants. ECPs released to the culture medium were compared between chitosan-treated and nontreated control cultures using quantitative mass spectrometry (Orbitrap) and 2-DE-LC-MS/MS. Over 400 secreted proteins were detected, of which 70% were homologous to ECPs reported in tracheophyte secretomes. Bioinformatics analyses using SignalP and SecretomeP predicted classical signal peptides for secretion (37%) or leaderless secretion (27%) for most ECPs of P. patens, but secretion of the remaining proteins (36%) could not be predicted using bioinformatics. Cultures treated with chitosan contained 72 proteins not found in untreated controls, whereas 27 proteins found in controls were not detected in chitosan-treated cultures. Pathogen defense-related proteins dominated in the secretome of P. patens, as reported in tracheophytes. These results advance knowledge on protein secretomes of plants by providing a comprehensive account of ECPs of a bryophyte.


Asunto(s)
Bryopsida/metabolismo , Hongos/fisiología , Proteínas de Plantas/metabolismo , Proteoma , Bryopsida/microbiología , Cromatografía Liquida , Electroforesis en Gel Bidimensional , Análisis de Secuencia por Matrices de Oligonucleótidos , Proteínas de Plantas/genética , Espectrometría de Masas en Tándem
12.
Extremophiles ; 18(1): 15-23, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24126742

RESUMEN

The Antarctic endophytic fungus (strain ITA1-CCMA 952) was isolated from the moss Schistidium antarctici found in Admiralty Bay, King George Island, Antarctica. Strain ITA1-CCMA 952 was assigned to the specie Mortierella alpina by phylogenetic analysis based on 18S rRNA gene sequences. This strain produces high levels of polyunsaturated fatty acids (PUFAs), including y-(gamma) linolenic acid and arachidonic acid, which when combined represents 48.3% of the total fatty acid content. Fungal extracts demonstrated strong antioxidant activity with the EC50 value of 48.7 µg mL(-1) and also a strong antibacterial activity, mainly against the following bacteria: Escherichia coli, with a MIC of 26.9 µg mL(-1) and Pseudomonas aeruginosa and Enterococcus faecalis, both with a MIC of 107 µg mL(-1). A GC-MS analysis of the chloroform fraction obtained from the crude extract revealed the presence of potential antimicrobials (Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl) and Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenylmethyl)) as the major compounds. Therefore, the M. alpina strain ITA1-CCMA 952 is a promising fungus for the biotechnological production of antibiotics, antioxidant substances and PUFAs. This study highlights the need for more research in extreme environments, such as Antarctica.


Asunto(s)
Bryopsida/microbiología , Mortierella/aislamiento & purificación , Antibacterianos/análisis , Ácidos Grasos/análisis , Mortierella/química , Mortierella/genética , ARN de Hongos/genética , ARN Ribosómico 18S/genética
13.
New Phytol ; 200(1): 54-60, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23795916

RESUMEN

The mechanistic basis of feather moss-cyanobacteria associations, a main driver of nitrogen (N) input into boreal forests, remains unknown. Here, we studied colonization by Nostoc sp. on two feather mosses that form these associations (Pleurozium schreberi and Hylocomium splendens) and two acrocarpous mosses that do not (Dicranum polysetum and Polytrichum commune). We also determined how N availability and moss reproductive stage affects colonization, and measured N transfer from cyanobacteria to mosses. The ability of mosses to induce differentiation of cyanobacterial hormogonia, and of hormogonia to then colonize mosses and re-establish a functional symbiosis was determined through microcosm experiments, microscopy and acetylene reduction assays. Nitrogen transfer between cyanobacteria and Pleurozium schreberi was monitored by secondary ion mass spectrometry (SIMS). All mosses induced hormogonia differentiation but only feather mosses were subsequently colonized. Colonization on Pleurozium schreberi was enhanced during the moss reproductive phase but impaired by elevated N. Transfer of N from cyanobacteria to their host moss was observed. Our results reveal that feather mosses likely secrete species-specific chemo-attractants when N-limited, which guide cyanobacteria towards them and from which they gain N. We conclude that this signalling is regulated by N demands of mosses, and serves as a control of N input into boreal forests.


Asunto(s)
Bryopsida/fisiología , Fijación del Nitrógeno , Nitrógeno , Nostoc/fisiología , Simbiosis , Árboles , Transporte Biológico , Bryopsida/microbiología , Nitrógeno/fisiología , Ciclo del Nitrógeno , Transducción de Señal
14.
Mycologia ; 105(2): 384-97, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23233516

RESUMEN

Odontotremataceae is polyphyletic and constitutes two distantly related clades, the true Odontotremataceae and a segregate group within Stictidaceae including "Odontotrema" cassiopes, "O." diffindens, lichenicolous "Odontotrema" species and "Bryodiscus" arctoalpinus. Sphaeropezia here is accepted as the name for this latter group. An updated phylogeny of the Stictidaceae based on mtSSU, nuLSU and the protein coding gene RPB2 is presented together with a taxonomic revision of Swedish taxa of Odontotrema and Sphaeropezia. Bryodiscus and Lethariicola are synonymized under Sphaeropezia, and three new Sphaeropezia species are described: the lignicolous S. capreae, the fungicolous S. lyckselensis and the lichenicolous S. mycoblasti. The new species are distinguished from other species by molecular and morphological characters, and substrate preferences. The new combinations Sphaeropezia arctoalpina, S. cassiopes, S. grimmiae, S. hepaticarum, S. melaneliae, S. ochrolechiae and S. thamnoliae are proposed. The morphology of these species was studied in detail. We further propose to combine the remaining lichenicolous Odontotrema species, exept O. stereocaulicola, in Sphaeropezia based on their close relationship to the studied lichenicolous taxa. These additional new combinations include Sphaeropezia bryoriae, S. cucularis, S. figulina, S. intermedia, S. japewiae, S. lecanorae, S. navarinoi, S. pertusariae, S. rhizocarpicola, S. santessonii, and S. sipei. A lectotype is designated for the name Odontotrema diffindens Nyl.


Asunto(s)
Ascomicetos/clasificación , Bryopsida/microbiología , Poaceae/microbiología , Ascomicetos/citología , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Secuencia de Bases , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Proteínas Fúngicas/genética , Datos de Secuencia Molecular , Filogenia , Análisis de Secuencia de ADN , Esporas Fúngicas , Suecia
15.
Ecotoxicol Environ Saf ; 84: 341-6, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22906716

RESUMEN

We investigated lichen species in the habitats of the copper (Cu)-hyperaccumulating moss Scopelophila cataractae and found that the cup lichens Cladonia subconistea and C. humilis grow on this moss. We performed X-ray fluorescence and inductively coupled plasma mass (ICP-MS) analysis of lichen samples and measured the visible absorption spectra of the pigments extracted from the samples to assess the effect of Cu stress on the cup lichens. The chlorophyll a/b ratio and degradation of chlorophyll a to pheophytin a were calculated from the spectral data. X-ray fluorescence analysis indicated that Cu concentrations in cup lichens growing on S. cataractae were much higher than those in control samples growing on non-polluted soil. Moreover, Cu microanalysis showed that Cu concentrations in parts of podetia of C. subconistea growing on S. cataractae increased as the substrate (S. cataractae) was approached, whereas those of C. humilis growing on S. cataractae decreased as the substrate was approached. This reflects the difference in the route of Cu ions from the source to the podetia. Furthermore, ICP-MS analysis confirmed that C. subconistea growing on S. cataractae was heavily contaminated with Cu, indicating that this lichen is Cu tolerant. We found a significant difference between the visible absorption spectra of pigments extracted from the Cu-contaminated and control samples. Hence, the spectra could be used to determine whether a cup lichen is contaminated with Cu. Chlorophyll analysis showed that cup lichens growing on S. cataractae were affected by Cu stress. However, it also suggested that the areas of dead moss under cup lichens were a suitable substrate for the growth of the lichen. Moreover, it suggested that cup lichens had allolepathic effects on S. cataractae; it is likely that secondary metabolites produced by cup lichens inhibited moss growth.


Asunto(s)
Bryopsida/metabolismo , Bryopsida/microbiología , Cobre/toxicidad , Contaminantes Ambientales/toxicidad , Líquenes/efectos de los fármacos , Bryopsida/química , Clorofila/metabolismo , Cobre/análisis , Cobre/metabolismo , Ecosistema , Contaminantes Ambientales/análisis , Contaminantes Ambientales/metabolismo , Japón , Líquenes/química , Líquenes/metabolismo , Estrés Fisiológico/efectos de los fármacos
16.
New Phytol ; 192(2): 507-17, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21714790

RESUMEN

Recent studies have revealed that nitrogen fixation by cyanobacteria living in association with feather mosses is a major input of nitrogen to boreal forests. We characterized the community composition and diversity of cyanobacterial nifH phylotypes associated with each of two feather moss species (Pleurozium schreberi and Hylocomium splendens) on each of 30 lake islands varying in ecosystem properties in northern Sweden. Nitrogen fixation was measured using acetylene reduction, and nifH sequences were amplified using general and cyanobacterial selective primers, separated and analyzed using density gradient gel electrophoresis (DGGE) or cloning, and further sequenced for phylogenetic analyses. Analyses of DGGE fingerprinting patterns revealed two host-specific clusters (one for each moss species), and sequence analysis showed five clusters of nifH phylotypes originating from heterocystous cyanobacteria. For H. splendens only, N(2) fixation was related to both nifH composition and diversity among islands. We demonstrated that the cyanobacterial communities associated with feather mosses show a high degree of host specificity. However, phylotype composition and diversity, and nitrogen fixation, did not differ among groups of islands that varied greatly in their availability of resources. These results suggest that moss species identity, but not extrinsic environmental conditions, serves as the primary determinant of nitrogen-fixing cyanobacterial communities that inhabit mosses.


Asunto(s)
Bryopsida/microbiología , Cianobacterias/metabolismo , Oxidorreductasas/genética , Biodiversidad , Cianobacterias/enzimología , Cianobacterias/genética , Dermatoglifia del ADN , Ecosistema , Regulación Bacteriana de la Expresión Génica , Especificidad del Huésped , Fijación del Nitrógeno/genética , Oxidorreductasas/metabolismo , Análisis de Secuencia de ADN , Suecia , Árboles
17.
J Nat Prod ; 74(10): 2052-61, 2011 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-21999655

RESUMEN

Five new isopimarane diterpenes, smardaesidins A-E (1- 5) and two new 20-nor-isopimarane diterpenes, smardaesidins F (6) and G (7), together with sphaeropsidins A (8) and C-F (10-13) were isolated from an endophytic fungal strain, Smardaea sp. AZ0432, occurring in living photosynthetic tissue of the moss Ceratodon purpureus . Of these, smardaesidins B (2) and C (3) were obtained as an inseparable mixture of isomers. Chemical reduction of sphaeropsidin A (8) afforded sphaeropsidin B (9), whereas catalytic hydrogenation of 8 yielded 7-O-15,16-tetrahydrosphaeropsidin A (14) and its new derivative, 7-hydroxy-6-oxoisopimara-7-en-20-oic acid (15). The acetylation and diazomethane reaction of sphaeropsidin A (8) afforded two of its known derivatives, 6-O-acetylsphaeropsidin A (16) and 8,14-methylenesphaeropsidin A methyl ester (17), respectively. Methylation of 10 yielded sphaeropsidin C methyl ester (18). The planar structures and relative configurations of the new compounds 1-7 and 15 were elucidated using MS and 1D and 2D NMR experiments, while the absolute configurations of the stereocenters of 4 and 6-8 were assigned using a modified Mosher's ester method, CD spectra, and comparison of specific rotation data with literature values. Compounds 1-18 were evaluated for their potential anticancer activity using several cancer cell lines and cells derived from normal human primary fibroblasts. Of these, compounds 8, 11, and 16 showed significant cytotoxic activity. More importantly, sphaeropsidin A (8) showed cell-type selectivity in the cytotoxicity assay and inhibited migration of metastatic breast adenocarcinoma (MDA-MB-231) cells at subcytotoxic concentrations.


Asunto(s)
Antineoplásicos/aislamiento & purificación , Bryopsida/microbiología , Diterpenos/aislamiento & purificación , Endófitos/química , Antineoplásicos/química , Antineoplásicos/farmacología , Diterpenos/química , Diterpenos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Femenino , Humanos , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Estereoisomerismo
18.
Can J Microbiol ; 57(5): 382-91, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21539496

RESUMEN

Three darkly pigmented species of conidial fungi of the family Pleosporaceae isolated from plants colonizing the Saskatchewan Glacier forefield were examined for potential roles in the degradation of moss gametophytes. Curvularia inaequalis and Ulocladium atrum isolated from bryophytes Ditrichum flexicaule and Tortella tortuosa , respectively, and Chalastospora gossypii from Saxifraga oppositifolia were inoculated onto autoclaved gametophytes of the moss Hylocomium splendens. All three species of fungi caused mass losses of the moss gametophytes. In vitro enzymatic tests revealed that all three fungi degraded cellulose, while none degraded insoluble polyphenols. When this material was examined by scanning electron microscopy, it was evident that the fungi had eroded the outer wall layer of the moss leaf cells to some extent but not the inner layer containing more lignin-like compounds. Once the outer wall layer was removed, the cells easily disarticulated. It is proposed that accumulations of these phenolics-rich leaf fragments subsequently ameliorate the rooting environment for vascular plants and have the potential to support the growth of basidiomycetes and other fungi, potentially mycorrhizal with pioneer vascular plants.


Asunto(s)
Ascomicetos/metabolismo , Bryopsida/microbiología , Celulosa/metabolismo , Células Germinativas de las Plantas/microbiología , Polifenoles/metabolismo , Células Germinativas de las Plantas/ultraestructura , Lignina/metabolismo , Microscopía Electrónica de Rastreo , Hojas de la Planta/microbiología , Hojas de la Planta/ultraestructura , Saskatchewan , Esporas Fúngicas/metabolismo
19.
Sci Rep ; 10(1): 22412, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33376244

RESUMEN

Northern peatlands typically develop through succession from fens dominated by the moss family Amblystegiaceae to bogs dominated by the moss genus Sphagnum. How the different plants and abiotic environmental conditions provided in Amblystegiaceae and Sphagnum peat shape the respective moss associated microbial communities is unknown. Through a large-scale molecular and biogeochemical study spanning Arctic, sub-Arctic and temperate regions we assessed how the endo- and epiphytic microbial communities of natural northern peatland mosses relate to peatland type (Sphagnum and Amblystegiaceae), location, moss taxa and abiotic environmental variables. Microbial diversity and community structure were distinctly different between Amblystegiaceae and Sphagnum peatlands, and within each of these two peatland types moss taxon explained the largest part of microbial community variation. Sphagnum and Amblystegiaceae shared few (< 1% of all operational taxonomic units (OTUs)) but strikingly abundant (up to 65% of relative abundance) OTUs. This core community overlapped by one third with the Sphagnum-specific core-community. Thus, the most abundant microorganisms in Sphagnum that are also found in all the Sphagnum plants studied, are the same OTUs as those few shared with Amblystegiaceae. Finally, we could confirm that these highly abundant OTUs were endophytes in Sphagnum, but epiphytes on Amblystegiaceae. We conclude that moss taxa and abiotic environmental variables associate with particular microbial communities. While moss taxon was the most influential parameter, hydrology, pH and temperature also had significant effects on the microbial communities. A small though highly abundant core community is shared between Sphagnum and Amblystegiaceae.


Asunto(s)
Biodiversidad , Bryopsida/microbiología , Microbiota/fisiología , Sphagnopsida/microbiología , Humedales , Regiones Árticas
20.
New Phytol ; 183(2): 432-443, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19453432

RESUMEN

Mosses (Bryophyta) are nonvascular plants that constitute a large part of the photosynthesizing biomass and carbon storage on Earth. Little is known about how this important portion of flora maintains its health status. This study assessed whether the moss, Physcomitrella patens, responds to treatment with chitosan, a fungal cell wall-derived compound inducing defense against fungal pathogens in vascular plants. Application of chitosan to liquid culture of P. patens caused a rapid increase in peroxidase activity in the medium. For identification of the peroxidase(s), matrix-assisted laser desorption/ionization-time-of-flight (MALDI-TOF)/MS, other methods and the whole-genome sequence of P. patens were utilized. Peroxidase gene knock-out mutants were made and inoculated with fungi. The peroxidase activity resulted from a single secreted class III peroxidase (Prx34) which belonged to a P. patens specific phylogenetic cluster in analysis of the 45 putative class III peroxidases of P. patens and those of Arabidopsis and rice. Saprophytic and pathogenic fungi isolated from another moss killed the Prx34 knockout mutants but did not damage wild-type P. patens. The data point out the first specific host factor that is pivotal for pathogen defense in a nonvascular plant. Furthermore, results provide conclusive evidence that class III peroxidases in plants are needed in defense against hostile invasion by fungi.


Asunto(s)
Bryopsida/enzimología , Bryopsida/microbiología , Hongos/fisiología , Peroxidasas/metabolismo , Secuencia de Aminoácidos , Bryopsida/genética , Bryopsida/inmunología , Quitosano/farmacología , Secuencia Conservada , Medios de Cultivo , Exones/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Técnicas de Inactivación de Genes , Intrones/genética , Datos de Secuencia Molecular , Mutación/genética , Mapeo Peptídico , Peroxidasas/química , Peroxidasas/genética , Peroxidasas/aislamiento & purificación , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estructura Terciaria de Proteína , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA