Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 769
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 184(3): 759-774.e18, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33400916

RESUMEN

To investigate circuit mechanisms underlying locomotor behavior, we used serial-section electron microscopy (EM) to acquire a synapse-resolution dataset containing the ventral nerve cord (VNC) of an adult female Drosophila melanogaster. To generate this dataset, we developed GridTape, a technology that combines automated serial-section collection with automated high-throughput transmission EM. Using this dataset, we studied neuronal networks that control leg and wing movements by reconstructing all 507 motor neurons that control the limbs. We show that a specific class of leg sensory neurons synapses directly onto motor neurons with the largest-caliber axons on both sides of the body, representing a unique pathway for fast limb control. We provide open access to the dataset and reconstructions registered to a standard atlas to permit matching of cells between EM and light microscopy data. We also provide GridTape instrumentation designs and software to make large-scale EM more accessible and affordable to the scientific community.


Asunto(s)
Envejecimiento/fisiología , Drosophila melanogaster/ultraestructura , Microscopía Electrónica de Transmisión , Neuronas Motoras/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Automatización , Conectoma , Extremidades/inervación , Nervios Periféricos/ultraestructura , Sinapsis/ultraestructura
2.
Nature ; 616(7956): 373-377, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045920

RESUMEN

Chemotactile receptors (CRs) are a cephalopod-specific innovation that allow octopuses to explore the seafloor via 'taste by touch'1. CRs diverged from nicotinic acetylcholine receptors to mediate contact-dependent chemosensation of insoluble molecules that do not readily diffuse in marine environments. Here we exploit octopus CRs to probe the structural basis of sensory receptor evolution. We present the cryo-electron microscopy structure of an octopus CR and compare it with nicotinic receptors to determine features that enable environmental sensation versus neurotransmission. Evolutionary, structural and biophysical analyses show that the channel architecture involved in cation permeation and signal transduction is conserved. By contrast, the orthosteric ligand-binding site is subject to diversifying selection, thereby mediating the detection of new molecules. Serendipitous findings in the cryo-electron microscopy structure reveal that the octopus CR ligand-binding pocket is exceptionally hydrophobic, enabling sensation of greasy compounds versus the small polar molecules detected by canonical neurotransmitter receptors. These discoveries provide a structural framework for understanding connections between evolutionary adaptations at the atomic level and the emergence of new organismal behaviour.


Asunto(s)
Evolución Molecular , Octopodiformes , Células Receptoras Sensoriales , Animales , Microscopía por Crioelectrón , Ligandos , Octopodiformes/química , Octopodiformes/fisiología , Octopodiformes/ultraestructura , Receptores Nicotínicos/química , Receptores Nicotínicos/fisiología , Receptores Nicotínicos/ultraestructura , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Tacto/fisiología , Transmisión Sináptica , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas
3.
Nature ; 616(7956): 378-383, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37045917

RESUMEN

The evolution of new traits enables expansion into new ecological and behavioural niches. Nonetheless, demonstrated connections between divergence in protein structure, function and lineage-specific behaviours remain rare. Here we show that both octopus and squid use cephalopod-specific chemotactile receptors (CRs) to sense their respective marine environments, but structural adaptations in these receptors support the sensation of specific molecules suited to distinct physiological roles. We find that squid express ancient CRs that more closely resemble related nicotinic acetylcholine receptors, whereas octopuses exhibit a more recent expansion in CRs consistent with their elaborated 'taste by touch' sensory system. Using a combination of genetic profiling, physiology and behavioural analyses, we identify the founding member of squid CRs that detects soluble bitter molecules that are relevant in ambush predation. We present the cryo-electron microscopy structure of a squid CR and compare this with octopus CRs1 and nicotinic receptors2. These analyses demonstrate an evolutionary transition from an ancestral aromatic 'cage' that coordinates soluble neurotransmitters or tastants to a more recent octopus CR hydrophobic binding pocket that traps insoluble molecules to mediate contact-dependent chemosensation. Thus, our study provides a foundation for understanding how adaptation of protein structure drives the diversification of organismal traits and behaviour.


Asunto(s)
Conducta Animal , Decapodiformes , Octopodiformes , Receptores Nicotínicos , Células Receptoras Sensoriales , Gusto , Tacto , Animales , Conducta Animal/fisiología , Sitios de Unión , Microscopía por Crioelectrón , Decapodiformes/química , Decapodiformes/fisiología , Decapodiformes/ultraestructura , Evolución Molecular , Interacciones Hidrofóbicas e Hidrofílicas , Neurotransmisores/metabolismo , Octopodiformes/química , Octopodiformes/fisiología , Octopodiformes/ultraestructura , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestructura , Gusto/fisiología , Tacto/fisiología , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura
4.
Cell Tissue Res ; 397(2): 147-177, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38898317

RESUMEN

The marine microturbellarian Macrostomum lignano (Platyhelminthes, Rhabditophora) is an emerging laboratory model used by a growing community of researchers because it is easy to cultivate, has a fully sequenced genome, and offers multiple molecular tools for its study. M. lignano has a compartmentalized brain that receives sensory information from receptors integrated in the epidermis. Receptors of the head, as well as accompanying glands and specialized epidermal cells, form a compound sensory structure called the frontal glandular complex. In this study, we used semi-serial transmission electron microscopy (TEM) to document the types, ultrastructure, and three-dimensional architecture of the cells of the frontal glandular complex. We distinguish a ventral compartment formed by clusters of type 1 (multiciliated) sensory receptors from a central domain where type 2 (collar) sensory receptors predominate. Six different types of glands (rhammite glands, mucoid glands, glands with aster-like and perimaculate granula, vacuolated glands, and buckle glands) are closely associated with type 1 sensory receptors. Endings of a seventh type of gland (rhabdite gland) define a dorsal domain of the frontal glandular complex. A pair of ciliary photoreceptors is closely associated with the base of the frontal glandular complex. Bundles of dendrites, connecting the receptor endings with their cell bodies which are located in the brain, form the (frontal) peripheral nerves. Nerve fibers show a varicose structure, with thick segments alternating with thin segments, and are devoid of a glial layer. This distinguishes platyhelminths from larger and/or more complex invertebrates whose nerves are embedded in prominent glial sheaths.


Asunto(s)
Imagenología Tridimensional , Platelmintos , Animales , Platelmintos/ultraestructura , Células Receptoras Sensoriales/ultraestructura
5.
Genes Dev ; 29(10): 1087-94, 2015 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-25995190

RESUMEN

The assembly of a nervous system requires the extension of axons and dendrites to specific regions where they are matched with appropriate synaptic targets. Although the cues that guide long-range outgrowth have been characterized extensively, additional mechanisms are required to explain short-range guidance in neural development. Using a complementary combination of time-lapse imaging by fluorescence confocal microscopy and serial block-face electron microscopy, we identified a novel type of presynaptic projection that participates in the assembly of the vertebrate nervous system. Synapse formation by each hair cell of the zebrafish's lateral line occurs during a particular interval after the cell's birth. During the same period, projections emerge from the cellular soma, extending toward a specific subpopulation of mature hair cells and interacting with polarity-specific afferent nerve terminals. The terminals then extend along the projections to reach appropriately matched presynaptic sites, after which the projections recede. Our results suggest that presynaptic projections act as transient scaffolds for short-range partner matching, a mechanism that may occur elsewhere in the nervous system.


Asunto(s)
Diferenciación Celular , Sistema de la Línea Lateral/citología , Células Receptoras Sensoriales/citología , Sinapsis/fisiología , Pez Cebra/fisiología , Animales , Sistema de la Línea Lateral/crecimiento & desarrollo , Sistema de la Línea Lateral/ultraestructura , Microscopía Electrónica de Transmisión , Células Receptoras Sensoriales/ultraestructura , Pez Cebra/crecimiento & desarrollo
6.
J Neurosci ; 41(42): 8710-8724, 2021 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-34507952

RESUMEN

We report that the neurotrophin receptor p75 contributes to sensory neuron survival through the regulation of cholesterol metabolism in Schwann cells. Selective deletion of p75 in mouse Schwann cells of either sex resulted in a 30% loss of dorsal root ganglia (DRG) neurons and diminished thermal sensitivity. P75 regulates Schwann cell cholesterol biosynthesis in response to BDNF, forming a co-receptor complex with ErbB2 and activating ErbB2-mediated stimulation of sterol regulatory element binding protein 2 (SREBP2), a master regulator of cholesterol synthesis. Schwann cells lacking p75 exhibited decreased activation of SREBP2 and a reduction in 7-dehydrocholesterol (7-DHC) reductase (DHCR7) expression, resulting in accumulation of the neurotoxic intermediate, 7-dehyrocholesterol in the sciatic nerve. Restoration of DHCR7 in p75 null Schwann cells in mice significantly attenuated DRG neuron loss. Together, these results reveal a mechanism by which the disruption of lipid metabolism in glial cells negatively influences sensory neuron survival, which has implications for a wide range of peripheral neuropathies.SIGNIFICANCE STATEMENT Although expressed in Schwann cells, the role of p75 in myelination has remained unresolved in part because of its dual expression in sensory neurons that Schwann cells myelinate. When p75 was deleted selectively among Schwann cells, myelination was minimally affected, while sensory neuron survival was reduced by 30%. The phenotype is mainly due to dysregulation of cholesterol biosynthesis in p75-deficient Schwann cells, leading to an accumulation of neurotoxic cholesterol precursor, 7-dehydrocholesterol (7-DHC). Mechanism-wise, we discovered that in response to BDNF, p75 recruits and activates ErbB2 independently of ErbB3, thereby stimulating the master regulator, sterol regulatory element binding protein 2 (SREBP2). These results together highlight a novel role of p75 in Schwann cells in regulating DRG neuron survival by orchestrating proper cholesterol metabolism.


Asunto(s)
Receptores de Factor de Crecimiento Nervioso/deficiencia , Receptores de Factor de Crecimiento Nervioso/genética , Células de Schwann/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Supervivencia Celular/fisiología , Células Cultivadas , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Células de Schwann/ultraestructura , Células Receptoras Sensoriales/ultraestructura
7.
Dev Biol ; 478: 1-12, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34147472

RESUMEN

Dorsal root ganglion (DRG) neurons are the predominant cell type that innervates the vertebrate skin. They are typically described as pseudounipolar cells that have central and peripheral axons branching from a single root exiting the cell body. The peripheral axon travels within a nerve to the skin, where free sensory endings can emerge and branch into an arbor that receives and integrates information. In some immature vertebrates, DRG neurons are preceded by Rohon-Beard (RB) neurons. While the sensory endings of RB and DRG neurons function like dendrites, we use live imaging in zebrafish to show that they have axonal plus-end-out microtubule polarity at all stages of maturity. Moreover, we show both cell types have central and peripheral axons with plus-end-out polarity. Surprisingly, in DRG neurons these emerge separately from the cell body, and most cells never acquire the signature pseudounipolar morphology. Like another recently characterized cell type that has multiple plus-end-out neurites, ganglion cells in Nematostella, RB and DRG neurons maintain a somatic microtubule organizing center even when mature. In summary, we characterize key cellular and subcellular features of vertebrate sensory neurons as a foundation for understanding their function and maintenance.


Asunto(s)
Ganglios Espinales/ultraestructura , Microtúbulos/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Piel/inervación , Animales , Animales Modificados Genéticamente , Axones/fisiología , Axones/ultraestructura , Cuerpo Celular/ultraestructura , Polaridad Celular , Dendritas/fisiología , Drosophila/citología , Drosophila/crecimiento & desarrollo , Ganglios Espinales/fisiología , Centro Organizador de los Microtúbulos/ultraestructura , Anémonas de Mar/citología , Anémonas de Mar/crecimiento & desarrollo , Anémonas de Mar/ultraestructura , Células Receptoras Sensoriales/fisiología , Pez Cebra
8.
J Neurosci ; 40(49): 9346-9363, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33115929

RESUMEN

The output from the peripheral terminals of primary nociceptive neurons, which detect and encode the information regarding noxious stimuli, is crucial in determining pain sensation. The nociceptive terminal endings are morphologically complex structures assembled from multiple branches of different geometry, which converge in a variety of forms to create the terminal tree. The output of a single terminal is defined by the properties of the transducer channels producing the generation potentials and voltage-gated channels, translating the generation potentials into action potential (AP) firing. However, in the majority of cases, noxious stimuli activate multiple terminals; thus, the output of the nociceptive neuron is defined by the integration and computation of the inputs of the individual terminals. Here, we used a computational model of nociceptive terminal tree to study how the architecture of the terminal tree affects the input-output relation of the primary nociceptive neurons. We show that the input-output properties of the nociceptive neurons depend on the length, the axial resistance (Ra), and location of individual terminals. Moreover, we show that activation of multiple terminals by a capsaicin-like current allows summation of the responses from individual terminals, thus leading to increased nociceptive output. Stimulation of the terminals in simulated models of inflammatory or neuropathic hyperexcitability led to a change in the temporal pattern of AP firing, emphasizing the role of temporal code in conveying key information about changes in nociceptive output in pathologic conditions, leading to pain hypersensitivity.SIGNIFICANCE STATEMENT Noxious stimuli are detected by terminal endings of primary nociceptive neurons, which are organized into morphologically complex terminal trees. The information from multiple terminals is integrated along the terminal tree, computing the neuronal output, which propagates toward the CNS, thus shaping the pain sensation. Here, we revealed that the structure of the nociceptive terminal tree determines the output of nociceptive neurons. We show that the integration of noxious information depends on the morphology of the terminal trees and how this integration and, consequently, the neuronal output change under pathologic conditions. Our findings help to predict how nociceptive neurons encode noxious stimuli and how this encoding changes in pathologic conditions, leading to pain.


Asunto(s)
Nociceptores/fisiología , Nociceptores/ultraestructura , Nervios Periféricos/fisiología , Nervios Periféricos/ultraestructura , Terminales Presinápticos/fisiología , Terminales Presinápticos/ultraestructura , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Potenciales de Acción/fisiología , Capsaicina/farmacología , Simulación por Computador , Humanos , Modelos Neurológicos , Neuralgia/fisiopatología , Nocicepción , Enfermedades del Sistema Nervioso Periférico/fisiopatología , Canales de Sodio/efectos de los fármacos , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
9.
J Neuroinflammation ; 18(1): 209, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34530852

RESUMEN

BACKGROUND: Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues. METHODS: TLR7 expression was tested using in situ hybridization with species-specific RNA probes in vagal and dorsal root sensory ganglia in wild-type and TLR7 knockout (KO) mice and in guinea pigs. Since TLR7 KO mice were generated by inserting an Escherichia coli lacZ gene in exon 3 of the mouse TLR7 gene, wild-type and TLR7 (KO) mouse vagal ganglia were also labeled for lacZ. In situ labeling was compared to immunohistochemistry using TLR7 antibody probes. The effects of influenza A infection on TLR7 expression in sensory ganglia and in the spleen were also assessed. RESULTS: In situ probes detected TLR7 in the spleen and in small support cells adjacent to sensory neurons in the dorsal root and vagal ganglia in wild-type mice and guinea pigs, but not in TLR7 KO mice. TLR7 was co-expressed with the macrophage marker Iba1 and the satellite glial cell marker GFAP, but not with the neuronal marker PGP9.5, indicating that TLR7 is not expressed by sensory nerves in either vagal or dorsal root ganglia in mice or guinea pigs. In contrast, TLR7 antibodies labeled small- and medium-sized neurons in wild-type and TLR7 KO mice in a TLR7-independent manner. Influenza A infection caused significant weight loss and upregulation of TLR7 in the spleens, but not in vagal ganglia, in mice. CONCLUSION: TLR7 is expressed by macrophages and satellite glial cells, but not neurons in sensory ganglia suggesting TLR7's neuromodulatory effects are mediated indirectly via activation of neuronally-associated support cells, not through activation of neurons directly. Our data also suggest TLR7's primary role in neuronal tissues is not related to antiviral immunity.


Asunto(s)
Ganglios Espinales/metabolismo , Macrófagos/metabolismo , Glicoproteínas de Membrana/biosíntesis , Neuroglía/metabolismo , Células Receptoras Sensoriales/metabolismo , Receptor Toll-Like 7/biosíntesis , Animales , Femenino , Ganglios Espinales/ultraestructura , Expresión Génica , Cobayas , Macrófagos/ultraestructura , Glicoproteínas de Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Neuroglía/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Receptor Toll-Like 7/genética
10.
Ann Neurol ; 88(6): 1205-1219, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32951274

RESUMEN

OBJECTIVE: Pain, temperature, and itch are conventionally thought to be exclusively transduced by the intraepidermal nerve endings. Although recent studies have shown that epidermal keratinocytes also participate in sensory transduction, the mechanism underlying keratinocyte communication with intraepidermal nerve endings remains poorly understood. We sought to demonstrate the synaptic character of the contacts between keratinocytes and sensory neurons and their involvement in sensory communication between keratinocytes and sensory neurons. METHODS: Contacts were explored by morphological, molecular, and functional approaches in cocultures of epidermal keratinocytes and sensory neurons. To interrogate whether structures observed in vitro were also present in the human epidermis, in situ correlative light electron microscopy was performed on human skin biopsies. RESULTS: Epidermal keratinocytes dialogue with sensory neurons through en passant synaptic-like contacts. These contacts have the ultrastructural features and molecular hallmarks of chemical synaptic-like contacts: narrow intercellular cleft, keratinocyte synaptic vesicles expressing synaptophysin and synaptotagmin 1, and sensory information transmitted from keratinocytes to sensory neurons through SNARE-mediated (syntaxin1) vesicle release. INTERPRETATION: By providing selective communication between keratinocytes and sensory neurons, synaptic-like contacts are the hubs of a 2-site receptor. The permanent epidermal turnover, implying a specific en passant structure and high plasticity, may have delayed their identification, thereby contributing to the long-held concept of nerve endings passing freely between keratinocytes. The discovery of keratinocyte-sensory neuron synaptic-like contacts may call for a reassessment of basic assumptions in cutaneous sensory perception and sheds new light on the pathophysiology of pain and itch as well as the physiology of touch. ANN NEUROL 2020;88:1205-1219.


Asunto(s)
Queratinocitos/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Sinapsis/ultraestructura , Adulto , Anciano , Animales , Técnicas de Cocultivo , Epidermis/inervación , Femenino , Humanos , Queratinocitos/metabolismo , Masculino , Microscopía Electrónica , Persona de Mediana Edad , Proteínas Qa-SNARE/metabolismo , Ratas , Vesículas Sinápticas/metabolismo , Sinaptofisina/metabolismo , Sinaptotagmina I/metabolismo
11.
PLoS Biol ; 16(8): e2003816, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30125271

RESUMEN

Dendrodendritic synaptic interactions between olfactory bulb mitral and granule cells represent a key neuronal mechanism of odor discrimination. Dendritic release of gamma-aminobutyric acid (GABA) from granule cells contributes to stimulus-dependent, rapid, and accurate odor discrimination, yet the physiological mechanisms governing this release and its behavioral relevance are unknown. Here, we show that granule cells express the voltage-gated sodium channel α-subunit NaV1.2 in clusters distributed throughout the cell surface including dendritic spines. Deletion of NaV1.2 in granule cells abolished spiking and GABA release as well as inhibition of synaptically connected mitral cells (MCs). As a consequence, mice required more time to discriminate highly similar odorant mixtures, while odor discrimination learning remained unaffected. In conclusion, we show that expression of NaV1.2 in granule cells is crucial for physiological dendritic GABA release and rapid discrimination of similar odorants with high accuracy. Hence, our data indicate that neurotransmitter-releasing dendritic spines function just like axon terminals.


Asunto(s)
Axones/fisiología , Dendritas/fisiología , Canal de Sodio Activado por Voltaje NAV1.2/genética , Odorantes/análisis , Bulbo Olfatorio/fisiología , Percepción Olfatoria/fisiología , Potenciales de Acción/fisiología , Animales , Axones/ultraestructura , Dendritas/ultraestructura , Aprendizaje Discriminativo/fisiología , Expresión Génica , Ratones , Ratones Endogámicos C57BL , Microtomía , Canal de Sodio Activado por Voltaje NAV1.2/metabolismo , Neurotransmisores/metabolismo , Bulbo Olfatorio/citología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Células Receptoras Sensoriales/fisiología , Células Receptoras Sensoriales/ultraestructura , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Técnicas de Cultivo de Tejidos , Ácido gamma-Aminobutírico/metabolismo
12.
PLoS Genet ; 14(2): e1007198, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29425198

RESUMEN

Pericentrin is a conserved centrosomal protein whose dysfunction has been linked to several human diseases. It has been implicated in many aspects of centrosome and cilia function, but its precise role is unclear. Here, we examine Drosophila Pericentrin-like-protein (PLP) function in vivo in tissues that form both centrosomes and cilia. Plp mutant centrioles exhibit four major defects: (1) They are short and have subtle structural abnormalities; (2) They disengage prematurely, and so overduplicate; (3) They organise fewer cytoplasmic MTs during interphase; (4) When forming cilia, they fail to establish and/or maintain a proper connection to the plasma membrane-although, surprisingly, they can still form an axoneme-like structure that can recruit transition zone (TZ) proteins. We show that PLP helps assemble "pericentriolar clouds" of electron-dense material that emanate from the central cartwheel spokes and spread outward to surround the mother centriole. We propose that the partial loss of these structures may largely explain the complex centriole, centrosome and cilium defects we observe in Plp mutant cells.


Asunto(s)
Centriolos/metabolismo , Centrosoma/metabolismo , Proteínas de Drosophila/fisiología , Microtúbulos/metabolismo , Animales , Animales Modificados Genéticamente , Cuerpos Basales/metabolismo , Cuerpos Basales/fisiología , Proteínas de Unión a Calmodulina , Centriolos/genética , Cilios/genética , Cilios/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Interfase/fisiología , Complejos Multiproteicos/metabolismo , Mutación/fisiología , Multimerización de Proteína/fisiología , Estabilidad Proteica , Células Receptoras Sensoriales/química , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura
13.
Cell Tissue Res ; 381(1): 25-34, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32215722

RESUMEN

There is considerable interest in understanding how contents within the gut wall (including microbiome) can activate sensory nerve endings in the gut that project to the central nervous system. However, we have only recently begun to understand the location and characteristics of extrinsic spinal afferent nerve endings that innervate the lower gastrointestinal (GI) tract. Our aim is to identify the nerve endings in the mouse distal colon that arise from single spinal afferent neurons. C57BL/6 mice were anaesthetised and single dorsal root ganglia (DRG) between lumbosacral L6-S1 were injected with dextran biotin. Mice recovered for 7 days. Animals were then euthanized and whole colons removed, fixed and stained for calcitonin-gene-related-peptide (CGRP). Single spinal afferent nerve axons were identified entering the distal colon that ramified along many rows of myenteric ganglia, often giving rise to varicose nerve endings. These same axons bifurcated in the circular muscle giving rise to 4-5 groups of branching-type intramuscular endings, where each group of endings was separated by ~ 370 µm in the rostro-caudal axis and projected 1.2 mm around the circumference. As spinal afferent axons bifurcated, their axons often showed dramatic reductions in diameter. Here, we identified in the distal colon, the characteristics of nerve endings that arise from single colorectal-projecting axons with cell bodies in DRG. These findings suggest that a population of sensory neurons in DRG can potentially detect sensory stimuli simultaneously via different morphological types of endings that lie in both colonic smooth muscle and myenteric ganglia.


Asunto(s)
Colon/inervación , Ganglios Espinales/ultraestructura , Músculo Liso/inervación , Neuronas Aferentes/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Ratones , Ratones Endogámicos C57BL
14.
Mol Vis ; 26: 576-587, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32863706

RESUMEN

Purpose: The cornea is highly enriched in sensory neurons expressing the thermal TRP channels TRPV1, TRPA1, and TRPM8, and is an accessible tissue for study and experimental manipulation. The aim of this work was to provide a concise characterization of the expression patterns of various TRP channels and vesicular proteins in the mammalian cornea. Methods: Immunohistochemistry (IHC) was performed using wholemount and cryostat tissue preparations of mouse and monkey corneas. The expression patterns of TRPV1 and TRPA1 were determined using specific antisera, and further colocalization was performed with antibodies directed against calcitonin-related gene protein (CGRP), neurofilament protein NF200, and the secretogranins ScgII and SCG3. The expression of TRPM8 was determined using corneas from mice expressing EGFP under the direction of a TRPM8 promoter (TRPM8EGFP mice). Laser scanning confocal microscopy and image analysis were performed. Results: In the mouse cornea, TRPV1 and TRPM8 were expressed in distinct populations of small diameter C fibers extending to the corneal surface and ending either as simple or ramifying terminals, or in the case of TRPM8, as complex terminals. TRPA1 was expressed in large-diameter NF200-positive Aδ axons. TRPV1 and TRPA1 appeared to localize to separate intracellular vesicular structures and were primarily found in axons containing components of large dense vesicles with TRPV1 colocalizing with CGRP and ScgII, and TRPA1 colocalizing with SCG3. Monkey corneas showed similar colocalization of CGRP and TRPV1 on small-diameter axons extending to the epithelial surface. Conclusions: The mouse cornea is abundant in sensory neurons expressing TRPV1, TRPM8, and TRPA1, and provides an accessible tissue source for implementing a live tissue preparation useful for further exploration of the molecular mechanisms of hyperalgesia. This study showed that surprisingly, these TRP channels localize to separate neurons in the mouse cornea and likely have unique physiological functions. The similar TRPV1 expression pattern we observed in the mouse and monkey corneas suggests that mice provide a reasonable initial model for understanding the role of these ion channels in higher mammalian corneal physiology.


Asunto(s)
Axones/metabolismo , Córnea/metabolismo , Células Receptoras Sensoriales/metabolismo , Canal Catiónico TRPA1/genética , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPV/genética , Animales , Axones/ultraestructura , Cromograninas/genética , Cromograninas/metabolismo , Secuencia Conservada , Córnea/anatomía & histología , Córnea/ultraestructura , Expresión Génica , Hiperalgesia/genética , Hiperalgesia/metabolismo , Hiperalgesia/fisiopatología , Inmunohistoquímica , Macaca nemestrina , Ratones , Receptores de Péptido Relacionado con el Gen de Calcitonina/genética , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Células Receptoras Sensoriales/ultraestructura , Transmisión Sináptica/genética , Canal Catiónico TRPA1/metabolismo , Canales Catiónicos TRPM/metabolismo , Canales Catiónicos TRPV/metabolismo
15.
J Neurogenet ; 34(3-4): 247-250, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33446020

RESUMEN

A slide taped to a window at the Woods Hole Marine Biology Laboratory was my first introduction to the touch receptor neurons of the nematode Caenorhabditis elegans. Studying these cells as a postdoc with Sydney Brenner gave me a chance to work with John Sulston on a fascinating set of neurons. I would never have guessed then that 43 years later I would still be excited about learning their secrets.


Asunto(s)
Caenorhabditis elegans/citología , Neurociencias/historia , Células Receptoras Sensoriales/fisiología , Tacto/fisiología , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Dendritas/ultraestructura , Inglaterra , Historia del Siglo XX , Hipoestesia/genética , Hipoestesia/patología , Mecanotransducción Celular/fisiología , Microtúbulos/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Tubulina (Proteína)/genética , Tubulina (Proteína)/fisiología
16.
FASEB J ; 33(6): 7315-7330, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30860870

RESUMEN

Voltage-dependent sodium (NaV) 1.8 channels regulate action potential generation in nociceptive neurons, identifying them as putative analgesic targets. Here, we show that NaV1.8 channel plasma membrane localization, retention, and stability occur through a direct interaction with the postsynaptic density-95/discs large/zonula occludens-1-and WW domain-containing scaffold protein called membrane-associated guanylate kinase with inverted orientation (Magi)-1. The neurophysiological roles of Magi-1 are largely unknown, but we found that dorsal root ganglion (DRG)-specific knockdown of Magi-1 attenuated thermal nociception and acute inflammatory pain and produced deficits in NaV1.8 protein expression. A competing cell-penetrating peptide mimetic derived from the NaV1.8 WW binding motif decreased sodium currents, reduced NaV1.8 protein expression, and produced hypoexcitability. Remarkably, a phosphorylated variant of the very same peptide caused an opposing increase in NaV1.8 surface expression and repetitive firing. Likewise, in vivo, the peptides produced diverging effects on nocifensive behavior. Additionally, we found that Magi-1 bound to sequence like a calcium-activated potassium channel sodium-activated (Slack) potassium channels, demonstrating macrocomplexing with NaV1.8 channels. Taken together, these findings emphasize Magi-1 as an essential scaffold for ion transport in DRG neurons and a central player in pain.-Pryce, K. D., Powell, R., Agwa, D., Evely, K. M., Sheehan, G. D., Nip, A., Tomasello, D. L., Gururaj, S., Bhattacharjee, A. Magi-1 scaffolds NaV1.8 and Slack KNa channels in dorsal root ganglion neurons regulating excitability and pain.


Asunto(s)
Ganglios Espinales/citología , Guanilato-Quinasas/fisiología , Proteínas de la Membrana/fisiología , Canal de Sodio Activado por Voltaje NAV1.8/fisiología , Proteínas del Tejido Nervioso/fisiología , Nocicepción/fisiología , Canales de potasio activados por Sodio/fisiología , Células Receptoras Sensoriales/fisiología , Secuencia de Aminoácidos , Animales , Axones/metabolismo , Células Cultivadas , Femenino , Guanilato-Quinasas/antagonistas & inhibidores , Guanilato-Quinasas/genética , Inyecciones , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Dominios PDZ , Mapeo de Interacción de Proteínas , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/farmacología , Nódulos de Ranvier/metabolismo , Ratas , Ratas Sprague-Dawley , Células Receptoras Sensoriales/ultraestructura , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Nervios Espinales
17.
Cell Commun Signal ; 18(1): 162, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33076927

RESUMEN

BACKGROUND: Recent physiological and experimental data highlight the role of the sensory nervous system in bone repair, but its precise role on angiogenesis in a bone regeneration context is still unknown. Our previous work demonstrated that sensory neurons (SNs) induce the osteoblastic differentiation of mesenchymal stem cells, but the influence of SNs on endothelial cells (ECs) was not studied. METHODS: Here, in order to study in vitro the interplay between SNs and ECs, we used microfluidic devices as an indirect co-culture model. Gene expression analysis of angiogenic markers, as well as measurements of metalloproteinases protein levels and enzymatic activity, were performed. RESULTS: We were able to demonstrate that two sensory neuropeptides, calcitonin gene-related peptide (CGRP) and substance P (SP), were involved in the transcriptional upregulation of angiogenic markers (vascular endothelial growth factor, angiopoietin 1, type 4 collagen, matrix metalloproteinase 2) in ECs. Co-cultures of ECs with SNs also increased the protein level and enzymatic activity of matrix metalloproteinases 2 and 9 (MMP2/MMP9) in ECs. CONCLUSIONS: Our results suggest a role of sensory neurons, and more specifically of CGRP and SP, in the remodelling of endothelial cells extracellular matrix, thus supporting and enhancing the angiogenesis process. Video abstract.


Asunto(s)
Células Endoteliales/metabolismo , Matriz Extracelular/metabolismo , Ganglios Espinales/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Péptido Relacionado con Gen de Calcitonina/metabolismo , Células Endoteliales/ultraestructura , Matriz Extracelular/ultraestructura , Femenino , Ganglios Espinales/ultraestructura , Regulación de la Expresión Génica , Metaloproteinasas de la Matriz/biosíntesis , Microfluídica , Modelos Biológicos , Neuritas/metabolismo , Osteogénesis , Ratas Wistar , Células Receptoras Sensoriales/ultraestructura , Sustancia P/metabolismo
18.
Microsc Microanal ; 26(1): 173-181, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31722767

RESUMEN

The meadow spittlebug, Philaenus spumarius (Linnaeus) (Hemiptera: Aphrophoridae), is an important vector for the xylem-limited bacterium Xylella fastidiosa (Wells, Raju, Hung, Weisburg, Mandelco-Paul, and Brenner), which is associated with olive quick decline syndrome in southern Italy. The mouthparts of Hemiptera have important roles in host plant selection, feeding behavior and for vectoring pathogens that cause plant diseases. In this study, the functional morphology of the sensory structures located on the labium tip and precibarium of P. spumarius was investigated using scanning and transmission electron microscopy. The labium tip is composed of two symmetrical sensory complexes, each with five different types of sensilla: aporous sensilla trichodea type 1 and 2; uniporous sensilla chaetica type 1 and 2; and multiporous sensilla basiconica. The precibarium of P. spumarius has two kinds of sensory structures: bulbous sensilla and papillae sensilla. In particular, two groups of sensilla are located on the epipharynx: a distal group that consists of ten papillae sensilla and a proximal group composed of six papillae sensilla and two bulbous sensilla, while the hypopharynx has only two papillae sensilla. The involvement of these sensory structures in the context of feeding behavior and pathogen transmission is discussed.


Asunto(s)
Hemípteros/ultraestructura , Boca/ultraestructura , Sensilos/ultraestructura , Células Receptoras Sensoriales/ultraestructura , Animales , Italia , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión
19.
Soft Matter ; 15(41): 8320-8328, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31565715

RESUMEN

The mechanosensitivity of cells depends on the lipid-protein interactions of the plasma membrane. Affectations in the lipid region of the plasma membrane affect the transduction of mechanical forces, and any molecule that modifies the biophysical integrity of the lipid bilayer can alter the mechanical activity of the proteins inside the membrane. To understand whether inhibitors of mechanically activated ion channels affect the mechanical properties of the plasma membrane, we evaluated the rigidity of the membrane of sensory neurons of the DRG of mice using a variant of the scanning ion conductance microscopy method, which allows us to calculate the Young's modulus of individual cells before and after the perfusion of different doses of Gd3+, ruthenium red and GsMTx-4. Our results suggest that these molecules compromise the membrane by increasing the Young's modulus value, which indicates that the membrane becomes more rigid; these compounds act through different mechanisms and by a non-specific manner, each one shows a certain preference for specific cell subpopulations, depending on their cell size and their reactivity to isolectin B4. Our results support the idea that the biophysical properties that result from the interactions that arise in the membranes are part of the mechanotransduction process.


Asunto(s)
Membrana Celular/metabolismo , Moduladores del Transporte de Membrana/metabolismo , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/ultraestructura , Animales , Cadmio/metabolismo , Línea Celular , Células Cultivadas , Módulo de Elasticidad , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Masculino , Mecanotransducción Celular , Ratones , Rojo de Rutenio/metabolismo , Transducción de Señal , Venenos de Araña/metabolismo
20.
J Fish Biol ; 94(2): 313-319, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30565231

RESUMEN

We compared the electrosensory system of two benthic elasmobranchs Hemiscyllium ocellatum and Chiloscyllium punctatum. The distribution of the ampullary pores on the head was similar for both species, with a higher density of pores anteriorly and a lower density posteriorly, although C. punctatum generally possessed larger pores. Ampullary canals of the mandibular cluster were quasi-sinusoidal in H. ocellatum, a shape previously found in benthic rays only, whereas ampullary canals in C. punctatum were of a linear morphology as reported for many shark and ray species previously. The ampullae proper were of the lobular type, as occurs in most galean sharks. Chiloscyllium punctatum had six sensory chambers compared with the five per ampulla in H. ocellatum, which were generally smaller than those of C. punctatum. The sensory epithelium comprised flattened receptor cells, compared with the usual pear-shaped receptor cells encountered in other elasmobranchs and their apically nucleated supportive cells did not protrude markedly into the ampullary lumen, unlike those in benthic rays.


Asunto(s)
Cabeza/anatomía & histología , Células Receptoras Sensoriales/ultraestructura , Tiburones/anatomía & histología , Animales , Dieta , Femenino , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA