Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 595
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 121(7): 2133-2146, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38634289

RESUMEN

L-cysteine is an important sulfur-containing amino acid being difficult to produce by microbial fermentation. Due to the lack of high-throughput screening methods, existing genetically engineered bacteria have been developed by simply optimizing the expression of L-cysteine-related genes one by one. To overcome this limitation, in this study, a biosensor-based approach for multilevel biosynthetic pathway optimization of L-cysteine from the DecR regulator variant of Escherichia coli was applied. Through protein engineering, we obtained the DecRN29Y/C81E/M90Q/M99E variant-based biosensor with improved specificity and an 8.71-fold increase in dynamic range. Using the developed biosensor, we performed high-throughput screening of the constructed promoter and RBS combination library, and successfully obtained the optimized strain, which resulted in a 6.29-fold increase in L-cysteine production. Molecular dynamics (MD) simulations and electrophoretic mobility shift analysis (EMSA) showed that the N29Y/C81E/M90Q/M99E variant had enhanced induction activity. This enhancement may be due to the increased binding of the variant to DNA in the presence of L-cysteine, which enhances transcriptional activation. Overall, our biosensor-based strategy provides a promising approach for optimizing biosynthetic pathways at multiple levels. The successful implementation of this strategy demonstrates its potential for screening improved recombinant strains.


Asunto(s)
Técnicas Biosensibles , Cisteína , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Cisteína/metabolismo , Cisteína/genética , Cisteína/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ingeniería Metabólica/métodos , Ingeniería de Proteínas/métodos , Vías Biosintéticas/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
2.
Biochem J ; 479(1): 57-74, 2022 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-34890451

RESUMEN

Serine acetyltransferase (SAT) catalyzes the first step in the two-step pathway to synthesize l-cysteine in bacteria and plants. SAT synthesizes O-acetylserine from substrates l-serine and acetyl coenzyme A and is a key enzyme for regulating cellular cysteine levels by feedback inhibition of l-cysteine, and its involvement in the cysteine synthase complex. We have performed extensive structural and kinetic characterization of the SAT enzyme from the antibiotic-resistant pathogen Neisseria gonorrhoeae. Using X-ray crystallography, we have solved the structures of NgSAT with the non-natural ligand, l-malate (present in the crystallization screen) to 2.01 Šand with the natural substrate l-serine (2.80 Å) bound. Both structures are hexamers, with each monomer displaying the characteristic left-handed parallel ß-helix domain of the acyltransferase superfamily of enzymes. Each structure displays both extended and closed conformations of the C-terminal tail. l-malate bound in the active site results in an interesting mix of open and closed active site conformations, exhibiting a structural change mimicking the conformation of cysteine (inhibitor) bound structures from other organisms. Kinetic characterization shows competitive inhibition of l-cysteine with substrates l-serine and acetyl coenzyme A. The SAT reaction represents a key point for the regulation of cysteine biosynthesis and controlling cellular sulfur due to feedback inhibition by l-cysteine and formation of the cysteine synthase complex. Data presented here provide the structural and mechanistic basis for inhibitor design and given this enzyme is not present in humans could be explored to combat the rise of extensively antimicrobial resistant N. gonorrhoeae.


Asunto(s)
Cisteína/antagonistas & inhibidores , Retroalimentación Fisiológica , Neisseria gonorrhoeae/enzimología , Serina O-Acetiltransferasa/química , Serina O-Acetiltransferasa/metabolismo , Acetilcoenzima A/metabolismo , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Clonación Molecular/métodos , Cristalización , Cristalografía por Rayos X/métodos , Cisteína/biosíntesis , Cisteína/química , Escherichia coli/genética , Escherichia coli/metabolismo , Cinética , Ligandos , Malatos/química , Malatos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Serina/química , Serina/metabolismo , Serina O-Acetiltransferasa/genética
3.
Proc Natl Acad Sci U S A ; 116(11): 5045-5054, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30804202

RESUMEN

The phenotypic consequence of a given mutation can be influenced by the genetic background. For example, conditional gene essentiality occurs when the loss of function of a gene causes lethality in one genetic background but not another. Between two individual Saccharomyces cerevisiae strains, S288c and Σ1278b, ∼1% of yeast genes were previously identified as "conditional essential." Here, in addition to confirming that some conditional essential genes are modified by a nonchromosomal element, we show that most cases involve a complex set of genomic modifiers. From tetrad analysis of S288C/Σ1278b hybrid strains and whole-genome sequencing of viable hybrid spore progeny, we identified complex sets of multiple genomic regions underlying conditional essentiality. For a smaller subset of genes, including CYS3 and CYS4, each of which encodes components of the cysteine biosynthesis pathway, we observed a segregation pattern consistent with a single modifier associated with conditional essentiality. In natural yeast isolates, we found that the CYS3/CYS4 conditional essentiality can be caused by variation in two independent modifiers, MET1 and OPT1, each with roles associated with cellular cysteine physiology. Interestingly, the OPT1 allelic variation appears to have arisen independently from separate lineages, with rare allele frequencies below 0.5%. Thus, while conditional gene essentiality is usually driven by genetic interactions associated with complex modifier architectures, our analysis also highlights the role of functionally related, genetically independent, and rare variants.


Asunto(s)
Genes Modificadores , Antecedentes Genéticos , Saccharomyces cerevisiae/genética , Alelos , Vías Biosintéticas , Cisteína/biosíntesis , Genes Esenciales , Genoma Fúngico , Filogenia , Saccharomyces cerevisiae/aislamiento & purificación
4.
Infect Immun ; 89(6)2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-33753413

RESUMEN

Brucella ovis is an ovine intracellular pathogen with tropism for the male genital tract. To establish and maintain infection, B. ovis must survive stressful conditions inside host cells, including low pH, nutrient limitation, and reactive oxygen species. The same conditions are often encountered in axenic cultures during stationary phase. Studies of stationary phase may thus inform our understanding of Brucella infection biology, yet the genes and pathways that are important in Brucella stationary-phase physiology remain poorly defined. We measured fitness of a barcoded pool of B. ovis Tn-himar mutants as a function of growth phase and identified cysE as a determinant of fitness in stationary phase. CysE catalyzes the first step in cysteine biosynthesis from serine, and we provide genetic evidence that two related enzymes, CysK1 and CysK2, function redundantly to catalyze cysteine synthesis at steps downstream of CysE. Deleting cysE (ΔcysE) or both cysK1 and cysK2 (ΔcysK1 ΔcysK2) results in premature entry into stationary phase, reduced culture yield, and sensitivity to exogenous hydrogen peroxide. These phenotypes can be chemically complemented by cysteine or glutathione. ΔcysE and ΔcysK1 ΔcysK2 strains have no defect in host cell entry in vitro but have significantly diminished intracellular fitness between 2 and 24 h postinfection. Our study has uncovered unexpected redundancy at the CysK step of cysteine biosynthesis in B. ovis and demonstrates that cysteine anabolism is a determinant of peroxide stress survival and fitness in the intracellular niche.


Asunto(s)
Brucella ovis/fisiología , Cisteína/biosíntesis , Interacciones Huésped-Patógeno , Estrés Oxidativo , Peróxidos/metabolismo , Enfermedades de las Ovejas/metabolismo , Enfermedades de las Ovejas/microbiología , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Brucella ovis/clasificación , Interacciones Huésped-Patógeno/inmunología , Macrófagos/inmunología , Macrófagos/metabolismo , Mutación , Ovinos , Azufre/metabolismo
5.
J Am Chem Soc ; 143(1): 318-325, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33356184

RESUMEN

Biosynthesis is a necessary process to maintain life. In recent years, research has fully shown that three kinds of biothiols (Cys, Hcy, GSH) mainly play the role in oxidative stress and maintaining cell homeostasis in cells, and that abnormal concentrations will lead to the occurrence of cardiovascular diseases, cancers, etc. Various fluorescent probes have shown unprecedented advantages in detecting their concentrations and studying their biological functions. As a matter of fact, these three kinds of biothiols are generated in the process of biosynthesis in vivo. It is of great significance to understand their biosynthetic pathways and elucidate their synthetic relationships. In this work, to α,ß-unsaturated ketones conjugated ethylenediamine coumarin and pyrandione was introduced boron fluoride and, through its strong electron deficiency effect, afforded a molecule having near-infrared emission and regulated the rigidity of molecules. At the same time, the conjugated double bond is used to respond to molecular rigidity. The rapid response of the probe to biothiols and the slow dissociation aggregation of the probe itself through the response environment could monitor the absence of biothiols in cells. In addition, based on the difference in sensitivity of response of Cys and GSH to the probe, this work studied the interaction between biosynthetic pathways of Cys and GSH in cells through enzyme inhibition for the first time. The relationship of restriction and regulation of biosynthesis in vivo was revealed.


Asunto(s)
Cisteína/biosíntesis , Glutatión/biosíntesis , Compuestos de Boro/química , Cumarinas/química , Colorantes Fluorescentes/química , Células HCT116 , Humanos , Microscopía Fluorescente
6.
Cancer Sci ; 112(5): 1723-1734, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33609296

RESUMEN

T cells could be engineered to overcome the aberrant metabolic milieu of solid tumors and tip the balance in favor of a long-lasting clinical response. Here, we explored the therapeutic potential of stably overexpressing cystathionine-gamma-lyase (CTH, CSE, or cystathionase), a pivotal enzyme of the transsulfuration pathway, in antitumor CD8+ T cells with the initial aim to boost intrinsic cysteine metabolism. Using a mouse model of adoptive cell transfer (ACT), we found that CTH-expressing T cells showed a superior control of tumor growth compared to control T cells. However, contrary to our hypothesis, this effect was not associated with increased T cell expansion in vivo or proliferation rescue in the absence of cysteine/cystine in vitro. Rather than impacting methionine or cysteine, ACT with CTH overexpression unexpectedly reduced glycine, serine, and proline concentration within the tumor interstitial fluid. Interestingly, in vitro tumor cell growth was mostly impacted by the combination of serine/proline or serine/glycine deprivation. These results suggest that metabolic gene engineering of T cells could be further investigated to locally modulate amino acid availability within the tumor environment while avoiding systemic toxicity.


Asunto(s)
Traslado Adoptivo/métodos , Linfocitos T CD8-positivos/metabolismo , Cistationina gamma-Liasa/metabolismo , Cisteína/biosíntesis , Animales , Ingeniería Celular , Línea Celular Tumoral , Proliferación Celular , Líquido Extracelular/metabolismo , Femenino , Glicina/metabolismo , Metionina/metabolismo , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Neoplasias Ováricas/terapia , Prolina/metabolismo , Serina/metabolismo , Microambiente Tumoral/inmunología
7.
BMC Plant Biol ; 21(1): 174, 2021 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-33838642

RESUMEN

BACKGROUND: Allium sativum (garlic) is an economically important food source and medicinal plant rich in sulfides and other protective substances such as alliin, the precursor of allicin biosynthesis. Cysteine, serine and sulfur is the precursor of alliin biosynthesis. However, little is known about the alliin content under abiotic stress or the mechanism by which it is synthesized. RESULTS: The findings revealed that the content of alliin was lowest in the garlic roots, and highest in the buds. Furthermore, alliin levels decreased in mature leaves following wounding. Transcriptome data generated over time after wounding further revealed significant up-regulation of genes integral to the biosynthetic pathways of cysteine and serine in mature garlic leaves. CONCLUSIONS: The findings suggest that differential expression of cysteine, serine and sulfide-related genes underlies the accumulation of alliin and its precursors in garlic, providing a basis for further analyses of alliin biosynthesis.


Asunto(s)
Cisteína/análogos & derivados , Ajo/genética , Expresión Génica , Hojas de la Planta/fisiología , Cisteína/biosíntesis , Sulfóxidos
8.
Am J Respir Cell Mol Biol ; 63(5): 681-689, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32697598

RESUMEN

Exposure of mice to high concentrations of chlorine leads to the synthesis of cysteinyl leukotrienes (cysLTs). CysLTs contribute to chlorine-induced airway hyperresponsiveness. The aim of the current study was to determine the cellular source of the cysLTs. To achieve this aim, we exposed mice to 100 ppm of chlorine for 5 minutes. Intranasal instillation of clodronate in liposomes and of diphtheria toxin in CD11c-DTR mice was used to deplete macrophages. CCR2-/- mice were used to assess the contribution of recruited macrophages. Eosinophils and neutrophils were depleted with specific antibodies. Platelet-neutrophil aggregation was prevented with an antibody against P-selectin. The potential roles of phagocytosis of neutrophils by macrophages and of transcellular metabolism between epithelial cells and neutrophils were explored in coculture systems. We found that depletion of neutrophils was the only intervention that inhibited the synthesis of cysLTs at 24 hours after chlorine exposure. Although macrophages did synthesize cysLTs in response to phagocytosis of neutrophils, depletion of macrophages did not reduce the increment in cysLTs triggered by chlorine exposure. However, coculture of airway epithelial cells with neutrophils resulted in a significant increase in the synthesis of cysLTs, dependent on the expression of 5-lipoxygenase by neutrophils. We conclude that cysLT synthesis following chlorine exposure may be dependent on transcellular metabolism by neutrophil-epithelial interactions.


Asunto(s)
Cloro/toxicidad , Cisteína/metabolismo , Leucotrienos/metabolismo , Animales , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Líquido del Lavado Bronquioalveolar , Técnicas de Cocultivo , Cisteína/biosíntesis , Eosinófilos/efectos de los fármacos , Eosinófilos/metabolismo , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Interleucina-5/antagonistas & inhibidores , Interleucina-5/metabolismo , Leucotrienos/biosíntesis , Liposomas , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Ratones Endogámicos C57BL , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Fagocitosis/efectos de los fármacos , Neumonía/metabolismo , Neumonía/patología
9.
Plant J ; 100(1): 176-186, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31215701

RESUMEN

The suboptimal content of sulfur-containing amino acids methionine and cysteine prevents common bean (Phaseolus vulgaris) from being an excellent source of protein. Nutritional improvements to this significant crop require a better understanding of the biosynthesis of sulfur-containing compounds including the nonproteogenic amino acid S-methylcysteine and the dipeptide γ-glutamyl-S-methylcysteine, which accumulate in seed. In this study, seeds were incubated with isotopically labelled serine, cysteine or methionine and analyzed by reverse phase chromatography-high resolution mass spectrometry to track stable isotopes as they progressed through the sulfur metabolome. We determined that serine and methionine are the sole precursors of free S-methylcysteine in developing seeds, indicating that this compound is likely to be synthesized through the condensation of O-acetylserine and methanethiol. BSAS4;1, a cytosolic ß-substituted alanine synthase preferentially expressed in developing seeds, catalyzed the formation of S-methylcysteine in vitro. A higher flux of labelled serine or cysteine was observed in a sequential pathway involving γ-glutamyl-cysteine, homoglutathione and S-methylhomoglutathione, a likely precursor to γ-glutamyl-S-methylcysteine. Preferential incorporation of serine over cysteine supports a subcellular compartmentation of this pathway, likely to be in the chloroplast. The origin of the methyl group in S-methylhomoglutathione was traced to methionine. There was substantial incorporation of carbons from methionine into the ß-alanine portion of homoglutathione and S-methylhomoglutathione, suggesting the breakdown of methionine by methionine γ-lyase and conversion of α-ketobutyrate to ß-alanine via propanoate metabolism. These findings delineate the biosynthetic pathways of the sulfur metabolome of common bean and provide an insight that will aid future efforts to improve nutritional quality.


Asunto(s)
Isótopos de Carbono/metabolismo , Cisteína/análogos & derivados , Espectrometría de Masas/métodos , Isótopos de Nitrógeno/metabolismo , Phaseolus/metabolismo , Semillas/metabolismo , Vías Biosintéticas , Liasas de Carbono-Azufre/metabolismo , Cromatografía de Fase Inversa/métodos , Cisteína/biosíntesis , Cisteína/metabolismo , Cisteína Sintasa/metabolismo , Metabolómica/métodos , Metionina/metabolismo , Serina/metabolismo , Azufre/metabolismo
10.
Appl Environ Microbiol ; 86(3)2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31757830

RESUMEN

To produce high levels of ß-lactams, the filamentous fungus Penicillium rubens (previously named Penicillium chrysogenum) has been subjected to an extensive classical strain improvement (CSI) program during the last few decades. This has led to the accumulation of many mutations that were spread over the genome. Detailed analysis reveals that several mutations targeted genes that encode enzymes involved in amino acid metabolism, in particular biosynthesis of l-cysteine, one of the amino acids used for ß-lactam production. To examine the impact of the mutations on enzyme function, the respective genes with and without the mutations were cloned and expressed in Escherichia coli, purified, and enzymatically analyzed. Mutations severely impaired the activities of a threonine and serine deaminase, and this inactivates metabolic pathways that compete for l-cysteine biosynthesis. Tryptophan synthase, which converts l-serine into l-tryptophan, was inactivated by a mutation, whereas a mutation in 5-aminolevulinate synthase, which utilizes glycine, was without an effect. Importantly, CSI caused increased expression levels of a set of genes directly involved in cysteine biosynthesis. These results suggest that CSI has resulted in improved cysteine biosynthesis by the inactivation of the enzymatic conversions that directly compete for resources with the cysteine biosynthetic pathway, consistent with the notion that cysteine is a key component during penicillin production.IMPORTANCEPenicillium rubens is an important industrial producer of ß-lactam antibiotics. High levels of penicillin production were enforced through extensive mutagenesis during a classical strain improvement (CSI) program over 70 years. Several mutations targeted amino acid metabolism and resulted in enhanced l-cysteine biosynthesis. This work provides a molecular explanation for the interrelation between secondary metabolite production and amino acid metabolism and how classical strain improvement has resulted in improved production strains.


Asunto(s)
Aminoácidos/metabolismo , Cisteína/biosíntesis , Mutación , Penicilinas/biosíntesis , Penicillium chrysogenum/genética , beta-Lactamas/metabolismo , Vías Biosintéticas , Escherichia coli/genética , Microorganismos Modificados Genéticamente/genética , Penicillium chrysogenum/metabolismo
11.
J Immunol ; 200(3): 915-927, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29282304

RESUMEN

Cysteinyl leukotrienes (cysLTs) facilitate mucosal type 2 immunopathology by incompletely understood mechanisms. Aspirin-exacerbated respiratory disease, a severe asthma subtype, is characterized by exaggerated eosinophilic respiratory inflammation and reactions to aspirin, each involving the marked overproduction of cysLTs. Here we demonstrate that the type 2 cysLT receptor (CysLT2R), which is not targeted by available drugs, is required in two different models to amplify eosinophilic airway inflammation via induced expression of IL-33 by lung epithelial cells. Endogenously generated cysLTs induced eosinophilia and expanded group 2 innate lymphoid cells (ILC2s) in aspirin-exacerbated respiratory disease-like Ptges-/- mice. These responses were mitigated by deletions of either Cysltr2 or leukotriene C4 synthase (Ltc4s). Administrations of either LTC4 (the parent cysLT) or the selective CysLT2R agonist N-methyl LTC4 to allergen sensitized wild-type mice markedly boosted ILC2 expansion and IL-5/IL-13 generation in a CysLT2R-dependent manner. Expansion of ILC2s and IL-5/IL-13 generation reflected CysLT2R-dependent production of IL-33 by alveolar type 2 cells, which engaged in a bilateral feed-forward loop with ILC2s. Deletion of Cysltr1 blunted LTC4-induced ILC2 expansion and eosinophilia but did not alter IL-33 induction. Pharmacological blockade of CysLT2R prior to inhalation challenge of Ptges-/- mice with aspirin blocked IL-33-dependent mast cell activation, mediator release, and changes in lung function. Thus, CysLT2R signaling, IL-33-dependent ILC2 expansion, and IL-33-driven mast cell activation are necessary for induction of type 2 immunopathology and aspirin sensitivity. CysLT2R-targeted drugs may interrupt these processes.


Asunto(s)
Aspirina/inmunología , Asma Inducida por Aspirina/patología , Interleucina-33/inmunología , Mastocitos/inmunología , Receptores de Leucotrienos/inmunología , Animales , Asma Inducida por Aspirina/inmunología , Cisteína/biosíntesis , Eosinofilia/inmunología , Eosinofilia/patología , Células Epiteliales/metabolismo , Glutatión Transferasa/genética , Interleucina-13/biosíntesis , Interleucina-33/biosíntesis , Interleucina-5/biosíntesis , Leucotrieno E4/biosíntesis , Leucotrienos/biosíntesis , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prostaglandina-E Sintasas/genética , Receptores de Leucotrienos/genética
12.
Nature ; 509(7498): 96-100, 2014 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-24670645

RESUMEN

Huntington's disease is an autosomal dominant disease associated with a mutation in the gene encoding huntingtin (Htt) leading to expanded polyglutamine repeats of mutant Htt (mHtt) that elicit oxidative stress, neurotoxicity, and motor and behavioural changes. Huntington's disease is characterized by highly selective and profound damage to the corpus striatum, which regulates motor function. Striatal selectivity of Huntington's disease may reflect the striatally selective small G protein Rhes binding to mHtt and enhancing its neurotoxicity. Specific molecular mechanisms by which mHtt elicits neurodegeneration have been hard to determine. Here we show a major depletion of cystathionine γ-lyase (CSE), the biosynthetic enzyme for cysteine, in Huntington's disease tissues, which may mediate Huntington's disease pathophysiology. The defect occurs at the transcriptional level and seems to reflect influences of mHtt on specificity protein 1, a transcriptional activator for CSE. Consistent with the notion of loss of CSE as a pathogenic mechanism, supplementation with cysteine reverses abnormalities in cultures of Huntington's disease tissues and in intact mouse models of Huntington's disease, suggesting therapeutic potential.


Asunto(s)
Cistationina gamma-Liasa/deficiencia , Enfermedad de Huntington/enzimología , Enfermedad de Huntington/patología , Animales , Encéfalo/enzimología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/enzimología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cistationina gamma-Liasa/genética , Cisteína/administración & dosificación , Cisteína/biosíntesis , Cisteína/farmacología , Cisteína/uso terapéutico , Suplementos Dietéticos , Modelos Animales de Enfermedad , Agua Potable/química , Eliminación de Gen , Regulación Enzimológica de la Expresión Génica/genética , Proteína Huntingtina , Enfermedad de Huntington/tratamiento farmacológico , Enfermedad de Huntington/genética , Masculino , Ratones , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fármacos Neuroprotectores/administración & dosificación , Fármacos Neuroprotectores/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Factor de Transcripción Sp1/antagonistas & inhibidores , Factor de Transcripción Sp1/metabolismo , Transcripción Genética/genética
13.
Metab Eng ; 56: 97-110, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31513889

RESUMEN

The conversion of sterols to steroid synthons by engineered mycobacteria comprises one of the basic ways for the production of steroid medications in the pharmaceutical industry. Here, we revealed that high amounts of reactive oxygen species (ROS) generate during the conversion process of sterols, which impairs the cell viability of mycobacterial cells and thus hinders the conversion of sterols to steroid synthons. Accordingly, the endogenous antioxidants for detoxifying ROS in mycobacteria, ROS scavenging enzymes and low molecular weight thiols, were examined. The results revealed that three antioxidants, catalase (CAT), mycothiol (MSH), and ergothioneine (EGT), demonstrated efficacy toward neutralizing the excessive ROS produced during sterol metabolism. CAT overexpression or MSH or EGT augmentation enhanced the conversion of phytosterols to 22-hydroxy-23,24-bisnorchol-4-ene-3-one (4-HBC) by 18.9%, 23.8%, and 32.1%, respectively, and also enhanced the cell viability, indicating the benefits of these antioxidants in reducing ROS-induced stress. Further combinatorial augmentation of CAT, MSH, and EGT demonstrated enhanced effects toward intracellular ROS scavenging, resulting in 54.2% greater cell viability and 47.5% enhancement in 4-HBC production. These findings indicated that the excessive ROS induces cell stress, in turn limiting the conversion of sterols, whereas neutralization of the excessive ROS by combined control of CAT, MSH, and EGT serves as an effective strategy to boost the conversion productivity of sterols to steroid synthons.


Asunto(s)
Cisteína , Ergotioneína , Glicopéptidos , Inositol , Ingeniería Metabólica , Mycobacteriaceae , Especies Reactivas de Oxígeno/metabolismo , Esteroles/metabolismo , Cisteína/biosíntesis , Cisteína/genética , Ergotioneína/biosíntesis , Ergotioneína/genética , Glicopéptidos/biosíntesis , Glicopéptidos/genética , Inositol/biosíntesis , Inositol/genética , Mycobacteriaceae/genética , Mycobacteriaceae/metabolismo
14.
New Phytol ; 222(3): 1392-1404, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30681147

RESUMEN

Sulfur assimilation is central to the survival of plants and has been studied under different environmental conditions. Multiple studies have been published trying to determine rate-limiting or controlling steps in this pathway. However, the picture remains inconclusive with at least two different enzymes proposed to represent such rate-limiting steps. Here, we used computational modeling to gain an integrative understanding of the distribution of control in the sulfur assimilation pathway of Arabidopsis thaliana. For this purpose, we set up a new ordinary differential equation (ODE)-based, kinetic model of sulfur assimilation encompassing all biochemical reactions directly involved in this process. We fitted the model to published experimental data and produced a model ensemble to deal with parameter uncertainties. The ensemble was validated against additional published experimental data. We used the model ensemble to subsequently analyse the control pattern and robustly identified a set of processes that share the control in this pathway under standard conditions. Interestingly, the pattern of control is dynamic and not static, that is it changes with changing environmental conditions. Therefore, while adenosine-5'-phosphosulfate reductase (APR) and sulfite reductase (SiR) share control under standard laboratory conditions, APR takes over an even more dominant role under sulfur starvation conditions.


Asunto(s)
Arabidopsis/metabolismo , Ambiente , Azufre/metabolismo , Cisteína/biosíntesis , Citosol/metabolismo , Cinética , Metaboloma , Modelos Biológicos , Hojas de la Planta/metabolismo , Reproducibilidad de los Resultados , Sulfatos/metabolismo
15.
Mol Biol Rep ; 46(1): 343-354, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30443823

RESUMEN

Cysteine (Cys) is the first identified molecule in plant metabolism which includes both sulfur and nitrogen. It can be synthesized in three cellular compartments, containing chloroplast, cytoplasm and mitochondrion. The final step of cysteine biosynthesis is catalyzed by the O-acetylserine(thiol)lyase enzyme (OASTL, E.C. 4.2.99). In the present study, seven members of the OASTL gene family in the sorghum (Sorghum bicolor) genome were identified at a genome-wide scale and comparative bioinformatics analyses were performed between sorghum and Arabidopsis OASTLs. In all OASTL proteins, a pyridoxal-phosphate dependent domain structure (PALP, PF00291) was identified. The gene ontology annotations also revealed that all sorghum OASTL genes have KOG1252 (Cystathionine beta-synthase and related enzyme) and K01738 (cysteine synthase A) activities. In promotor sequences of OASTL genes, diverse cis-acting elements were found, including hormone and light responsiveness, abiotic stress responsiveness, and tissue-specific ones (meristem and endosperm). Sorghum OASTL genes demonstrated medium or high level expressions in anatomical parts and developmental stages based on the digital expression data. Expression of OASTL genes were also analyzed under cadmium (Cd) stress in sorghum by Real Time-quantitative PCR (RT-qPCR). The results exclusively showed that OASTL A1-2 gene was 1.12 fold up-regulated in roots, whereas cysteine synthase 26 was 2.25 fold down-regulated in leaves. The predicted 3D structure of OASTLs indicated some structural diversities as well as variations in the secondary structures.


Asunto(s)
Liasas de Carbono-Oxígeno/genética , Sorghum/genética , Arabidopsis/genética , Cadmio/efectos adversos , Cadmio/farmacología , Liasas de Carbono-Oxígeno/fisiología , Cloroplastos/metabolismo , Cisteína/biosíntesis , Ontología de Genes , Genoma de Planta/genética , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Sorghum/metabolismo , Estrés Fisiológico/genética , Compuestos de Sulfhidrilo/metabolismo , Transcriptoma/genética
16.
Appl Microbiol Biotechnol ; 103(3): 1325-1338, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30564850

RESUMEN

L-cysteine, a valuable sulfur-containing amino acid, has been widely used in food, agriculture, and pharmaceutical industries. Due to the toxicity and complex regulation of L-cysteine, no efficient cell factory has yet been achieved for L-cysteine industrial production. In this study, the food-grade microorganism Corynebacterium glutamicum was engineered for L-cysteine production. Through deletion of the L-cysteine desulfhydrases (CD) and overexpression of the native serine acetyltransferase (CysE), the initial L-cysteine-producing strain CYS-2 was constructed to produce 58.2 ± 5.1 mg/L of L-cysteine. Subsequently, several metabolic engineering strategies were performed to further promote L-cysteine biosynthesis, including using strong promoter tac-M to enhance expression intensity of CysE, investigating the best candidate among several heterogeneous feedback-insensitive CysEs for L-cysteine biosynthesis, overexpressing L-cysteine synthase (CysK) to drive more metabolic flux, evaluating the efflux capacity of several heterogeneous L-cysteine transporters, engineering L-serine biosynthesis module to increase the precursor L-serine level and using thiosulfate as the sulfur source. Finally, the L-cysteine concentration of the engineered strain CYS-19 could produce 947.9 ± 46.5 mg/L with addition of 6 g/L Na2S2O3, approximately 14.1-fold higher than that of the initial strain CYS-2, which was the highest titer of L-cysteine ever reported in C. glutamicum. These results indicated that C. glutamicum was a promising platform for L-cysteine production.


Asunto(s)
Reactores Biológicos/microbiología , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cisteína/biosíntesis , Ingeniería Metabólica/métodos , Cistationina gamma-Liasa/genética , Cisteína Sintasa/biosíntesis , Fermentación/genética , Fermentación/fisiología , Eliminación de Gen , Serina O-Acetiltransferasa/genética
17.
Appl Microbiol Biotechnol ; 103(6): 2609-2619, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30729285

RESUMEN

L-Cysteine is a commercially important amino acid. Here, we report the construction of L-cysteine-producing Corynebacterium glutamicum using a metabolic engineering approach. L-Serine O-acetyltransferase (SAT), encoded by cysE gene, is a key enzyme of L-cysteine biosynthesis, because of its feedback inhibition by L-cysteine. Therefore, we introduced a mutation into the C. glutamicum cysE gene, which appeared to desensitize SAT against feedback inhibition by L-cysteine. We successfully produced L-cysteine by overexpressing this mutant cysE gene in C. glutamicum, while the wild-type strain scarcely produced L-cysteine. To enhance the biosynthesis of L-serine (a substrate for SAT), a mutant serA gene, encoding D-3-phosphoglycerate dehydrogenase to desensitize it against feedback inhibition by L-serine, was additionally overexpressed in the mutant cysE-overexpressing strain and its L-cysteine production was indeed improved. Moreover, we disrupted the ldh gene encoding L-lactate dehydrogenase and the aecD gene encoding cysteine desulfhydrase to prevent the formation of lactic acid as a by-product and degradation of L-cysteine produced at the stationary phase, respectively, which resulted in enhanced L-cysteine production. However, since the concentration of L-cysteine produced still decreased at the stationary phase despite the aecD disruption, NCgl2463 encoding a possible cystine importer protein was further disrupted to prevent cystine import, because the produced L-cysteine is immediately oxidized to cystine. As a result, the time before the start of the decrease in L-cysteine concentration was successfully prolonged. Approximately 200 mg/L of L-cysteine production was achieved by overexpression of mutant cysE and serA genes and disruption of aecD and NCgl2463 genes in C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/metabolismo , Cisteína/biosíntesis , Ingeniería Metabólica , Proteínas Bacterianas/genética , Clonación Molecular , Corynebacterium glutamicum/genética , Cistationina gamma-Liasa/genética , L-Lactato Deshidrogenasa/genética , Mutación , Serina O-Acetiltransferasa/genética , Serina O-Acetiltransferasa/metabolismo
18.
Appl Microbiol Biotechnol ; 103(21-22): 8911-8922, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31583448

RESUMEN

Corynebacterium glutamicum is a versatile workhorse for producing industrially important commodities. The design of an optimal strain often requires the manipulation of metabolic and regulatory genes to different levels, such as overexpression, downregulation, and deletion. Unfortunately, few tools to achieve multiple functions simultaneously have been reported. Here, a dual-functional clustered regularly interspaced short palindromic repeats (CRISPR) (RE-CRISPR) system that combined genome editing and transcriptional repression was designed using a catalytically active Cas12a (a.k.a. Cpf1) in C. glutamicum. Firstly, gene deletion was achieved using Cas12a under a constitutive promoter. Then, via engineering of the guide RNA sequences, transcriptional repression was successfully achieved using a catalytically active Cas12a with crRNAs containing 15 or 16 bp spacer sequences, whose gene repression efficiency was comparable to that of the canonical system (deactivated Cas12a with full-length crRNAs). Finally, RE-CRISPR was developed to achieve genome editing and transcriptional repression simultaneously by transforming a single crRNA plasmid and Cas12a plasmid. The application of RE-CRISPR was demonstrated to increase the production of cysteine and serine for ~ 3.7-fold and 2.5-fold, respectively, in a single step. This study expands the application of CRISPR/Cas12a-based genome engineering and provides a powerful synthetic biology tool for multiplex metabolic engineering of C. glutamicum.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Cisteína/biosíntesis , Endodesoxirribonucleasas/genética , Edición Génica/métodos , Ingeniería Metabólica/métodos , Serina/biosíntesis , Proteínas Bacterianas/metabolismo , Reactores Biológicos/microbiología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endodesoxirribonucleasas/metabolismo , Eliminación de Gen , Genoma Bacteriano/genética , Redes y Vías Metabólicas/genética , ARN Guía de Kinetoplastida/genética
19.
Biosci Biotechnol Biochem ; 83(12): 2390-2393, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31671040

RESUMEN

We identified L-cysteine exporter candidates of Corynebacterium glutamicum and investigated the effect of overexpression of the potential L-cysteine exporter genes on L-cysteine production in a recombinant strain of C. glutamicum. Overexpression of NCgl2566 and NCgl0580 resulted in enhanced L-cysteine production in an L-cysteine-producing recombinant strain of C. glutamicum.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Corynebacterium glutamicum/genética , Cisteína/biosíntesis , Recombinación Genética , Genes Bacterianos
20.
BMC Bioinformatics ; 19(1): 132, 2018 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-29642842

RESUMEN

BACKGROUND: High quality functional annotation is essential for understanding the phenotypic consequences encoded in a genome. Despite improvements in bioinformatics methods, millions of sequences in databanks are not assigned reliable functions. The curation of protein functions in the context of biological processes is a way to evaluate and improve their annotation. RESULTS: We developed an expert system using paraconsistent logic, named GROOLS (Genomic Rule Object-Oriented Logic System), that evaluates the completeness and the consistency of predicted functions through biological processes like metabolic pathways. Using a generic and hierarchical representation of knowledge, biological processes are modeled in a graph from which observations (i.e. predictions and expectations) are propagated by rules. At the end of the reasoning, conclusions are assigned to biological process components and highlight uncertainties and inconsistencies. Results on 14 microbial organisms are presented. CONCLUSIONS: GROOLS software is designed to evaluate the overall accuracy of functional unit and pathway predictions according to organism experimental data like growth phenotypes. It assists biocurators in the functional annotation of proteins by focusing on missing or contradictory observations.


Asunto(s)
Algoritmos , Fenómenos Biológicos , Biología Computacional/métodos , Genoma , Anotación de Secuencia Molecular , Programas Informáticos , Acinetobacter/genética , Vías Biosintéticas/genética , Cisteína/biosíntesis , Bases de Datos Factuales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA