Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Dev Biol ; 458(1): 88-97, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31669335

RESUMEN

Atrioventricular valve development requires endothelial-to-mesenchymal transition (EndMT) that induces cushion endocardial cells to give rise to mesenchymal cells crucial to valve formation. In the adult endothelium, deletion of the docking protein FRS2α induces EndMT by activating TGFß signaling in a miRNA let-7-dependent manner. To study the role of endothelial FRS2α during embryonic development, we generated mice with an inducible endothelial-specific deletion of Frs2α (FRS2αiECKO). Analysis of the FRS2αiECKO embryos uncovered a combination of impaired EndMT in AV cushions and defective maturation of AV valves leading to development of thickened, abnormal valves when Frs2α was deleted early (E7.5) in development. At the same time, no AV valve developmental abnormalities were observed after late (E10.5) deletion. These observations identify FRS2α as a pivotal controller of cell fate transition during both EndMT and post-EndMT valvulogenesis.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/fisiología , Animales , Recuento de Células , Linaje de la Célula , Defectos de la Almohadilla Endocárdica/embriología , Defectos de la Almohadilla Endocárdica/genética , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/patología , Células Endoteliales/citología , Eliminación de Gen , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mesodermo/citología , Mesodermo/embriología , Ratones , Ratones Endogámicos C57BL , MicroARNs/fisiología , Válvula Mitral/anomalías , Válvula Mitral/embriología , Morfogénesis/genética , Fenotipo , Válvula Tricúspide/anomalías , Válvula Tricúspide/embriología
2.
Am J Physiol Heart Circ Physiol ; 321(2): H294-H305, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34142884

RESUMEN

The etiology of ethanol-related congenital heart defects has been the focus of much study, but most research has concentrated on cellular and molecular mechanisms. We have shown with optical coherence tomography (OCT) that ethanol exposure led to increased retrograde flow and smaller atrioventricular (AV) cushions compared with controls. Since AV cushions play a role in patterning the conduction delay at the atrioventricular junction (AVJ), this study aims to investigate whether ethanol exposure alters the AVJ conduction in early looping hearts and whether this alteration is related to the decreased cushion size. Quail embryos were exposed to a single dose of ethanol at gastrulation, and Hamburger-Hamilton stage 19-20 hearts were dissected for imaging. Cardiac conduction was measured using an optical mapping microscope and we imaged the endocardial cushions using OCT. Our results showed that, compared with controls, ethanol-exposed embryos exhibited abnormally fast AVJ conduction and reduced cushion size. However, this increased conduction velocity (CV) did not strictly correlate with decreased cushion volume and thickness. By matching the CV map to the cushion-size map along the inflow heart tube, we found that the slowest conduction location was consistently at the atrial side of the AVJ, which had the thinner cushions, not at the thickest cushion location at the ventricular side as expected. Our findings reveal regional differences in the AVJ myocardium even at this early stage in heart development. These findings reveal the early steps leading to the heterogeneity and complexity of conduction at the mature AVJ, a site where arrhythmias can be initiated.NEW & NOTEWORTHY To the best of our knowledge, this is the first study investigating the impact of ethanol exposure on the early cardiac conduction system. Our results showed that ethanol-exposed embryos exhibited abnormally fast atrioventricular conduction. In addition, our findings, in CV measurements and endocardial cushion thickness, reveal regional differences in the AVJ myocardium even at this early stage in heart development, suggesting that the differentiation and maturation at this site are complex and warrant further studies.


Asunto(s)
Depresores del Sistema Nervioso Central/farmacología , Cojinetes Endocárdicos/efectos de los fármacos , Etanol/farmacología , Sistema de Conducción Cardíaco/efectos de los fármacos , Animales , Embrión no Mamífero , Cojinetes Endocárdicos/diagnóstico por imagen , Cojinetes Endocárdicos/embriología , Gastrulación , Corazón/diagnóstico por imagen , Corazón/efectos de los fármacos , Corazón/embriología , Sistema de Conducción Cardíaco/diagnóstico por imagen , Sistema de Conducción Cardíaco/embriología , Codorniz , Tomografía de Coherencia Óptica , Imagen de Colorante Sensible al Voltaje
3.
Development ; 144(23): 4322-4327, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-29183943

RESUMEN

Myocardial contractility and blood flow provide essential mechanical cues for the morphogenesis of the heart. In general, endothelial cells change their migratory behavior in response to shear stress patterns, according to flow directionality. Here, we assessed the impact of shear stress patterns and flow directionality on the behavior of endocardial cells, the specialized endothelial cells of the heart. At the early stages of zebrafish heart valve formation, we show that endocardial cells are converging to the valve-forming area and that this behavior depends upon mechanical forces. Quantitative live imaging and mathematical modeling allow us to correlate this tissue convergence with the underlying flow forces. We predict that tissue convergence is associated with the direction of the mean wall shear stress and of the gradient of harmonic phase-averaged shear stresses, which surprisingly do not match the overall direction of the flow. This contrasts with the usual role of flow directionality in vascular development and suggests that the full spatial and temporal complexity of the wall shear stress should be taken into account when studying endothelial cell responses to flow in vivo.


Asunto(s)
Corazón/embriología , Modelos Cardiovasculares , Pez Cebra/embriología , Animales , Anisotropía , Fenómenos Biomecánicos , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/embriología , Células Endoteliales/citología , Células Endoteliales/fisiología , Eritrocitos/fisiología , Hemodinámica , Hidrodinámica , Imagenología Tridimensional , Organogénesis/fisiología , Resistencia al Corte , Estrés Mecánico
4.
J Mol Cell Cardiol ; 123: 150-158, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30201295

RESUMEN

Abnormal endocardial cushion formation is a major cause of congenital heart valve disease, which is a common birth defect with significant morbidity and mortality. Although ß-catenin and BMP2 are two well-known regulators of endocardial cushion formation, their interaction in this process is largely unknown. Here, we report that deletion of ß-catenin in myocardium results in formation of hypoplastic endocardial cushions accompanying a decrease of mesenchymal cell proliferation. Loss of ß-catenin reduced Bmp2 expression in myocardium and SMAD signaling in cushion mesenchyme. Exogenous BMP2 recombinant proteins fully rescued the proliferation defect of mesenchymal cells in cultured heart explants from myocardial ß-catenin knockout embryos. Using a canonical WNT signaling reporter mouse line, we showed that cushion myocardium exhibited high WNT/ß-catenin activities during endocardial cushion growth. Selective disruption of the signaling function of ß-catenin resulted in a cushion growth defect similar to that caused by the complete loss of ß-catenin. Together, these observations demonstrate that myocardial ß-catenin signaling function promotes mesenchymal cell proliferation and endocardial cushion expansion through inducing BMP signaling.


Asunto(s)
Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Miocardio/metabolismo , Organogénesis , Transducción de Señal , beta Catenina/metabolismo , Animales , Proliferación Celular , Cojinetes Endocárdicos/embriología , Endocardio/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Ratones , Modelos Biológicos , Comunicación Paracrina , Ratas , Vía de Señalización Wnt
5.
J Cell Physiol ; 233(3): 1887-1894, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28513838

RESUMEN

Nephronectin (NPNT), a highly conserved extracellular matrix protein, plays an important role in regulating cell adhesion, differentiation, spreading, and survival. NPNT protein belongs to the epidermal growth factor (EGF)-like superfamily and exhibits several common structural determinants; including EGF-like repeat domains, MAM domain (Meprin, A5 Protein, and Receptor Protein-Tyrosine Phosphatase µ), RGD motif (Arg-Gly-Asp) and a coiled-coil domain. It regulates integrins-mediated signaling pathways via the interaction of its RGD motif with integrin α8ß1. Recent studies revealed that NPNT is involved in kidney development, renal injury repair, atrioventricular canal differentiation, pulmonary function, and muscle cell niche maintenance. Moreover, NPNT regulates osteoblast differentiation and mineralization, as well as osteogenic angiogenesis. Altered expression of NPNT has been linked with the progression of certain types of cancers, such as spontaneous breast tumor metastasis and malignant melanoma. Interestingly, NPNT gene expression can be regulated by a range of external factors such as tumor necrosis factor alpha (TNF-α), transforming growth factor beta (TGF-ß), oncostatin M (OSM), bone morphogenic protein 2 (BMP2), Wnt3a, Vitamin D3 , and microRNA-378 (miR378). Further understanding the cellular and molecular mechanisms by which NPNT regulates tissue homeostasis in an organ-specific manner is critical in exploring NPNT as a therapeutic target for tissue regeneration and tissue engineering.


Asunto(s)
Huesos/irrigación sanguínea , Proteínas de la Matriz Extracelular/metabolismo , Riñón/embriología , Neoplasias/patología , Neovascularización Fisiológica/fisiología , Osteogénesis/fisiología , Animales , Adhesión Celular/fisiología , Diferenciación Celular/fisiología , Movimiento Celular/fisiología , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/embriología , Homeostasis/fisiología , Humanos , Riñón/citología , Ratones , Transducción de Señal/fisiología
6.
Dev Biol ; 407(1): 145-57, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26188246

RESUMEN

Proper remodeling of the endocardial cushions into thin fibrous valves is essential for gestational progression and long-term function. This process involves dynamic interactions between resident cells and their local environment, much of which is not understood. In this study, we show that deficiency of the cell-cell adhesion protein cadherin-11 (Cad-11) results in significant embryonic and perinatal lethality primarily due to valve related cardiac dysfunction. While endocardial to mesenchymal transformation is not abrogated, mesenchymal cells do not homogeneously cellularize the cushions. These cushions remain thickened with disorganized ECM, resulting in pronounced aortic valve insufficiency. Mice that survive to adulthood maintain thickened and stenotic semilunar valves, but interestingly do not develop calcification. Cad-11 (-/-) aortic valve leaflets contained reduced Sox9 activity, ß1 integrin expression, and RhoA-GTP activity, suggesting that remodeling defects are due to improper migration and/or cellular contraction. Cad-11 deletion or siRNA knockdown reduced migration, eliminated collective migration, and impaired 3D matrix compaction by aortic valve interstitial cells (VIC). Cad-11 depleted cells in culture contained few filopodia, stress fibers, or contact inhibited locomotion. Transfection of Cad-11 depleted cells with constitutively active RhoA restored cell phenotypes. Together, these results identify cadherin-11 mediated adhesive signaling for proper remodeling of the embryonic semilunar valves.


Asunto(s)
Válvula Aórtica/embriología , Cadherinas/fisiología , Movimiento Celular , Matriz Extracelular/metabolismo , Animales , Válvula Aórtica/citología , Polaridad Celular , Pollos , Cojinetes Endocárdicos/embriología , Ratones , Ratones Endogámicos C57BL , Morfogénesis , Porcinos , Proteína de Unión al GTP rhoA/fisiología
7.
Development ; 140(15): 3176-87, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23824573

RESUMEN

Cardiac valves are essential to direct forward blood flow through the cardiac chambers efficiently. Congenital valvular defects are prevalent among newborns and can cause an immediate threat to survival as well as long-term morbidity. Valve leaflet formation is a rigorously programmed process consisting of endocardial epithelial-mesenchymal transformation (EMT), mesenchymal cell proliferation, valve elongation and remodeling. Currently, little is known about the coordination of the diverse signals that regulate endocardial cushion development and valve elongation. Here, we report that the T-box transcription factor Tbx20 is expressed in the developing endocardial cushions and valves throughout heart development. Ablation of Tbx20 in endocardial cells causes severe valve elongation defects and impaired cardiac function in mice. Our study reveals that endocardial Tbx20 is crucial for valve endocardial cell proliferation and extracellular matrix development, but is not required for initiation of EMT. Elimination of Tbx20 also causes aberrant Wnt/ß-catenin signaling in the endocardial cushions. In addition, Tbx20 regulates Lef1, a key transcriptional mediator for Wnt/ß-catenin signaling, in this developmental process. Our study suggests a model in which Tbx20 regulates the Wnt pathway to direct endocardial cushion maturation and valve elongation, and provides new insights into the etiology of valve defects in humans.


Asunto(s)
Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Proteínas de Dominio T Box/metabolismo , Animales , Proliferación Celular , Transición Epitelial-Mesenquimal , Femenino , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Factor de Unión 1 al Potenciador Linfoide/genética , Factor de Unión 1 al Potenciador Linfoide/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Organogénesis , Embarazo , Proteínas de Dominio T Box/deficiencia , Proteínas de Dominio T Box/genética , Vía de Señalización Wnt , beta Catenina/metabolismo
8.
J Biol Chem ; 289(27): 18681-92, 2014 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-24831012

RESUMEN

Cardiac malformations due to aberrant development of the atrioventricular (AV) valves are among the most common forms of congenital heart diseases. Normally, heart valve mesenchyme is formed from an endothelial to mesenchymal transition (EMT) of endothelial cells of the endocardial cushions. Yes-associated protein 1 (YAP1) has been reported to regulate EMT in vitro, in addition to its known role as a major regulator of organ size and cell proliferation in vertebrates, leading us to hypothesize that YAP1 is required for heart valve development. We tested this hypothesis by conditional inactivation of YAP1 in endothelial cells and their derivatives. This resulted in markedly hypocellular endocardial cushions due to impaired formation of heart valve mesenchyme by EMT and to reduced endocardial cell proliferation. In endothelial cells, TGFß induces nuclear localization of Smad2/3/4 complex, which activates expression of Snail, Twist1, and Slug, key transcription factors required for EMT. YAP1 interacts with this complex, and loss of YAP1 disrupts TGFß-induced up-regulation of Snail, Twist1, and Slug. Together, our results identify a role of YAP1 in regulating EMT through modulation of TGFß-Smad signaling and through proliferative activity during cardiac cushion development.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Transdiferenciación Celular , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/embriología , Células Endoteliales/citología , Mesodermo/citología , Fosfoproteínas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular , Linaje de la Célula , Endocardio/citología , Endocardio/embriología , Endocardio/metabolismo , Femenino , Eliminación de Gen , Masculino , Ratones , Mutación , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Transducción de Señal , Proteínas Smad/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteína 1 Relacionada con Twist/metabolismo , Proteínas Señalizadoras YAP
9.
BMC Dev Biol ; 15: 36, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26472242

RESUMEN

BACKGROUND: Development of the valves and septa of the heart depends on the formation and remodeling of the endocardial cushions in the atrioventricular canal and outflow tract. These cushions are populated by mesenchyme produced from the endocardium by epithelial-mesenchymal transition (EMT). The endocardial cushions are remodeled into the valves at post-EMT stages via differentiation of the mesenchyme and changes in the extracellular matrix (ECM). Transforming growth factor ß (TGFß) signaling has been implicated in both the induction of EMT in the endocardial cushions and the remodeling of the valves at post-EMT stages. We previously identified the RNA binding protein muscleblind-like 1 (MBNL1) as a negative regulator of TGFß signaling and EMT in chicken endocardial cushions ex vivo. Here, we investigate the role of MBNL1 in endocardial cushion development and valvulogenesis in Mbnl1(∆E3/∆E3) mice, which are null for MBNL1 protein. METHODS: Collagen gel invasion assays, histology, immunohistochemistry, real-time RT-PCR, optical coherence tomography, and echocardiography were used to evaluate EMT and TGFß signaling in the endocardial cushions, and morphogenesis, ECM composition, and function of the heart valves. RESULTS: As in chicken, the loss of MBNL1 promotes precocious TGFß signaling and EMT in the endocardial cushions. Surprisingly, this does not lead to the production of excess mesenchyme, but later valve morphogenesis is aberrant. Adult Mbnl1(∆E3/∆E3) mice exhibit valve dysmorphia with elevated TGFß signaling, changes in ECM composition, and increased pigmentation. This is accompanied by a high incidence of regurgitation across both inflow and outflow valves. Mbnl1(∆E3/∆E3) mice also have a high incidence of ostium secundum septal defects accompanied by atrial communication, but do not develop overt cardiomyopathy. CONCLUSIONS: Together, these data indicate that MBNL1 plays a conserved role in negatively regulating TGFß signaling, and is required for normal valve morphogenesis and homeostasis in vivo.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Cojinetes Endocárdicos/embriología , Válvulas Cardíacas/embriología , Organogénesis , Proteínas de Unión al ARN/metabolismo , Transducción de Señal , Animales , Proteínas de Unión al ADN/genética , Cojinetes Endocárdicos/metabolismo , Transición Epitelial-Mesenquimal , Corazón/embriología , Válvulas Cardíacas/citología , Válvulas Cardíacas/metabolismo , Ratones , Proteínas de Unión al ARN/genética , Factor de Crecimiento Transformador beta/metabolismo
10.
Dev Dyn ; 243(7): 894-905, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24633789

RESUMEN

BACKGROUND: Valvuloseptal defects are the most common congenital heart defects. Notch signaling-induced endothelial-to-mesenchymal transition (EMT) in the atrioventricular canal (AVC) cushions at murine embryonic day (E)9.5 is a required step during early valve development. Insights to the transcriptional network that is activated in endocardial cells (EC) during EMT and how these pathways direct valve maturation are lacking. RESULTS: We show that at E11.5, AVC-EC retain the ability to undergo Notch-dependent EMT when explanted on collagen. EC-Notch inhibition at E10.5 blocks expression of known mesenchymal genes in E11.5 AVC-EC. To understand the genetic network and AVC development downstream of Notch signaling beyond E9.5, we constructed Tag-Seq libraries corresponding to different cell types of the E11.5 AVC and atrium in wild-type mice and in EC-Notch inhibited mice. We identified 1,400 potential Notch targets in the AVC-EC, of which 124 are transcription factors (TF). From the 124 TFs, we constructed a transcriptional hierarchy and identify 10 upstream TFs within the network. CONCLUSIONS: We validated 4 of the upstream TFs as Notch targets that are enriched in AVC-EC. Functionally, we show these 4 TFs regulate EMT in AVC explant assays. These novel signaling pathways downstream of Notch are potentially relevant to valve development.


Asunto(s)
Transdiferenciación Celular/genética , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Receptores Notch/metabolismo , Animales , Línea Celular , Transdiferenciación Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Redes Reguladoras de Genes/fisiología , Humanos , Masculino , Ratones , Embarazo , Receptores Notch/genética
11.
Zhonghua Xin Xue Guan Bing Za Zhi ; 43(5): 437-41, 2015 May.
Artículo en Zh | MEDLINE | ID: mdl-26419991

RESUMEN

OBJECTIVE: To investigate the role of GATA4 gene in the endocardial cushions development. METHODS: Target gene eukaryote expression vectors were constructed by pcDNA3.1(-) vector plasmid, and were identified by DNA sequence analysis. Recombinant plasmids were transfected into Hela cells with lipofectamine 2000, meanwhile Hela cells transfected with empty vector or those without transfection served as transfection control group and blank control group, respectively. Real-time PCR and Western blot were performed to detect the relative expression of mRNA and protein of transcription factors GATA4, Sox9, Scleraxis and ECM proteins Aggrecan, Tenascin in each group. RESULTS: The relative mRNA expression of GATA4 in experimental group was significantly higher than in transfection control group and blank control group. GATA4 mRNA expression in Hela(GATA4), Hela(H436Y), Hela(Null) and Hela group was 310.83 ± 2.39, 146.35 ± 1.74, 0.94 ± 0.32, 1.00 ± 0.28, respectively (F = 72.508, P < 0.05). Western blot results were consistent with the results obtained by qRT-PCR. The relative mRNA and protein expressions of Sox9, Scleraxis, Aggrecan and Tenascin in both experimental groups were significantly higher than that in transfection control group and blank control group (P < 0.05), and above gene expressions were significantly downregulated in GATA4(H436Y) group, while they were similar between transfection control group and blank control group (all P > 0.05). CONCLUSIONS: GATA4 H436Y mutation reduces it's transcriptional activation, which might serve as a theoretical framework to demonstrate the roles of GATA4 gene in endocardial cushion development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Factor de Transcripción GATA4/metabolismo , Agrecanos/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Regulación hacia Abajo , Factor de Transcripción GATA4/genética , Expresión Génica , Vectores Genéticos , Células HeLa , Humanos , ARN Mensajero , Factor de Transcripción SOX9/metabolismo , Tenascina/metabolismo , Transfección
12.
Development ; 138(19): 4193-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21896629

RESUMEN

The atrioventricular canal (AVC) physically separates the atrial and ventricular chambers of the heart and plays a crucial role in the development of the valves and septa. Defects in AVC development result in aberrant heart morphogenesis and are a significant cause of congenital heart malformations. We have used a forward genetic screen in zebrafish to identify novel regulators of cardiac morphogenesis. We isolated a mutant, named wickham (wkm), that was indistinguishable from siblings at the linear heart tube stage but exhibited a specific loss of cardiac looping at later developmental stages. Positional cloning revealed that the wkm locus encodes transmembrane protein 2 (Tmem2), a single-pass transmembrane protein of previously unknown function. Expression analysis demonstrated myocardial and endocardial expression of tmem2 in zebrafish and conserved expression in the endocardium of mouse embryos. Detailed phenotypic analysis of the wkm mutant identified an expansion of expression of known myocardial and endocardial AVC markers, including bmp4 and has2. By contrast, a reduction in the expression of spp1, a marker of the maturing valvular primordia, was observed, suggesting that an expansion of immature AVC is detrimental to later valve maturation. Finally, we show that immature AVC expansion in wkm mutants is rescued by depleting Bmp4, indicating that Tmem2 restricts bmp4 expression to delimit the AVC primordium during cardiac development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas de Dominio T Box/genética , Alelos , Animales , Proteína Morfogenética Ósea 4/metabolismo , Femenino , Cardiopatías Congénitas/patología , Masculino , Meiosis , Proteínas de la Membrana/fisiología , Ratones , Modelos Biológicos , Mutagénesis , Mutación , Pez Cebra
13.
Development ; 138(20): 4499-509, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21937601

RESUMEN

The extracellular matrix is crucial for organogenesis. It is a complex and dynamic component that regulates cell behavior by modulating the activity, bioavailability and presentation of growth factors to cell surface receptors. Here, we determined the role of the extracellular matrix protein Nephronectin (Npnt) in heart development using the zebrafish model system. The vertebrate heart is formed as a linear tube in which myocardium and endocardium are separated by a layer of extracellular matrix termed the cardiac jelly. During heart development, the cardiac jelly swells at the atrioventricular (AV) canal, which precedes valve formation. Here, we show that Npnt expression correlates with this process. Morpholino-mediated knockdown of Npnt prevents proper valve leaflet formation and trabeculation and results in greater than 85% lethality at 7 days post-fertilization. The earliest observed phenotype is an extended tube-like structure at the AV boundary. In addition, the expression of myocardial genes involved in cardiac valve formation (cspg2, fibulin 1, tbx2b, bmp4) is expanded and endocardial cells along the extended tube-like structure exhibit characteristics of AV cells (has2, notch1b and Alcam expression, cuboidal cell shape). Inhibition of has2 in npnt morphants rescues the endocardial, but not the myocardial, expansion. By contrast, reduction of BMP signaling in npnt morphants reduces the ectopic expression of myocardial and endocardial AV markers. Taken together, our results identify Npnt as a novel upstream regulator of Bmp4-Has2 signaling that plays a crucial role in AV canal differentiation.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glucuronosiltransferasa/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Pez Cebra/metabolismo , Animales , Animales Modificados Genéticamente , Secuencia de Bases , Proteína Morfogenética Ósea 4/genética , Cartilla de ADN/genética , Proteínas de la Matriz Extracelular/antagonistas & inhibidores , Proteínas de la Matriz Extracelular/genética , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Glucuronosiltransferasa/genética , Corazón/embriología , Corazón/crecimiento & desarrollo , Válvulas Cardíacas/embriología , Válvulas Cardíacas/metabolismo , Hialuronano Sintasas , Modelos Cardiovasculares , Ratas , Transducción de Señal , Pez Cebra/genética , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
14.
Birth Defects Res B Dev Reprod Toxicol ; 101(5): 364-70, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25231192

RESUMEN

BACKGROUND: Diabetes mellitus in pregnancy causes defects in infant heart, including the outflow tracts (OFTs). Development of the aorta and pulmonary artery, which are derived from the common OFT in the embryo, is regulated by the transforming growth factor ß (TGFß) and Wnt families, and can be perturbed by hyperglycemia-generated intracellular stress conditions. However, the underlying cellular and molecular mechanisms remain to be delineated. METHODS: Female mice were induced diabetic with streptozotocin. Embryonic and fetal OFTs were examined morphologically and histologically. Cell proliferation was assessed using 5'-bromo-2'-deoxyuridine incorporation assay. Oxidative and endoplasmic reticulum (ER) stress markers and TGFß factors were detected using immunohistochemistry. The expression of genes in the Wnt-signaling system was assessed using real-time reverse transcription polymerase chain reaction array. The role of activin-A in cell proliferation was addressed by treating embryos cultured in high glucose with activin-A. RESULTS: Maternal diabetes caused complex abnormalities in the OFTs, including aortic and pulmonary stenosis and persistent truncus arteriosus. The development of the endocardial cushions was suppressed, manifested with insufficient cellularization of the tissues. Cell proliferation was significantly decreased under oxidative and ER stress conditions. The expression of genes in the Wnt signaling was significantly altered. Activin-A and Smad3 were found to be expressed in the OFT. Treatment with activin-A rescued cell proliferation in the endocardial cushions. CONCLUSIONS: Maternal diabetes generates oxidative and ER stress conditions, suppresses TGFß and Wnt signaling, inhibits cell proliferation and cellularization of the endocardial cushions, leading to OFT septal defects. Activin-A plays a role in hyperglycemia-suppressed proliferation of the endocardial cells.


Asunto(s)
Diabetes Mellitus Experimental/patología , Diabetes Gestacional/patología , Cardiopatías Congénitas/patología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , Activinas/biosíntesis , Activinas/farmacología , Animales , Aorta/embriología , Estenosis de la Válvula Aórtica/patología , Gasto Cardíaco/fisiología , Proliferación Celular , Diabetes Mellitus Experimental/inducido químicamente , Técnicas de Cultivo de Embriones , Embrión de Mamíferos/metabolismo , Cojinetes Endocárdicos/embriología , Estrés del Retículo Endoplásmico , Femenino , Regulación del Desarrollo de la Expresión Génica , Glucosa/farmacología , Hiperglucemia/metabolismo , Ratones , Ratones Endogámicos C57BL , Cresta Neural/embriología , Estrés Oxidativo , Embarazo , Arteria Pulmonar/embriología , Estenosis de la Válvula Pulmonar/patología , Proteína smad3/biosíntesis , Estreptozocina , Tronco Arterial Persistente/patología , Vía de Señalización Wnt/genética
15.
Dev Dyn ; 242(5): 456-68, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23361844

RESUMEN

BACKGROUND: Heart morphogenesis involves sequential anatomical changes from a linear tube of a single channel peristaltic pump to a four-chamber structure with two channels controlled by one-way valves. The developing heart undergoes continuous remodeling, including septation. RESULTS: Pitx2-null mice are characterized by cardiac septational defects of the atria, ventricles, and outflow tract. Pitx2-null mice also exhibited a short outflow tract, including unseptated conus and deformed endocardial cushions. Cushions were characterized with a jelly-like structure, rather than the distinct membrane-looking leaflets, indicating that endothelial mesenchymal transition was impaired in Pitx2(-/-) embryos. Mesoderm cells from the branchial arches and neural crest cells from the otic region contribute to the development of the endocardial cushions, and both were reduced in number. Members of the Fgf and Bmp families exhibited altered expression levels in the mutants. CONCLUSIONS: We suggest that Pitx2 is involved in the cardiac outflow tract septation by promoting and/or maintaining the number and the remodeling process of the mesoderm progenitor cells. Pitx2 influences the expression of transcription factors and signaling molecules involved in the differentiation of the cushion mesenchyme during heart development.


Asunto(s)
Corazón/embriología , Proteínas de Homeodominio/fisiología , Organogénesis/genética , Factores de Transcripción/fisiología , Animales , Muerte Celular/genética , Linaje de la Célula/genética , Proliferación Celular , Embrión de Mamíferos , Defectos de la Almohadilla Endocárdica/genética , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Endocardio/citología , Endocardio/embriología , Regulación del Desarrollo de la Expresión Génica , Corazón/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/fisiología , Ratones , Ratones Noqueados , Cresta Neural/embriología , Cresta Neural/metabolismo , Organogénesis/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína del Homeodomínio PITX2
16.
Arterioscler Thromb Vasc Biol ; 32(11): e135-46, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22962329

RESUMEN

OBJECTIVE: Septal defects and coronary vessel anomalies are common congenital heart defects, yet their ontogeny and the underlying genetic mechanisms are not well understood. Here, we investigated the role of chicken ovalbumin upstream promoter-transcription factor II (COUP-TFII, NR2F2) in cardiac organogenesis. METHODS AND RESULTS: We analyzed embryos deficient in COUP-TFII and observed a spectrum of cardiac defects, including atrioventricular septal defect, thin-walled myocardium, and abnormal coronary morphogenesis. We show by expression analysis that COUP-TFII is expressed in the endocardium and the epicardium but not in the myocardium of the ventricle. Using endothelial-specific COUP-TFII mutants and molecular approaches, we show that COUP-TFII deficiency resulted in endocardial cushion hypoplasia. This was attributed to the reduced growth and survival of atrioventricular cushion mesenchymal cells and defective epithelial-mesenchymal transformation (EMT) in the underlying endocardium. In addition, the endocardial EMT defect was accompanied by downregulation of Snai1, one of the master regulators of EMT, and upregulation of vascular endothelial-cadherin. Furthermore, we show that although COUP-TFII does not play a major role in the formation of epicardial cell cysts, it is critically important for the formation of epicardium. Ablation of COUP-TFII impairs epicardial EMT and coronary plexus formation. CONCLUSIONS: Our results reveal that COUP-TFII plays cell-autonomous roles in the endocardium and the epicardium for endocardial and epicardial EMT, which are required for proper valve and coronary vessel formation during heart development.


Asunto(s)
Factor de Transcripción COUP II/metabolismo , Vasos Coronarios/embriología , Vasos Coronarios/metabolismo , Endocardio/embriología , Endocardio/metabolismo , Cardiopatías Congénitas/embriología , Cardiopatías Congénitas/metabolismo , Corazón/embriología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Factor de Transcripción COUP II/deficiencia , Factor de Transcripción COUP II/genética , Cadherinas/genética , Cadherinas/metabolismo , Movimiento Celular , Vasos Coronarios/patología , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Endocardio/patología , Transición Epitelial-Mesenquimal , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/patología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Morfogénesis , Miocardio/metabolismo , Miocardio/patología , Neovascularización Fisiológica , Pericardio/embriología , Pericardio/metabolismo , Pericardio/patología , Factores de Transcripción de la Familia Snail , Técnicas de Cultivo de Tejidos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Pathol ; 228(3): 416-28, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22821713

RESUMEN

Congenital heart defects (CHDs) are the most prevalent human birth defects. More than 85% of CHDs are thought to result from a combination of genetic susceptibilities and environmental stress. However, the stress-related signalling pathways involved remain largely unknown. The p53 transcription factor is a key tumour suppressor and a central regulator of the cellular stress responses. p53 activities are tightly regulated by its inhibitors Mdm2 and Mdm4 at the post-translational level. Here we used the Cre-loxP system to delete Mdm2 (Tie2Cre;Mdm2(FM/FM) ) or one copy of both Mdm2 and Mdm4 (Tie2Cre;Mdm2(FM/+) ; Mdm4(+/-) ) in endothelial/endocardial cells and their derivatives in mice to examine the regulation of the p53/Mdm2-Mdm4 pathway during vascular and cardiovascular development. The Tie2Cre;Mdm2(FM/FM) mice died before embryonic day 10.5 (E10.5) and displayed severe vascular defects. On the other hand, the Tie2Cre;Mdm2(FM/+) ; Mdm4(+/-) mice displayed atrial and ventricular septal defects (ASD, VSD) of the heart, leading to severe heart dysfunction and postnatal death. During cardiac endocardial cushion morphogenesis, p53 activation was associated with defects in both the epithelial-mesenchymal transition (EMT) of the endocardial cells and the post-EMT proliferation of the mesenchymal cells, and the valvuloseptal phenotypes of the Tie2Cre;Mdm2(FM/+) ; Mdm4(+/-) mice were fully rescued by deletion of one copy of p53. Strikingly, maternal exposure to low-dose X-rays in C57BL/6 mice mimicked the congenital heart malformations seen in the Tie2Cre;Mdm2(FM/+) ; Mdm4(+/-) model, which was also dependent on p53 status, establishing a link between maternal exposures and CHD susceptibility through the p53 pathway. These data revealed a new regulatory mechanism in cardiac endocardial cushion morphogenesis and suggested a possible cause of CHDs due to environmental stress.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Corazón/embriología , Morfogénesis/fisiología , Proteínas Proto-Oncogénicas c-mdm2/fisiología , Proteínas Proto-Oncogénicas/fisiología , Proteína p53 Supresora de Tumor/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Animales , Proliferación Celular , Ecocardiografía , Cojinetes Endocárdicos/patología , Cojinetes Endocárdicos/fisiopatología , Transición Epitelial-Mesenquimal/fisiología , Femenino , Corazón/fisiopatología , Cardiopatías Congénitas/patología , Cardiopatías Congénitas/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Tirosina Quinasas Receptoras/genética , Receptor TIE-2 , Transducción de Señal/genética , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/genética
18.
Cell Mol Life Sci ; 69(8): 1377-89, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22130515

RESUMEN

A key step in heart development is the coordinated development of the atrioventricular canal (AVC), the constriction between the atria and ventricles that electrically and physically separates the chambers, and the development of the atrioventricular valves that ensure unidirectional blood flow. Using knock-out and inducible overexpression mouse models, we provide evidence that the developmentally important T-box factors Tbx2 and Tbx3, in a functionally redundant manner, maintain the AVC myocardium phenotype during the process of chamber differentiation. Expression profiling and ChIP-sequencing analysis of Tbx3 revealed that it directly interacts with and represses chamber myocardial genes, and induces the atrioventricular pacemaker-like phenotype by activating relevant genes. Moreover, mutant mice lacking 3 or 4 functional alleles of Tbx2 and Tbx3 failed to form atrioventricular cushions, precursors of the valves and septa. Tbx2 and Tbx3 trigger development of the cushions through a regulatory feed-forward loop with Bmp2, thus providing a mechanism for the co-localization and coordination of these important processes in heart development.


Asunto(s)
Cojinetes Endocárdicos/embriología , Regulación del Desarrollo de la Expresión Génica , Proteínas de Dominio T Box/metabolismo , Animales , Secuencia de Bases , Proteína Morfogenética Ósea 2/genética , Proteína Morfogenética Ósea 2/metabolismo , Cojinetes Endocárdicos/metabolismo , Humanos , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miocardio/metabolismo , Ratas , Proteínas de Dominio T Box/genética , Regulación hacia Arriba
19.
Differentiation ; 84(1): 117-30, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22709652

RESUMEN

Partitioning of the four-chambered heart requires the proper formation, interaction and fusion of several mesenchymal tissues derived from different precursor populations that together form the atrioventricular mesenchymal complex. This includes the major endocardial cushions and the mesenchymal cap of the septum primum, which are of endocardial origin, and the dorsal mesenchymal protrusion (DMP), which is derived from the Second Heart Field. Failure of these structures to develop and/or fully mature results in atrial septal defects (ASDs) and atrioventricular septal defects (AVSD). AVSDs are congenital malformations in which the atria are permitted to communicate due to defective septation between the inferior margin of the septum primum and the atrial surface of the common atrioventricular valve. The clinical presentation of AVSDs is variable and depends on both the size and/or type of defect; less severe defects may be asymptomatic while the most severe defect, if untreated, results in infantile heart failure. For many years, maldevelopment of the endocardial cushions was thought to be the sole etiology of AVSDs. More recent work, however, has demonstrated that perturbation of DMP development also results in AVSD. Here, we discuss in detail the formation of the DMP, its contribution to cardiac septation and describe the morphological features as well as potential etiologies of ASDs and AVSDs.


Asunto(s)
Defectos de la Almohadilla Endocárdica/etiología , Cojinetes Endocárdicos/embriología , Defectos del Tabique Interatrial/etiología , Defectos del Tabique Interventricular/etiología , Mesodermo/embriología , Animales , Defectos de la Almohadilla Endocárdica/embriología , Cojinetes Endocárdicos/patología , Defectos del Tabique Interatrial/embriología , Defectos del Tabique Interventricular/embriología , Humanos , Mesodermo/patología , Ratones
20.
J Mol Cell Cardiol ; 52(5): 1096-102, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22300732

RESUMEN

Semilunar valve malformations are common human congenital heart defects. Bicuspid aortic valves occur in 2-3% of the population, and pulmonic valve stenosis constitutes 10% of all congenital heart disease in adults (Brickner et al., 2000) [1]. Semilunar valve defects cause valve regurgitation, stenosis, or calcification, leading to endocarditis or congestive heart failure. These complications often require prolonged medical treatment or surgical intervention. Despite the medical importance of valve disease, the regulatory pathways governing semilunar valve development are not entirely clear. In this report we investigated the spatiotemporal role of calcineurin/Nfatc1 signaling in semilunar valve development. We generated conditional knockout mice with calcineurin gene disrupted in various tissues during semilunar valve development. Our studies showed that calcineurin/Nfatc1 pathway signals in the secondary heart field (SHF) but not in the outflow tract myocardium or neural crest cells to regulate semilunar valve morphogenesis. Without SHF calcineurin/Nfatc1 signaling, the conal endocardial cushions-the site of prospective semilunar valve formation--first develop and then regress due to apoptosis, resulting in a striking phenotype with complete absence of the aortic and pulmonic valves, severe valve regurgitation, and perinatal lethality. This role of calcineurin/Nfatc1 signaling in the SHF is different from the requirement of calcineurin/Nfatc1 in the endocardium for semilunar valve formation (Chang et al., 2004) [2], indicating that calcineurin/Nfatc1 signals in multiple tissues to organize semilunar valve development. Also, our studies suggest distinct mechanisms of calcineurin/Nfat signaling for semilunar and atrioventricular valve morphogenesis. Therefore, we demonstrate a novel developmental mechanism in which calcineurin signals through Nfatc1 in the secondary heart field to promote semilunar valve morphogenesis, revealing a new supportive role of the secondary heart field for semilunar valve formation.


Asunto(s)
Calcineurina/metabolismo , Válvula Pulmonar/embriología , Transducción de Señal , Animales , Animales no Consanguíneos , Calcineurina/genética , Embrión de Mamíferos/citología , Embrión de Mamíferos/metabolismo , Células Madre Embrionarias/metabolismo , Cojinetes Endocárdicos/citología , Cojinetes Endocárdicos/embriología , Cojinetes Endocárdicos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Corazón/fisiopatología , Ratones , Ratones Noqueados , Factores de Transcripción NFATC , Especificidad de Órganos , Válvula Pulmonar/diagnóstico por imagen , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA