Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21.387
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 187(18): 4859-4876.e22, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39047726

RESUMEN

Chloroplast biogenesis is dependent on master regulators from the GOLDEN2-LIKE (GLK) family of transcription factors. However, glk mutants contain residual chlorophyll, indicating that other proteins must be involved. Here, we identify MYB-related transcription factors as regulators of chloroplast biogenesis in the liverwort Marchantia polymorpha and angiosperm Arabidopsis thaliana. In both species, double-mutant alleles in MYB-related genes show very limited chloroplast development, and photosynthesis gene expression is perturbed to a greater extent than in GLK mutants. Genes encoding enzymes of chlorophyll biosynthesis are controlled by MYB-related and GLK proteins, whereas those allowing CO2 fixation, photorespiration, and photosystem assembly and repair require MYB-related proteins. Regulation between the MYB-related and GLK transcription factors appears more extensive in A. thaliana than in M. polymorpha. Thus, MYB-related and GLK genes have overlapping as well as distinct targets. We conclude that MYB-related and GLK transcription factors orchestrate chloroplast development in land plants.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Cloroplastos , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción , Cloroplastos/metabolismo , Cloroplastos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Marchantia/genética , Marchantia/metabolismo , Fotosíntesis/genética , Clorofila/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Mutación , Biogénesis de Organelos
2.
Annu Rev Biochem ; 83: 317-40, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24635479

RESUMEN

Chlorophylls are magnesium-tetrapyrrole molecules that play essential roles in photosynthesis. All chlorophylls have similar five-membered ring structures, with variations in the side chains and/or reduction states. Formyl group substitutions on the side chains of chlorophyll a result in the different absorption properties of chlorophyll b, chlorophyll d, and chlorophyll f. These formyl substitution derivatives exhibit different spectral shifts according to the formyl substitution position. Not only does the presence of various types of chlorophylls allow the photosynthetic organism to harvest sunlight at different wavelengths to enhance light energy input, but the pigment composition of oxygenic photosynthetic organisms also reflects the spectral properties on the surface of the Earth. Two major environmental influencing factors are light and oxygen levels, which may play central roles in the regulatory pathways leading to the different chlorophylls. I review the biochemical processes of chlorophyll biosynthesis and their regulatory mechanisms.


Asunto(s)
Clorofila/química , Oxígeno/química , Fotosíntesis , Fenómenos Fisiológicos de las Plantas , Ligasas de Carbono-Oxígeno/química , Clorofila/análogos & derivados , Clorofila A , Luz , Liasas/química , Magnesio/química , Protoporfirinas/química
3.
Nature ; 621(7978): 330-335, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37587345

RESUMEN

Projected responses of ocean net primary productivity to climate change are highly uncertain1. Models suggest that the climate sensitivity of phytoplankton nutrient limitation in the low-latitude Pacific Ocean plays a crucial role1-3, but this is poorly constrained by observations4. Here we show that changes in physical forcing drove coherent fluctuations in the strength of equatorial Pacific iron limitation through multiple El Niño/Southern Oscillation (ENSO) cycles, but that this was overestimated twofold by a state-of-the-art climate model. Our assessment was enabled by first using a combination of field nutrient-addition experiments, proteomics and above-water hyperspectral radiometry to show that phytoplankton physiological responses to iron limitation led to approximately threefold changes in chlorophyll-normalized phytoplankton fluorescence. We then exploited the >18-year satellite fluorescence record to quantify climate-induced nutrient limitation variability. Such synoptic constraints provide a powerful approach for benchmarking the realism of model projections of net primary productivity to climate changes.


Asunto(s)
Modelos Climáticos , El Niño Oscilación del Sur , Hierro , Clorofila/metabolismo , Cambio Climático , Fluorescencia , Hierro/metabolismo , Nutrientes/metabolismo , Océano Pacífico , Fitoplancton/metabolismo , Proteómica , Radiometría , Imágenes Satelitales
4.
Nature ; 615(7954): 836-840, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36949188

RESUMEN

Photosystems II and I (PSII, PSI) are the reaction centre-containing complexes driving the light reactions of photosynthesis; PSII performs light-driven water oxidation and PSI further photo-energizes harvested electrons. The impressive efficiencies of the photosystems have motivated extensive biological, artificial and biohybrid approaches to 're-wire' photosynthesis for higher biomass-conversion efficiencies and new reaction pathways, such as H2 evolution or CO2 fixation1,2. Previous approaches focused on charge extraction at terminal electron acceptors of the photosystems3. Electron extraction at earlier steps, perhaps immediately from photoexcited reaction centres, would enable greater thermodynamic gains; however, this was believed impossible with reaction centres buried at least 4 nm within the photosystems4,5. Here, we demonstrate, using in vivo ultrafast transient absorption (TA) spectroscopy, extraction of electrons directly from photoexcited PSI and PSII at early points (several picoseconds post-photo-excitation) with live cyanobacterial cells or isolated photosystems, and exogenous electron mediators such as 2,6-dichloro-1,4-benzoquinone (DCBQ) and methyl viologen. We postulate that these mediators oxidize peripheral chlorophyll pigments participating in highly delocalized charge-transfer states after initial photo-excitation. Our results challenge previous models that the photoexcited reaction centres are insulated within the photosystem protein scaffold, opening new avenues to study and re-wire photosynthesis for biotechnologies and semi-artificial photosynthesis.


Asunto(s)
Fotosíntesis , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema II , Clorofila/metabolismo , Oxidación-Reducción , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II/metabolismo , Factores de Tiempo , Ciclo del Carbono , Dióxido de Carbono/metabolismo , Hidrógeno/metabolismo , Cianobacterias/metabolismo , Electrones , Termodinámica
5.
Nature ; 606(7914): 565-569, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35650430

RESUMEN

Flowering plants (angiosperms) can grow at extreme altitudes, and have been observed growing as high as 6,400 metres above sea level1,2; however, the molecular mechanisms that enable plant adaptation specifically to altitude are unknown. One distinguishing feature of increasing altitude is a reduction in the partial pressure of oxygen (pO2). Here we investigated the relationship between altitude and oxygen sensing in relation to chlorophyll biosynthesis-which requires molecular oxygen3-and hypoxia-related gene expression. We show that in etiolated seedlings of angiosperm species, steady-state levels of the phototoxic chlorophyll precursor protochlorophyllide are influenced by sensing of atmospheric oxygen concentration. In Arabidopsis thaliana, this is mediated by the PLANT CYSTEINE OXIDASE (PCO) N-degron pathway substrates GROUP VII ETHYLENE RESPONSE FACTOR transcription factors (ERFVIIs). ERFVIIs positively regulate expression of FLUORESCENT IN BLUE LIGHT (FLU), which represses the first committed step of chlorophyll biosynthesis, forming an inactivation complex with tetrapyrrole synthesis enzymes that are negatively regulated by ERFVIIs, thereby suppressing protochlorophyllide. In natural populations representing diverse angiosperm clades, we find oxygen-dependent altitudinal clines for steady-state levels of protochlorophyllide, expression of inactivation complex components and hypoxia-related genes. Finally, A. thaliana accessions from contrasting altitudes display altitude-dependent ERFVII activity and accumulation. We thus identify a mechanism for genetic adaptation to absolute altitude through alteration of the sensitivity of the oxygen-sensing system.


Asunto(s)
Aclimatación , Altitud , Arabidopsis , Oxígeno , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Clorofila/metabolismo , Regulación de la Expresión Génica de las Plantas , Oxígeno/metabolismo , Presión Parcial , Protoclorofilida/metabolismo
6.
Plant Cell ; 36(10): 3997-4013, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-38484127

RESUMEN

The growth of plants, algae, and cyanobacteria relies on the catalytic activity of the oxygen-evolving PSII complex, which uses solar energy to extract electrons from water to feed into the photosynthetic electron transport chain. PSII is proving to be an excellent system to study how large multi-subunit membrane-protein complexes are assembled in the thylakoid membrane and subsequently repaired in response to photooxidative damage. Here we summarize recent developments in understanding the biogenesis of PSII, with an emphasis on recent insights obtained from biochemical and structural analysis of cyanobacterial PSII assembly/repair intermediates. We also discuss how chlorophyll synthesis is synchronized with protein synthesis and suggest a possible role for PSI in PSII assembly. Special attention is paid to unresolved and controversial issues that could be addressed in future research.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Cianobacterias/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Fotosíntesis
7.
Plant Cell ; 36(4): 1140-1158, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38124486

RESUMEN

Chlorophyll degradation causes the release of phytol, which is converted into phytyl diphosphate (phytyl-PP) by phytol kinase (VITAMIN E PATHWAY GENE5 [VTE5]) and phytyl phosphate (phytyl-P) kinase (VTE6). The kinase pathway is important for tocopherol synthesis, as the Arabidopsis (Arabidopsis thaliana) vte5 mutant contains reduced levels of tocopherol. Arabidopsis harbors one paralog of VTE5, farnesol kinase (FOLK) involved in farnesol phosphorylation. Here, we demonstrate that VTE5 and FOLK harbor kinase activities for phytol, geranylgeraniol, and farnesol with different specificities. While the tocopherol content of the folk mutant is unchanged, vte5-2 folk plants completely lack tocopherol. Tocopherol deficiency in vte5-2 plants can be complemented by overexpression of FOLK, indicating that FOLK is an authentic gene of tocopherol synthesis. The vte5-2 folk plants contain only ∼40% of wild-type amounts of phylloquinone, demonstrating that VTE5 and FOLK both contribute in part to phylloquinone synthesis. Tocotrienol and menaquinone-4 were produced in vte5-2 folk plants after supplementation with homogentisate or 1,4-dihydroxy-2-naphthoic acid, respectively, indicating that their synthesis is independent of the VTE5/FOLK pathway. These results show that phytyl moieties for tocopherol synthesis are completely but, for phylloquinone production, only partially derived from geranylgeranyl-chlorophyll and phytol phosphorylation by VTE5 and FOLK.


Asunto(s)
Arabidopsis , Fosfotransferasas (Aceptor de Grupo Alcohol) , Tocoferoles , Tocoferoles/metabolismo , Vitamina E/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Vitamina K 1/metabolismo , Fitol/metabolismo , Farnesol/metabolismo , Plantas/metabolismo , Cloroplastos/genética , Cloroplastos/metabolismo , Clorofila/metabolismo
8.
Nature ; 589(7841): 310-314, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33268896

RESUMEN

Photosynthetic reaction centres harvest the energy content of sunlight by transporting electrons across an energy-transducing biological membrane. Here we use time-resolved serial femtosecond crystallography1 using an X-ray free-electron laser2 to observe light-induced structural changes in the photosynthetic reaction centre of Blastochloris viridis on a timescale of picoseconds. Structural perturbations first occur at the special pair of chlorophyll molecules of the photosynthetic reaction centre that are photo-oxidized by light. Electron transfer to the menaquinone acceptor on the opposite side of the membrane induces a movement of this cofactor together with lower amplitude protein rearrangements. These observations reveal how proteins use conformational dynamics to stabilize the charge-separation steps of electron-transfer reactions.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Bacterioclorofilas/metabolismo , Sitios de Unión/efectos de los fármacos , Clorofila/metabolismo , Clorofila/efectos de la radiación , Cristalografía , Citoplasma/metabolismo , Transporte de Electrón/efectos de los fármacos , Electrones , Hyphomicrobiaceae/enzimología , Hyphomicrobiaceae/metabolismo , Rayos Láser , Modelos Moleculares , Oxidación-Reducción/efectos de la radiación , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Protones , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Vitamina K 2/metabolismo
9.
Proc Natl Acad Sci U S A ; 121(42): e2411620121, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-39378097

RESUMEN

Zeaxanthin (Zea) is a key component in the energy-dependent, rapidly reversible, nonphotochemical quenching process (qE) that regulates photosynthetic light harvesting. Previous transient absorption (TA) studies suggested that Zea can participate in direct quenching via chlorophyll (Chl) to Zea energy transfer. However, the contamination of intrinsic exciton-exciton annihilation (EEA) makes the assignment of TA signal ambiguous. In this study, we present EEA-free TA data using Nicotiana benthamiana thylakoid membranes, including the wild type and three NPQ mutants (npq1, npq4, and lut2) generated by CRISPR/Cas9 mutagenesis. The results show a strong correlation between excitation energy transfer from excited Chl Qy to Zea S1 and the xanthophyll cycle during qE activation. Notably, a Lut S1 signal is absent in the npq1 thylakoids which lack zeaxanthin. Additionally, the fifth-order response analysis shows a reduction in the exciton diffusion length (LD) from 62 ± 6 nm to 43 ± 3 nm under high light illumination, consistent with the reduced range of exciton motion being a key aspect of plants' response to excess light.


Asunto(s)
Clorofila , Transferencia de Energía , Nicotiana , Fotosíntesis , Tilacoides , Zeaxantinas , Zeaxantinas/metabolismo , Clorofila/metabolismo , Nicotiana/metabolismo , Tilacoides/metabolismo , Xantófilas/metabolismo , Mutación
10.
Proc Natl Acad Sci U S A ; 121(21): e2311086121, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38739806

RESUMEN

Long-term ecological time series provide a unique perspective on the emergent properties of ecosystems. In aquatic systems, phytoplankton form the base of the food web and their biomass, measured as the concentration of the photosynthetic pigment chlorophyll a (chl a), is an indicator of ecosystem quality. We analyzed temporal trends in chl a from the Long-Term Plankton Time Series in Narragansett Bay, Rhode Island, USA, a temperate estuary experiencing long-term warming and changing anthropogenic nutrient inputs. Dynamic linear models were used to impute and model environmental variables (1959 to 2019) and chl a concentrations (1968 to 2019). A long-term chl a decrease was observed with an average decline in the cumulative annual chl a concentration of 49% and a marked decline of 57% in winter-spring bloom magnitude. The long-term decline in chl a concentration was directly and indirectly associated with multiple environmental factors that are impacted by climate change (e.g., warming temperatures, water column stratification, reduced nutrient concentrations) indicating the importance of accounting for regional climate change effects in ecosystem-based management. Analysis of seasonal phenology revealed that the winter-spring bloom occurred earlier, at a rate of 4.9 ± 2.8 d decade-1. Finally, the high degree of temporal variation in phytoplankton biomass observed in Narragansett Bay appears common among estuaries, coasts, and open oceans. The commonality among these marine ecosystems highlights the need to maintain a robust set of phytoplankton time series in the coming decades to improve signal-to-noise ratios and identify trends in these highly variable environments.


Asunto(s)
Clorofila A , Cambio Climático , Fitoplancton , Estaciones del Año , Clorofila A/metabolismo , Clorofila A/análisis , Fitoplancton/fisiología , Fitoplancton/crecimiento & desarrollo , Estuarios , Ecosistema , Plancton/fisiología , Plancton/crecimiento & desarrollo , Biomasa , Clorofila/metabolismo
11.
Proc Natl Acad Sci U S A ; 121(45): e2405354121, 2024 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-39467120

RESUMEN

Marine phytoplankton are fundamental to Earth's ecology and biogeochemistry. Our understanding of the large-scale dynamics of phytoplankton biomass has greatly benefited from, and is largely based on, satellite ocean color observations from which chlorophyll-a (Chla), a commonly used proxy for carbon biomass, can be estimated. However, ocean color satellites only measure a small portion of the surface ocean, meaning that subsurface phytoplankton biomass is not directly monitored. Chla is also an imperfect proxy for carbon biomass because cellular physiology drives large variations in their ratio. The global network of Biogeochemical (BGC)-Argo floats now makes it possible to complement satellite observations by addressing both these issues at once. In our study, we use ~100,000 water-column profiles from BGC-Argo to describe Earth's phytoplankton carbon biomass and its spatiotemporal variability. We estimate the global stock of open ocean phytoplankton biomass at ~314 Tg C, half of which is present at depths not accessible through satellite detection. We also compare the seasonal cycles of carbon biomass stocks and surface Chla visible from space and find that surface Chla does not accurately identify the timing of the peak annual biomass in two-thirds of the ocean. Our study is a demonstration of global-scale, depth-resolved monitoring of Earth's phytoplankton, which will be crucial for understanding future climate-related changes and the effects of geoengineering interventions if implemented.


Asunto(s)
Biomasa , Carbono , Océanos y Mares , Fitoplancton , Fitoplancton/metabolismo , Carbono/metabolismo , Carbono/química , Clorofila A/metabolismo , Clorofila/metabolismo , Agua de Mar/química , Planeta Tierra , Estaciones del Año , Ciclo del Carbono , Ecosistema
12.
Proc Natl Acad Sci U S A ; 121(7): e2315476121, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38319970

RESUMEN

Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.


Asunto(s)
Antozoos , Dinoflagelados , Animales , Antozoos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Dinoflagelados/metabolismo , Floraciones de Algas Nocivas , Simbiosis , Microscopía por Crioelectrón , Complejo de Proteína del Fotosistema I/metabolismo , Clorofila/metabolismo
13.
Proc Natl Acad Sci U S A ; 121(19): e2319937121, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38696469

RESUMEN

Subtropical oceans contribute significantly to global primary production, but the fate of the picophytoplankton that dominate in these low-nutrient regions is poorly understood. Working in the subtropical Mediterranean, we demonstrate that subduction of water at ocean fronts generates 3D intrusions with uncharacteristically high carbon, chlorophyll, and oxygen that extend below the sunlit photic zone into the dark ocean. These contain fresh picophytoplankton assemblages that resemble the photic-zone regions where the water originated. Intrusions propagate depth-dependent seasonal variations in microbial assemblages into the ocean interior. Strikingly, the intrusions included dominant biomass contributions from nonphotosynthetic bacteria and enrichment of enigmatic heterotrophic bacterial lineages. Thus, the intrusions not only deliver material that differs in composition and nutritional character from sinking detrital particles, but also drive shifts in bacterial community composition, organic matter processing, and interactions between surface and deep communities. Modeling efforts paired with global observations demonstrate that subduction can flux similar magnitudes of particulate organic carbon as sinking export, but is not accounted for in current export estimates and carbon cycle models. Intrusions formed by subduction are a particularly important mechanism for enhancing connectivity between surface and upper mesopelagic ecosystems in stratified subtropical ocean environments that are expanding due to the warming climate.


Asunto(s)
Bacterias , Océanos y Mares , Agua de Mar , Agua de Mar/microbiología , Agua de Mar/química , Bacterias/metabolismo , Carbono/metabolismo , Ciclo del Carbono , Clorofila/metabolismo , Ecosistema , Fitoplancton/metabolismo , Estaciones del Año , Biomasa , Microbiota/fisiología , Oxígeno/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(22): e2402911121, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38776366

RESUMEN

Leaf yellowing is a well-known phenotype that attracts phloem-feeding insects. However, it remains unclear how insect-vectored plant pathogens induce host leaf yellowing to facilitate their own transmission by insect vectors. Here, we report that an effector protein secreted by rice orange leaf phytoplasma (ROLP) inhibits chlorophyll biosynthesis and induces leaf yellowing to attract leafhopper vectors, thereby presumably promoting pathogen transmission. This effector, designated secreted ROLP protein 1 (SRP1), first secreted into rice phloem by ROLP, was subsequently translocated to chloroplasts by interacting with the chloroplastic glutamine synthetase (GS2). The direct interaction between SRP1 and GS2 disrupts the decamer formation of the GS2 holoenzyme, attenuating its enzymatic activity, thereby suppressing the synthesis of chlorophyll precursors glutamate and glutamine. Transgenic expression of SRP1 in rice plants decreased GS2 activity and chlorophyll precursor accumulation, finally inducing leaf yellowing. This process is correlated with the previous evidence that the knockout of GS2 expression in rice plants causes a similar yellow chlorosis phenotype. Consistently, these yellowing leaves attracted higher numbers of leafhopper vectors, caused the vectors to probe more frequently, and presumably facilitate more efficient phytoplasma transmission. Together, these results uncover the mechanism used by phytoplasmas to manipulate the leaf color of infected plants for the purpose of enhancing attractiveness to insect vectors.


Asunto(s)
Cloroplastos , Glutamato-Amoníaco Ligasa , Hemípteros , Insectos Vectores , Oryza , Phytoplasma , Hojas de la Planta , Animales , Hemípteros/microbiología , Glutamato-Amoníaco Ligasa/metabolismo , Glutamato-Amoníaco Ligasa/genética , Phytoplasma/fisiología , Hojas de la Planta/microbiología , Hojas de la Planta/metabolismo , Oryza/microbiología , Oryza/genética , Insectos Vectores/microbiología , Cloroplastos/metabolismo , Enfermedades de las Plantas/microbiología , Clorofila/metabolismo , Plantas Modificadas Genéticamente , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
15.
Plant Cell ; 35(8): 3053-3072, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37100425

RESUMEN

The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.


Asunto(s)
Diatomeas , Xantófilas , Simulación del Acoplamiento Molecular , Xantófilas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo
16.
Plant Cell ; 35(5): 1408-1428, 2023 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-36748200

RESUMEN

Banana (Musa acuminata) fruits ripening at 30 °C or above fail to develop yellow peels; this phenomenon, called green ripening, greatly reduces their marketability. The regulatory mechanism underpinning high temperature-induced green ripening remains unknown. Here we decoded a transcriptional and post-translational regulatory module that causes green ripening in banana. Banana fruits ripening at 30 °C showed greatly reduced expression of 5 chlorophyll catabolic genes (CCGs), MaNYC1 (NONYELLOW COLORING 1), MaPPH (PHEOPHYTINASE), MaTIC55 (TRANSLOCON AT THE INNER ENVELOPE MEMBRANE OF CHLOROPLASTS 55), MaSGR1 (STAY-GREEN 1), and MaSGR2 (STAY-GREEN 2), compared to those ripening at 20 °C. We identified a MYB transcription factor, MaMYB60, that activated the expression of all 5 CCGs by directly binding to their promoters during banana ripening at 20 °C, while showing a weaker activation at 30 °C. At high temperatures, MaMYB60 was degraded. We discovered a RING-type E3 ligase MaBAH1 (benzoic acid hypersensitive 1) that ubiquitinated MaMYB60 during green ripening and targeted it for proteasomal degradation. MaBAH1 thus facilitated MaMYB60 degradation and attenuated MaMYB60-induced transactivation of CCGs and chlorophyll degradation. By contrast, MaMYB60 upregulation increased CCG expression, accelerated chlorophyll degradation, and mitigated green ripening. Collectively, our findings unravel a dynamic, temperature-responsive MaBAH1-MaMYB60-CCG module that regulates chlorophyll catabolism, and the molecular mechanism underpinning green ripening in banana. This study also advances our understanding of plant responses to high-temperature stress.


Asunto(s)
Musa , Temperatura , Musa/genética , Musa/química , Musa/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Clorofila/metabolismo , Frutas/genética , Frutas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
17.
Nat Chem Biol ; 20(7): 906-915, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38831036

RESUMEN

Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.


Asunto(s)
Clorofila , Clorofila/química , Clorofila/metabolismo , Cristalografía por Rayos X , Modelos Moleculares , Fotosíntesis , Transferencia de Energía , Microscopía por Crioelectrón , Conformación Proteica , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo
18.
Proc Natl Acad Sci U S A ; 120(5): e2210811120, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36689657

RESUMEN

Highly concentrated solutions of chlorophyll display rapid fluorescence quenching. The same devastating energy loss is not seen in photosynthetic light-harvesting antenna complexes, despite the need for chromophores to be in close proximity to facilitate energy transfer. A promising, though unconfirmed mechanism for the observed quenching is energy transfer from an excited chlorophyll monomer to a closely associated chlorophyll pair that subsequently undergoes rapid nonradiative decay to the ground state via a short-lived intermediate charge-transfer state. In this work, we make use of newly emerging fast methods in quantum chemistry to assess the feasibility of this proposed mechanism. We calculate rate constants for the initial charge separation, based on Marcus free-energy surfaces extracted from molecular dynamics simulations of solvated chlorophyll pairs, demonstrating that this pathway will compete with fluorescence (i.e., drive quenching) at experimentally measured quenching concentrations. We show that the rate of charge separation is highly sensitive to interchlorophyll distance and the relative orientations of chromophores within a quenching pair. We discuss possible solvent effects on the rate of charge separation (and consequently the degree of quenching), using the light-harvesting complex II (LH2) protein from rps. acidophila as a specific example of how this process might be controlled in a protein environment. Crucially, we reveal that the LH2 antenna protein prevents quenching, even at the high chlorophyll concentrations required for efficient energy transfer, by restricting the range of orientations that neighboring chlorophyll pairs can adopt.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema II , Complejo de Proteína del Fotosistema II/metabolismo , Fluorescencia , Clorofila/metabolismo , Fotosíntesis , Complejos de Proteína Captadores de Luz/metabolismo , Espectrometría de Fluorescencia
19.
Proc Natl Acad Sci U S A ; 120(49): e2306507120, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37983483

RESUMEN

Aerosols can affect photosynthesis through radiative perturbations such as scattering and absorbing solar radiation. This biophysical impact has been widely studied using field measurements, but the sign and magnitude at continental scales remain uncertain. Solar-induced fluorescence (SIF), emitted by chlorophyll, strongly correlates with photosynthesis. With recent advancements in Earth observation satellites, we leverage SIF observations from the Tropospheric Monitoring Instrument (TROPOMI) with unprecedented spatial resolution and near-daily global coverage, to investigate the impact of aerosols on photosynthesis. Our analysis reveals that on weekends when there is more plant-available sunlight due to less particulate pollution, 64% of regions across Europe show increased SIF, indicating more photosynthesis. Moreover, we find a widespread negative relationship between SIF and aerosol loading across Europe. This suggests the possible reduction in photosynthesis as aerosol levels increase, particularly in ecosystems limited by light availability. By considering two plausible scenarios of improved air quality-reducing aerosol levels to the weekly minimum 3-d values and levels observed during the COVID-19 period-we estimate a potential of 41 to 50 Mt net additional annual CO2 uptake by terrestrial ecosystems in Europe. This work assesses human impacts on photosynthesis via aerosol pollution at continental scales using satellite observations. Our results highlight i) the use of spatiotemporal variations in satellite SIF to estimate the human impacts on photosynthesis and ii) the potential of reducing particulate pollution to enhance ecosystem productivity.


Asunto(s)
Ecosistema , Aerosoles y Gotitas Respiratorias , Humanos , Aerosoles/análisis , Clorofila/análisis , Polvo/análisis , Fluorescencia , Fotosíntesis
20.
Proc Natl Acad Sci U S A ; 120(46): e2313591120, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37948586

RESUMEN

The deleterious effects of ozone (O3) pollution on crop physiology, yield, and productivity are widely acknowledged. It has also been assumed that C4 crops with a carbon concentrating mechanism and greater water use efficiency are less sensitive to O3 pollution than C3 crops. This assumption has not been widely tested. Therefore, we compiled 46 journal articles and unpublished datasets that reported leaf photosynthetic and biochemical traits, plant biomass, and yield in five C3 crops (chickpea, rice, snap bean, soybean, and wheat) and four C4 crops (sorghum, maize, Miscanthus × giganteus, and switchgrass) grown under ambient and elevated O3 concentration ([O3]) in the field at free-air O3 concentration enrichment (O3-FACE) facilities over the past 20 y. When normalized by O3 exposure, C3 and C4 crops showed a similar response of leaf photosynthesis, but the reduction in chlorophyll content, fluorescence, and yield was greater in C3 crops compared with C4 crops. Additionally, inbred and hybrid lines of rice and maize showed different sensitivities to O3 exposure. This study quantitatively demonstrates that C4 crops respond less to elevated [O3] than C3 crops. This understanding could help maintain cropland productivity in an increasingly polluted atmosphere.


Asunto(s)
Oryza , Ozono , Fotosíntesis/fisiología , Clorofila , Hojas de la Planta/fisiología , Poaceae , Zea mays/fisiología , Productos Agrícolas/genética , Oryza/genética , Dióxido de Carbono/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA