Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biochem Biophys Res Commun ; 494(1-2): 402-408, 2017 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-28935373

RESUMEN

The aim of this study was to determine relative importance of N-terminal domain and C-terminal extension of αA-crystallin during their in vitro complex formation with phakinin and filensin (the two lens-specific intermediate filament [IF] proteins). Cloned phakinin, filensin and vimentin were purified under a denaturing conditions by consecutive DEAE-cellulose-, hydroxyapatite- and Sephadex G-75-column chromatographic methods. WTαA-crystallin, αA-NT (N-terminal domain [residue number 1-63])-deleted and αA-CT (C-terminal terminal extension [residue number 140-173]-deleted), were cloned in pET 100 TOPO vector, expressed in BL-21 (DE3) cells using 1% IPTG, and purified using a Ni2+-affinity column. The following two in vitro methods were used to determine complex formation of WT-αA, αA-NT, or αA-CT with phakinin, filensin or both phakinin plus filensin together: an ultracentrifugation sedimentation (centrifugation at 80,000 × g for 30 min at 20 °C) followed by SDS-PAGE analysis, and an electron microscopic analysis. In the first method, the individual control proteins (WT-αA, αA-NT and αA-CT crystallin species) remained in the supernatant fractions whereas phakinin, filensin, and vimentin were recovered in the pellet fractions. On complex formation by individual WT-αA-, αA-NT or αA-CT-species with filensin, phakinin or both phakinin and filensin, WT-αA and αA-CT were recovered in the pellet fraction with phakinin, filensin or both filensin and phakinin, whereas αA-NT remained mostly in the supernatant, suggesting its poor complex formation property. EM-studies showed filamentous structure formation between WT-αA and αA-CT with phakinin or filensin, or with both filensin and phakinin together but relatively poor filamentous structures with αA-NT. Together, the results suggest that the N-terminal domain of αA-crystallin is required during in vitro complex formation with filensin and phakinin.


Asunto(s)
Proteínas del Ojo/metabolismo , Vectores Genéticos/química , Proteínas de Filamentos Intermediarios/metabolismo , Cadena A de alfa-Cristalina/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas del Ojo/genética , Proteínas del Ojo/ultraestructura , Expresión Génica , Vectores Genéticos/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/genética , Proteínas de Filamentos Intermediarios/ultraestructura , Filamentos Intermedios/metabolismo , Filamentos Intermedios/ultraestructura , Cristalino/metabolismo , Cristalino/ultraestructura , Microscopía Electrónica , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Cadena A de alfa-Cristalina/genética , Cadena A de alfa-Cristalina/ultraestructura
2.
Nat Struct Mol Biol ; 26(12): 1141-1150, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31792453

RESUMEN

The small heat shock protein αA-crystallin is a molecular chaperone important for the optical properties of the vertebrate eye lens. It forms heterogeneous oligomeric ensembles. We determined the structures of human αA-crystallin oligomers by combining cryo-electron microscopy, cross-linking/mass spectrometry, NMR spectroscopy and molecular modeling. The different oligomers can be interconverted by the addition or subtraction of tetramers, leading to mainly 12-, 16- and 20-meric assemblies in which interactions between N-terminal regions are important. Cross-dimer domain-swapping of the C-terminal region is a determinant of αA-crystallin heterogeneity. Human αA-crystallin contains two cysteines, which can form an intramolecular disulfide in vivo. Oxidation in vitro requires conformational changes and oligomer dissociation. The oxidized oligomers, which are larger than reduced αA-crystallin and destabilized against unfolding, are active chaperones and can transfer the disulfide to destabilized substrate proteins. The insight into the structure and function of αA-crystallin provides a basis for understanding its role in the eye lens.


Asunto(s)
Cadena A de alfa-Cristalina/química , Microscopía por Crioelectrón , Humanos , Cristalino/química , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Multimerización de Proteína , Desplegamiento Proteico , Cadena A de alfa-Cristalina/ultraestructura
3.
J Mol Biol ; 372(2): 470-84, 2007 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-17662998

RESUMEN

AlphaB-Crystallin is a ubiquitous small heat-shock protein (sHsp) renowned for its chaperone ability to prevent target protein aggregation. It is stress-inducible and its up-regulation is associated with a number of disorders, including those linked to the deposition of misfolded proteins, such as Alzheimer's and Parkinson's diseases. We have characterised the formation of amyloid fibrils by human alphaB-crystallin in detail, and also that of alphaA-crystallin and the disease-related mutant R120G alphaB-crystallin. We find that the last 12 amino acid residues of the C-terminal region of alphaB-crystallin are predicted from their physico-chemical properties to have a very low propensity to aggregate. (1)H NMR spectroscopy reveals that this hydrophilic C-terminal region is flexible both in its solution state and in amyloid fibrils, where it protrudes from the fibrillar core. We demonstrate, in addition, that the equilibrium between different protofilament assemblies can be manipulated and controlled in vitro to select for particular alphaB-crystallin amyloid morphologies. Overall, this study suggests that there could be a fine balance in vivo between the native functional sHsp state and the formation of amyloid fibrils.


Asunto(s)
Amiloide/química , Amiloide/metabolismo , Cadena A de alfa-Cristalina/química , Cadena A de alfa-Cristalina/metabolismo , Cadena B de alfa-Cristalina/química , Cadena B de alfa-Cristalina/metabolismo , Amiloide/biosíntesis , Amiloide/ultraestructura , Humanos , Concentración de Iones de Hidrógeno , Cinética , Microscopía de Fuerza Atómica , Resonancia Magnética Nuclear Biomolecular , Unión Proteica , Cadena A de alfa-Cristalina/ultraestructura , Cadena B de alfa-Cristalina/genética , Cadena B de alfa-Cristalina/ultraestructura
4.
Curr Eye Res ; 42(10): 1368-1377, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28628342

RESUMEN

PURPOSE: Crystallin is a major protein present in eye lens. Peptide fragment αA(66-80) derived from αA-crystallin possesses high aggregation propensity and forms amyloid-like structures. αA(66-80) aggregates are known to interact with soluble crystallins and destabilize native structures that subsequently undergo aggregation. Crystallin aggregation in eye lens leads to reduction in lens opacity, the condition generally referred to as a cataract. Thus, αA(66-80) aggregation appears to be an important event during cataract development, and therefore, inhibition of αA(66-80) aggregation may be an attractive strategy to intervene in cataract development. MATERIALS AND METHODS: αA(66-80) peptide derived from αA-crystallin possesses high aggregation potential and has a crucial role in cataract development. In order to inhibit the aggregation of αA(66-80) peptide, epigallocatechin-3-gallate (EGCG), a major active constituent of green tea, was employed. The inhibitory effect was assessed by Congo Red (CR) spectral shift assay, Thioflavin-T binding assay, transmission electron microscopy and fluorescence microscopy. RESULTS: The inhibitory potential of EGCG toward αA-crystallin was clearly observed as in the presence of EGCG, the αA(66-80) aggregation was considerably inhibited and the pre-formed fibrillary aggregates of αA(66-80) were found to be disassembled. CONCLUSION: In the present study, we are able to successfully demonstrate that EGCG efficiently blocks the aggregation of αA(66-80) peptide in a concentration-dependent manner. Furthermore, it is also evident that EGCG is able to disaggregate pre-formed αA(66-80) aggregates. The study suggests that EGCG can be a potential molecule that can prevent the initiation of cataract as well as be helpful in the disease reversal.


Asunto(s)
Antioxidantes/farmacología , Catarata/prevención & control , Catequina/análogos & derivados , Fragmentos de Péptidos/metabolismo , Agregación Patológica de Proteínas/tratamiento farmacológico , Té/química , Cadena A de alfa-Cristalina/metabolismo , Secuencia de Aminoácidos , Amiloide/metabolismo , Catarata/metabolismo , Catequina/farmacología , Relación Dosis-Respuesta a Droga , Humanos , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Datos de Secuencia Molecular , Agregación Patológica de Proteínas/metabolismo , Cadena A de alfa-Cristalina/ultraestructura
5.
PLoS One ; 7(9): e44077, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22970163

RESUMEN

BACKGROUND: A substitution mutation in human αA-crystallin (αAG98R) is associated with autosomal dominant cataract. The recombinant mutant αAG98R protein exhibits altered structure, substrate-dependent chaperone activity, impaired oligomer stability and aggregation on prolonged incubation at 37 °C. Our previous studies have shown that αA-crystallin-derived mini-chaperone (DFVIFLDVKHFSPEDLTVK) functions like a molecular chaperone by suppressing the aggregation of denaturing proteins. The present study was undertaken to determine the effect of αA-crystallin-derived mini-chaperone on the stability and chaperone activity of αAG98R-crystallin. METHODOLOGY/PRINCIPAL FINDINGS: Recombinant αAG98R was incubated in presence and absence of mini-chaperone and analyzed by chromatographic and spectrometric methods. Transmission electron microscope was used to examine the effect of mini-chaperone on the aggregation propensity of mutant protein. Mini-chaperone containing photoactive benzoylphenylalanine was used to confirm the interaction of mini-chaperone with αAG98R. The rescuing of chaperone activity in mutantα-crystallin (αAG98R) by mini-chaperone was confirmed by chaperone assays. We found that the addition of the mini-chaperone during incubation of αAG98R protected the mutant crystallin from forming larger aggregates that precipitate with time. The mini-chaperone-stabilized αAG98R displayed chaperone activity comparable to that of wild-type αA-crystallin. The complexes formed between mini-αA-αAG98R complex and ADH were more stable than the complexes formed between αAG98R and ADH. Western-blotting and mass spectrometry confirmed the binding of mini-chaperone to mutant crystallin. CONCLUSION/SIGNIFICANCE: These results demonstrate that mini-chaperone stabilizes the mutant αA-crystallin and modulates the chaperone activity of αAG98R. These findings aid in our understanding of how to design peptide chaperones that can be used to stabilize mutant αA-crystallins and preserve the chaperone function.


Asunto(s)
Catarata/genética , Proteínas Mutantes/metabolismo , Cadena A de alfa-Cristalina/genética , Cadena A de alfa-Cristalina/metabolismo , Secuencia de Aminoácidos , Dicroismo Circular , Electroforesis en Gel de Poliacrilamida , Humanos , Datos de Secuencia Molecular , Peso Molecular , Proteínas Mutantes/química , Proteínas Mutantes/ultraestructura , Unión Proteica , Desnaturalización Proteica , Estabilidad Proteica , Estructura Cuaternaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Reproducibilidad de los Resultados , Solubilidad , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Temperatura , Cadena A de alfa-Cristalina/química , Cadena A de alfa-Cristalina/ultraestructura
6.
PLoS One ; 6(8): e23753, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21909355

RESUMEN

Lens transparency depends on the accumulation of massive quantities (600-800 mg/ml) of twelve primary crystallines and two truncated crystallines in highly elongated "fiber" cells. Despite numerous studies, major unanswered questions are how this heterogeneous group of proteins becomes organized to bestow the lens with its unique optical properties and how it changes during cataract formation. Using novel methods based on conical tomography and labeling with antibody/gold conjugates, we have profiled the 3D-distribution of the αA-crystalline in rat lenses at ∼2 nm resolutions and three-dimensions. Analysis of tomograms calculated from lenses labeled with anti-αA-crystalline and gold particles (∼3 nm and ∼7 nm diameter) revealed geometric patterns shaped as lines, isosceles triangles and polyhedrons. A Gaussian distribution centered at ∼7.5 nm fitted the distances between the ∼3 nm diameter gold conjugates. A Gaussian distribution centered at ∼14 nm fitted the Euclidian distances between the smaller and the larger gold particles and another Gaussian at 21-24 nm the distances between the larger particles. Independent of their diameters, tethers of 14-17 nm in length connected files of gold particles to thin filaments or clusters to ∼15 nm diameter "beads." We used the information gathered from tomograms of labeled lenses to determine the distribution of the αA-crystalline in unlabeled lenses. We found that αA-crystalline monomers spaced ∼7 nm or αA-crystalline dimers spaced ∼15 nm center-to-center apart decorated thin filaments of the lens cytoskeleton. It thus seems likely that lost or gain of long-range order determines the 3D-structure of the fiber cell and possible also cataract formation.


Asunto(s)
Cristalino/metabolismo , Modelos Moleculares , Cadena A de alfa-Cristalina/química , Cadena A de alfa-Cristalina/metabolismo , Animales , Oro , Cristalino/citología , Cristalino/ultraestructura , Ratas , Coloración y Etiquetado , Cadena A de alfa-Cristalina/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA