Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Bacteriol ; 206(8): e0018224, 2024 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-39082862

RESUMEN

Saccharomyces cerevisiae Mdm38 and Ylh47 are homologs of the Ca2+/H+ antiporter Letm1, a candidate gene for seizures associated with Wolf-Hirschhorn syndrome in humans. Mdm38 is important for K+/H+ exchange across the inner mitochondrial membrane and contributes to membrane potential formation and mitochondrial protein translation. Ylh47 also localizes to the inner mitochondrial membrane. However, knowledge of the structures and detailed transport activities of Mdm38 and Ylh47 is limited. In this study, we conducted characterization of the ion transport activities and related structural properties of Mdm38 and Ylh47. Growth tests using Na+/H+ antiporter-deficient Escherichia coli strain TO114 showed that Mdm38 and Ylh47 had Na+ efflux activity. Measurement of transport activity across E. coli-inverted membranes showed that Mdm38 and Ylh47 had K+/H+, Na+/H+, and Li+/H+ antiport activity, but unlike Letm1, they lacked Ca2+/H+ antiport activity. Deletion of the ribosome-binding domain resulted in decreased Na+ efflux activity in Mdm38. Structural models of Mdm38 and Ylh47 identified a highly conserved glutamic acid in the pore-forming membrane-spanning region. Replacement of this glutamic acid with alanine, a non-polar amino acid, significantly impaired the ability of Mdm38 and Ylh47 to complement the salt sensitivity of E. coli TO114. These findings not only provide important insights into the structure and function of the Letm1-Mdm38-Ylh47 antiporter family but by revealing their distinctive properties also shed light on the physiological roles of these transporters in yeast and animals. IMPORTANCE: The inner membrane of mitochondria contains numerous ion transporters, including those facilitating H+ transport by the electron transport chain and ATP synthase to maintain membrane potential. Letm1 in the inner membrane of mitochondria in animals functions as a Ca2+/H+ antiporter. However, this study reveals that homologous antiporters in mitochondria of yeast, Mdm38 and Ylh47, do not transport Ca2+ but instead are selective for K+ and Na+. Additionally, the identification of conserved amino acids crucial for antiporter activity further expanded our understanding of the structure and function of the Letm1-Mdm38-Ylh47 antiporter family.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Escherichia coli/metabolismo , Escherichia coli/genética , Cationes Monovalentes/metabolismo , Intercambiadores de Sodio-Hidrógeno/metabolismo , Intercambiadores de Sodio-Hidrógeno/genética , Intercambiadores de Sodio-Hidrógeno/química , Transporte Iónico , Sodio/metabolismo , Antiportadores/metabolismo , Antiportadores/genética , Antiportadores/química , Membranas Mitocondriales/metabolismo
2.
Soft Matter ; 20(19): 3980-3986, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38686506

RESUMEN

In this paper we investigate the effects of varying cation valency and concentration on the rheology of entangled λDNA solutions. We show that monovalent cations moderately increase the viscoelasticty of the solutions mainly by stabilising linear concatenation of λDNA "monomers" via hybridisation of their sticky ends. On the contrary, divalent cations have a far more complex and dramatic effect on the rheology of the solution and we observe evidence of inter-molecular DNA-DNA bridging by Mg2+. We argue that these results may be interesting in the context of dense solutions of single and double stranded DNA, e.g. in vivo or in biotechnology applications such as DNA origami and DNA hydrogels.


Asunto(s)
Cationes Bivalentes , ADN , Reología , ADN/química , Cationes Bivalentes/química , Cationes Monovalentes/química , Viscosidad , Magnesio/química
3.
Biochemistry (Mosc) ; 89(Suppl 1): S262-S277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38621755

RESUMEN

Data on the structure of G-quadruplexes, noncanonical nucleic acid forms, supporting an idea of their potential participation in regulation of gene expression in response to the change in intracellular Na+i/K+i ratio are considered in the review. Structural variety of G-quadruplexes, role of monovalent cations in formation of this structure, and thermodynamic stability of G-quadruplexes are described. Data on the methods of their identification in the cells and biological functions of these structures are presented. Analysis of information about specific interactions of G-quadruplexes with some proteins was conducted, and their potential participation in the development of some pathological conditions, in particular, cancer and neurodegenerative diseases, is considered. Special attention is given to the plausible role of G-quadruplexes as sensors of intracellular Na+i/K+i ratio, because alteration of this parameter affects folding of G-quadruplexes changing their stability and, thereby, organization of the regulatory elements of nucleic acids. The data presented in the conclusion section demonstrate significant change in the expression of some early response genes under certain physiological conditions of cells and tissues depending on the intracellular Na+i/K+i ratio.


Asunto(s)
G-Cuádruplex , ADN/metabolismo , Sodio/química , Cationes Monovalentes/química , Termodinámica
4.
Mikrochim Acta ; 191(5): 244, 2024 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-38578321

RESUMEN

The sensing sensitivity was improved for silver nanoparticles (AgNPs)-based colorimetric biosensors by using the most suitable salt to induce AgNPs aggregation. As for the salt composed of low-affinity anion and monovalent cation, the cation-dependent charge screening effect was the driving force for AgNPs aggregation. Apart from the charge screening effect, both the bridging of multivalent cation to the surface ligand of AgNP and the interaction between anion and Ag contributed to inducing AgNPs aggregation. Considering the higher aggregation efficiency of AgNPs resulted in a narrower sensing range, salt composed of low-affinity anion and monovalent cation was recommended for AgNPs-based colorimetric analysis, which was confirmed by fourfold higher sensitivity of DNA-21 detection using NaF than NaCl. This work inspires further thinking on improving the sensing performance of metal nanomaterials-based sensors from the point of colloidal surface science.


Asunto(s)
Técnicas Biosensibles , Nanopartículas del Metal , Cloruro de Sodio , Plata , Colorimetría/métodos , Aniones , Cationes Monovalentes
5.
Environ Sci Pollut Res Int ; 31(17): 25342-25355, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472574

RESUMEN

We investigated the structural changes in clay minerals after Cs adsorption and understood their low desorption efficiency using an ion-exchanger. We focused on the role of interlayers in Cs adsorption and desorption in 2:1 clay minerals, namely illite, hydrobiotite, and montmorillonite, using batch experiments and XRD and EXAFS analyses. The adsorption characteristics of the clay minerals were analyzed using cation exchange capacity (CEC), maximum adsorption isotherms (Qmax), and radiocesium interception potential (RIP) experiments. Although illite showed a low CEC value, it exhibited high selectivity for Cs with a relatively high RIP/CEC ratio. The Cs desorption efficiency after treatment with a NaCl ion exchanger was the highest for illite (74.3%), followed by hydrobiotite (45.5%) and montmorillonite (30.3%); thus, Cs adsorbed onto planar sites, rather than on interlayers or frayed edge sites (FESs), is easily desorbed. After NaCl treatment, XRD analysis showed that the low desorption efficiency was due to the collapse of the interlayer-fixed Cs, which tightly narrowed the interlayers' hydrobiotite due to the ion exchange of divalent cations (Mg2+ or Ca2+) into the monovalent cation (Na+). Moreover, EXAFS analysis showed that hydrobiotite formed inner-sphere structures after NaCl desorption, indicating that it was difficult to remove Cs from NaCl desorption due to the collapsed hydrobiotite and montmorillonite interlayers as well as the strong bonding in FESs of illite. In contrast, chelation desorption using oxalic acid effectively dissolved the narrowed interlayers of hydrobiotite (98%) and montmorillonite (85.26%), enhancing the desorption efficiency. Therefore, low desorption efficiency for Cs clays using an ion exchanger was caused by the collapsed interlayer due to the exchange between monovalent cation and divalent cation.


Asunto(s)
Bentonita , Cesio , Arcilla , Cesio/química , Adsorción , Cloruro de Sodio , Minerales/química , Cationes Monovalentes , Silicatos de Aluminio/química
6.
Nat Commun ; 14(1): 8482, 2023 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-38123540

RESUMEN

Cleavage and formation of phosphodiester bonds in nucleic acids is accomplished by large cellular machineries composed of both protein and RNA. Long thought to rely on a two-metal-ion mechanism for catalysis, structure comparisons revealed many contain highly spatially conserved second-shell monovalent cations, whose precise function remains elusive. A recent high-resolution structure of the spliceosome, essential for pre-mRNA splicing in eukaryotes, revealed a potassium ion in the active site. Here, we employ biased quantum mechanics/ molecular mechanics molecular dynamics to elucidate the function of this monovalent ion in splicing. We discover that the K+ ion regulates the kinetics and thermodynamics of the first splicing step by rigidifying the active site and stabilizing the substrate in the pre- and post-catalytic state via formation of key hydrogen bonds. Our work supports a direct role for the K+ ion during catalysis and provides a mechanistic hypothesis likely shared by other nucleic acid processing enzymes.


Asunto(s)
ARN , Empalmosomas , Empalmosomas/metabolismo , ARN/metabolismo , Empalme del ARN , Catálisis , Metales/metabolismo , Potasio/metabolismo , Quelantes/metabolismo , Conformación de Ácido Nucleico , Sitios de Unión , Cationes Monovalentes/metabolismo
7.
Artículo en Inglés | WPRIM | ID: wpr-285254

RESUMEN

Age-related hearing loss (AHL) is one of the most common sensory disorders among elderly persons. The inwardly rectifying potassium channel 5.1 (Kir5.1) plays a vital role in regulating cochlear K(+) circulation which is necessary for normal hearing. The distribution of Kir5.1 in C57BL/6J mice cochleae, and the relationship between the expression of Kir5.1 and the etiology of AHL were investigated. Forty C57BL/6J mice were randomly divided into four groups at 4, 12, 24 and 52 weeks of age respectively. The location of Kir5.1 was detected by immunofluorescence technique. The mRNA and protein expression of Kir5.1 was evaluated in mice cochleae using real-time polymerase-chain reactions (RT-PCR) and Western blotting respectively. Kir5.1 was detected in the type II and IV fibrocytes of the spiral ligament in the cochlear lateral wall of C57BL/6J mice. The expression levels of Kir5.1 mRNA and protein in the cochleae of aging C57BL/6J mice were down-regulated. It was suggested that the age-related decreased expression of Kir5.1 in the lateral wall of C57BL/6J mice was associated with hearing loss. Our results indicated that Kir5.1 may play an important role in the pathogenesis of AHL.


Asunto(s)
Animales , Ratones , Envejecimiento , Genética , Metabolismo , Cationes Monovalentes , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Transporte Iónico , Ratones Endogámicos C57BL , Microtomía , Potasio , Metabolismo , Canales de Potasio de Rectificación Interna , Genética , Metabolismo , Presbiacusia , Genética , Metabolismo , ARN Mensajero , Genética , Metabolismo , Ligamento Espiral de la Cóclea , Metabolismo
8.
Artículo en Coreano | WPRIM | ID: wpr-218988

RESUMEN

Tetrodotoxin is a neurotoxin produced by about 90 species of puffer fish and causes paralysis of central nervous system and peripheral nerves by blocking the movement of all monovalent cations. Ingestion of tetrodotoxin produces clinical manifestations such as paresthesias(within 10-45 min), vomiting, lightheadedness, salivation, muscle twitching, dysphagia, difficulty in speaking, convulsion and death that expressed by cardiopulmonary arrest with loss of brain stem reflex sometimes. Tetrodotoxin prevents or delays ischemia induced neuronal death by way of following 3 mechanisms. Firstly, it reduces the energy demand of the brain tissues. Secondly, it delays or even prevents anoxic depolarization. Finally, it diminishes ischemia induced cell swelling and cerebral edema. We report a case of puffer fish poisoning which presented with cardiopulmonary arrest and loss of brain stem reflex, but completely recovered by aggressive cardiopulmonary resuscitation.


Asunto(s)
Encéfalo , Edema Encefálico , Tronco Encefálico , Reanimación Cardiopulmonar , Cationes Monovalentes , Sistema Nervioso Central , Trastornos de Deglución , Mareo , Ingestión de Alimentos , Paro Cardíaco , Isquemia , Neuronas , Parálisis , Nervios Periféricos , Intoxicación , Reflejo , Salivación , Convulsiones , Tetraodontiformes , Tetrodotoxina , Vómitos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA