RESUMEN
Microplastic is globally regarded as an important factor impacting biogeochemical cycles, yet our understanding of such influences is limited by the uncertainties of intricate microbial processes. By multiomics analysis, coupled with soil chemodiversity characterization and microbial carbon use efficiency (CUE), we investigated how microbial responses to microplastics impacted soil carbon cycling in a long-term field experiment. We showed that biodegradable microplastics promoted soil organic carbon accrual by an average of 2.47%, while nondegradable microplastics inhibited it by 17.4%, as a consequence of the virus-bacteria coadaptations to the microplastics disturbance. In the relevant functional pathways, nondegradable microplastics significantly (P < 0.05) enhanced the abundance and transcriptional activity related to complex carbohydrate metabolism, whereas biodegradable microplastics significantly (P < 0.05) promoted functions involved in amino acid metabolism and glycolysis. Accordingly, viral lysis enhanced in nondegradable microplastics treatments to introduce more complex organic compounds to soil dissolved organic matters, thus benefiting the oligotrophs with high carbon metabolic capabilities in exploitation competition. In contrast, biodegradable microplastics enriched viral auxiliary metabolic genes of carbon metabolism through "piggyback-the-winner" strategy, conferring to dominant copiotrophs, enhanced substrate utilization capabilities. These virus-host interactions were also demonstrated in the corresponding soil plastisphere, which would alter microbial resource allocation and metabolism via CUE, affecting carbon storage consequently. Overall, our results underscore the importance of viral-host interactions in understanding the microplastics-dependent carbon storage in the soil ecosystem.
Asunto(s)
Carbono , Microplásticos , Microbiología del Suelo , Suelo , Microplásticos/metabolismo , Suelo/química , Carbono/metabolismo , Ciclo del Carbono , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Bacterias/genéticaRESUMEN
Diphenyl ether herbicides are extensively utilized in agricultural systems, but their residues threaten the health of sensitive rotation crops. Functional microbial strains can degrade diphenyl ether herbicides in the rhizosphere of crops, facilitating the restoration of a healthy agricultural environment. However, the interplay between microorganisms and plants in diphenyl ether herbicides degradation remains unclear. Thus, the herbicide-degrading strain Bacillus sp. Za and the sensitive crop, maize, were employed to uncover the interaction mechanism. The degradation of diphenyl ether herbicides by strain Bacillus sp. Za was promoted by root exudates. The strain induced root exudate re-secretion in diphenyl ether herbicide-polluted maize. We further showed that root exudates enhanced the rhizosphere colonization and the biofilm biomass of strain Za, augmenting its capacity to degrade diphenyl ether herbicide. Root exudates regulated gene fliZ, which is pivotal in biofilm formation. Wild-type strain Za significantly reduced herbicide toxicity to maize compared to the ZaΔfliZ mutant. Moreover, root exudates promoted strain Za growth and chemotaxis, which was related to biofilm formation. This mutualistic relationship between the microorganisms and the plants demonstrates the significance of plant-microbe interactions in shaping diphenyl ether herbicide degradation in rhizosphere soils. [Formula: see text] The author(s) have dedicated the work to the public domain under the Creative Commons CC0 "No Rights Reserved" license by waiving all of his or her rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law, 2024.
Asunto(s)
Bacillus , Biopelículas , Herbicidas , Raíces de Plantas , Rizosfera , Zea mays , Zea mays/microbiología , Bacillus/metabolismo , Bacillus/fisiología , Herbicidas/metabolismo , Raíces de Plantas/microbiología , Biodegradación Ambiental , Exudados de Plantas/metabolismo , Éteres Fenílicos/metabolismo , Contaminantes del Suelo/metabolismoRESUMEN
Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.
Asunto(s)
Contaminantes Ambientales , Oryza , Fenantrenos , Contaminantes del Suelo , Sphingomonas , Cadmio/metabolismo , Oryza/metabolismo , Contaminantes Ambientales/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteómica , Contaminantes del Suelo/metabolismo , Fenantrenos/metabolismo , Suelo , RizosferaRESUMEN
BACKGROUND: γ-Hexachlorocyclohexane (γ-HCH), an organochlorine insecticide of anthropogenic origin, is a persistent organic pollutant (POP) that causes environmental pollution concerns worldwide. Although many γ-HCH-degrading bacterial strains are available, inoculating them directly into γ-HCH-contaminated soil is ineffective because of the low survival rate of the exogenous bacteria. Another strategy for the bioremediation of γ-HCH involves the use of transgenic plants expressing bacterial enzyme for γ-HCH degradation through phytoremediation. RESULTS: We generated transgenic Arabidopsis thaliana expressing γ-HCH dehydrochlroninase LinA from bacterium Sphingobium japonicum strain UT26. Among the transgenic Arabidopsis T2 lines, we obtained one line (A5) that expressed and accumulated LinA well. The A5-derived T3 plants showed higher tolerance to γ-HCH than the non-transformant control plants, indicating that γ-HCH is toxic for Arabidopsis thaliana and that this effect is relieved by LinA expression. The crude extract of the A5 plants showed γ-HCH degradation activity, and metabolites of γ-HCH produced by the LinA reaction were detected in the assay solution, indicating that the A5 plants accumulated the active LinA protein. In some A5 lines, the whole plant absorbed and degraded more than 99% of γ-HCH (10 ppm) in the liquid medium within 36 h. CONCLUSION: The transgenic Arabidopsis expressing active LinA absorbed and degraded γ-HCH in the liquid medium, indicating the high potential of LinA-expressing transgenic plants for the phytoremediation of environmental γ-HCH. This study marks a crucial step toward the practical use of transgenic plants for the phytoremediation of POPs.
Asunto(s)
Arabidopsis , Biodegradación Ambiental , Hexaclorociclohexano , Plantas Modificadas Genéticamente , Sphingomonadaceae , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Hexaclorociclohexano/metabolismo , Sphingomonadaceae/genética , Sphingomonadaceae/metabolismo , Sphingomonadaceae/enzimología , Contaminantes del Suelo/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas/genética , Liasas/metabolismoRESUMEN
Heavy metals (HMs) contamination, owing to their potential links to various chronic diseases, poses a global threat to agriculture, environment, and human health. Nickel (Ni) is an essential element however, at higher concentration, it is highly phytotoxic, and affects major plant functions. Beneficial roles of plant growth regulators (PGRs) and organic amendments in mitigating the adverse impacts of HM on plant growth has gained the attention of scientific community worldwide. Here, we performed a greenhouse study to investigate the effect of indole-3-acetic acid (IAA @ 10- 5 M) and compost (1% w/w) individually and in combination in sustaining cauliflower growth and yield under Ni stress. In our results, combined application proved significantly better than individual applications in alleviating the adverse effects of Ni on cauliflower as it increased various plant attributes such as plant height (49%), root length (76%), curd height and diameter (68 and 134%), leaf area (75%), transpiration rate (36%), stomatal conductance (104%), water use efficiency (143%), flavonoid and phenolic contents (212 and 133%), soluble sugars and protein contents (202 and 199%), SPAD value (78%), chlorophyll 'a and b' (219 and 208%), carotenoid (335%), and NPK uptake (191, 79 and 92%) as compared to the control. Co-application of IAA and compost reduced Ni-induced electrolyte leakage (64%) and improved the antioxidant activities, including APX (55%), CAT (30%), SOD (43%), POD (55%), while reducing MDA and H2O2 contents (77 and 52%) compared to the control. The combined application also reduced Ni uptake in roots, shoots, and curd by 51, 78 and 72% respectively along with an increased relative production index (78%) as compared to the control. Hence, synergistic application of IAA and compost can mitigate Ni induced adverse impacts on cauliflower growth by immobilizing it in the soil.
Asunto(s)
Brassica , Compostaje , Ácidos Indolacéticos , Contaminantes del Suelo , Humanos , Níquel/metabolismo , Níquel/toxicidad , Brassica/metabolismo , Peróxido de Hidrógeno/metabolismo , Rizosfera , Clorofila A , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismoRESUMEN
Most vegetable crops are severely affected by the uptake of heavy metals from the soil. Heavy metals in vegetable bodies generate reactive oxygen species (ROS) that unbalance the antioxidant defense system. This study was initiated to determine the physiological and biochemical characteristics of spinach plants grown on soil contaminated with heavy metals and responding to Bacillus cereus and Bacillus aerius were isolated from soil contaminated with heavy metals. Heavy metal contamination led to a significant reduction in seed germination, seedling biomass, protein, and total nitrogen content of spinach plants grown in contaminated soils compared to control soils. In contrast, a significant increase in the content of metallothioneins and antioxidant enzymes was observed. Plants inoculated with B. cereus and B. aerius significantly reduced the oxidative stress induced by heavy metals by improving seed germination (%), seedling growth, nitrogen, and protein content. The content of metallothioneins and the activities of antioxidant enzymes were reduced in spinach plants grown from seeds inoculated with bacterial strains. In addition, plants inoculated with, B. cereus and B. aerius showed greater stomata opening than plants grown on soil contaminated with heavy metals, whose stomata were almost closed. These results suggested that both bacterial strains enhanced plant growth by reducing oxidative stress caused by metals.
Asunto(s)
Loratadina/análogos & derivados , Metales Pesados , Contaminantes del Suelo , Spinacia oleracea , Antioxidantes/metabolismo , Metales Pesados/toxicidad , Estrés Oxidativo , Bacterias/metabolismo , Suelo/química , Plantas/metabolismo , Nitrógeno/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismoRESUMEN
BACKGROUND: This study aimed to investigate the alterations in biochemical and physiological responses of oat plants exposed to antimony (Sb) contamination in soil. Specifically, we evaluated the effectiveness of an arbuscular mycorrhizal fungus (AMF) and olive mill waste (OMW) in mitigating the effects of Sb contamination. The soil was treated with a commercial strain of AMF (Rhizophagus irregularis) and OMW (4% w/w) under two different levels of Sb (0 and 1500 mg kg-1 soil). RESULTS: The combined treatment (OMW + AMF) enhanced the photosynthetic rate (+ 40%) and chlorophyll a (+ 91%) and chlorophyll b (+ 50%) content under Sb condition, which in turn induced more biomass production (+ 67-78%) compared to the contaminated control plants. More photosynthesis in OMW + AMF-treated plants gives a route for phenylalanine amino acid synthesis (+ 69%), which is used as a precursor for the biosynthesis of secondary metabolites, including flavonoids (+ 110%), polyphenols (+ 26%), and anthocyanins (+ 63%) compared to control plants. More activation of phenylalanine ammonia-lyase (+ 38%) and chalcone synthase (+ 26%) enzymes in OMW + AMF-treated plants under Sb stress indicated the activation of phenylpropanoid pathways in antioxidant metabolites biosynthesis. There was also improved shifting of antioxidant enzyme activities in the ASC/GSH and catalytic pathways in plants in response to OMW + AMF and Sb contamination, remarkably reducing oxidative damage markers. CONCLUSIONS: While individual applications of OMW and AMF also demonstrated some degree of plant tolerance induction, the combined presence of AMF with OMW supplementation significantly enhanced plant biomass production and adaptability to oxidative stress induced by soil Sb contamination.
Asunto(s)
Antimonio , Micorrizas , Olea , Contaminantes del Suelo , Micorrizas/fisiología , Olea/microbiología , Contaminantes del Suelo/metabolismo , Antimonio/metabolismo , Adaptación Fisiológica , Residuos Industriales , Fotosíntesis/efectos de los fármacos , Biodegradación Ambiental , BiomasaRESUMEN
BACKGROUND: Among different adsorbents, natural and inorganic compounds such as diatomite are important and advantageous in terms of high efficiency and cost-effectiveness, and function in stabilizing heavy metals in the environment. Calendula officinalis, a plant known as a high accumulator of heavy metals, was cultivated in soil treated with varying concentrations of modified diatomite to demonstrate the efficiency of modified diatomite in stabilizating of heavy metals in soils, RESULTS: The modification of diatomite aimed to enhance Calendula officinalis adsorptive properties, particularly towards heavy metals such as lead (Pb), Zinc (Zn), Chromium (Cr), Nickle (Ni), and Copper (Cu), common contaminants in industrial soils. The experimental design included both control and treated soil samples, with assessments at regular intervals. Modified diatomite significantly decreased the bioaccumulation of heavy metals in contaminated soils except Zn, evidenced by decreased DTPA extractable heavy metals in soil and also heavy metal concentrations in plant tissues. Using 10% modified diatomite decreased 91% Pb and Cu, 78% Cr, and 79% Ni concentration of plants compared to the control treatment. The highest concentration of Zn in plant tissue was observed in 2.5% modified diatomite treatment. Remarkably, the application of modified diatomite also appeared to improve the nutrient profile of the soil, leading to enhanced uptake of key nutrients like phosphorus (P) 1.18%, and potassium (K) 79.6% in shoots and 82.3% in roots in Calendula officinalis. Consequently, treated plants exhibited improved growth characteristics, including shoots and roots height of 16.98% and 12.8% respectively, and shoots fresh and dry weight of 48.5% and 50.2% respectively., compared to those in untreated, contaminated soil. CONCLUSION: The findings suggest promising implications for using such amendments in ecological restoration and sustainable agriculture, particularly in areas impacted by industrial pollution.
Asunto(s)
Calendula , Tierra de Diatomeas , Metales Pesados , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Tierra de Diatomeas/metabolismo , Calendula/metabolismo , Calendula/química , Suelo/química , Biodegradación Ambiental , Restauración y Remediación Ambiental/métodosRESUMEN
Cadmium (Cd), being a heavy metal, tends to accumulate in soils primarily through industrial activities, agricultural practices, and atmospheric deposition. Maize, being a staple crop for many regions, is particularly vulnerable to Cd contamination, leading to compromised growth, reduced yields, and potential health risks for consumers. Biochar (BC), a carbon-rich material derived from the pyrolysis of organic matter has been shown to improve soil structure, nutrient retention and microbial activity. The choice of biochar as an ameliorative agent stems from its well-documented capacity to enhance soil quality and mitigate heavy metal stress. The study aims to contribute to the understanding of the efficacy of biochar in combination with GA3, a plant growth regulator known for its role in promoting various physiological processes, in mitigating the adverse effects of Cd stress. The detailed investigation into morpho-physiological attributes and biochemical responses under controlled laboratory conditions provides valuable insights into the potential benefits of these interventions. The experimental design consisted of three replicates in a complete randomized design (CRD), wherein soil, each containing 10 kg was subjected to varying concentrations of cadmium (0, 8 and 16 mg/kg) and biochar (0.75% w/w base). Twelve different treatment combinations were applied, involving the cultivation of 36 maize plants in soil contaminated with Cd (T1: Control (No Cd stress; T2: Mild Cd stress (8 mg Cd/kg soil); T3: Severe Cd stress (16 mg Cd/kg soil); T4: 10 ppm GA3 (No Cd stress); T5: 10 ppm GA3 + Mild Cd stress; T6: 10 ppm GA3 + Severe Cd stress; T7: 0.75% Biochar (No Cd stress); T8: 0.75% Biochar + Mild Cd stress; T9: 0.75% Biochar + Severe Cd stress; T10: 10 ppm GA3 + 0.75% Biochar (No Cd stress); T11: 10 ppm GA3 + 0.75% Biochar + Mild Cd stress; T12: 10 ppm GA3 + 0.75% Biochar + Severe Cd stress). The combined application of GA3 and BC significantly enhanced multiple parameters including germination (27.83%), root length (59.53%), shoot length (20.49%), leaf protein (121.53%), root protein (99.93%), shoot protein (33.65%), leaf phenolics (47.90%), root phenolics (25.82%), shoot phenolics (25.85%), leaf chlorophyll a (57.03%), leaf chlorophyll b (23.19%), total chlorophyll (43.77%), leaf malondialdehyde (125.07%), root malondialdehyde (78.03%) and shoot malondialdehyde (131.16%) across various Cd levels compared to the control group. The synergistic effect of GA3 and BC manifested in optimal leaf protein and malondialdehyde levels indicating induced tolerance and mitigation of Cd detrimental impact on plant growth. The enriched soils showed resistance to heavy metal toxicity emphasizing the potential of BC and GA3 as viable strategy for enhancing maize growth. The application of biochar and gibberellic acid emerges as an effective means to mitigate cadmium-induced stress in maize, presenting a promising avenue for sustainable agricultural practices.
Asunto(s)
Cadmio , Giberelinas , Contaminantes del Suelo , Cadmio/metabolismo , Zea mays/metabolismo , Clorofila A/metabolismo , Contaminantes del Suelo/metabolismo , Carbón Orgánico/farmacología , Carbón Orgánico/metabolismo , Suelo/química , Malondialdehído/metabolismoRESUMEN
BACKGROUND: Zinc (Zn) and nickel (Ni) are nutrients that are crucial for plant growth; however, when they are present at higher concentrations, they can cause toxicity in plants. The present study aimed to isolate plant growth promoting endophytic bacteria from Viburnum grandiflorum and assess its plant and defense promoting potential alone and in combination with RP in zinc (Zn) and nickel (Ni) toxic soil. The isolated endophytic bacteria were identified using 16s rRNA gene sequencing. For the experiment, twelve different treatments were applied using Zn, Ni, isolated endophytic Bacillus mycoides (Accession # MW979613), and rock phosphate (RP). The Ni, Zn and RP were used at the rate of (100 mg/kg) and (0.2 g/kg) respectively. A pot experiment with three replicates of each treatment was conducted using a complete randomized design (CRD). RESULTS: The results indicated that Ni (T5 = seed + 100 mg/kg Ni and T9 = seed + 100 mg/kg Zn) and Zn concentrations inhibited plant growth, but the intensity of growth inhibition was higher in Ni-contaminated soil. Bacillus mycoides and RP at 100 mg/Kg Zn (T12 = inoculated seed + 100 mg/kg Zn + RP0.2 g/kg.) increased the shoot length, leaf width, protein and sugar content by 57%, 13%, 20% and 34%, respectively, compared to the control. The antioxidant enzymes superoxide dismutases (SOD), peroxidase (POD) were decreased in contaminated soil. Furthermore, Ni and Zn accumulation was inhibited in T11 (seed + 100 mg/kg Zn + RP0.2 g/Kg) and T12 (inoculated seed + 100 mg/kg Zn + RP0.2 g/Kg) by 62 and 63% respectively. The Cu, Ca, and K, contents increased by 128, 219 and 85, Mn, Na, and K by 326, 449, and 84% in (T3 = inoculated seed) and (T4 = inoculated seed + RP 0.2 g/Kg) respectively. CONCLUSIONS: Ni was more toxic to plants than Zn, but endophytic bacteria isolated from Viburnum grandiflorum, helped wheat (Triticum aestivum) plants and reduced the toxic effects of Ni and Zn. The effect of Bacillus mycoides was more prominent in combination with RP which promoted and suppressed heavy-metal toxicity. The reported combination of Bacillus mycoides and RP may be useful for improving plant growth and overcoming metal stress.
Asunto(s)
Bacillus , Metales Pesados , Contaminantes del Suelo , Triticum/genética , Níquel/toxicidad , Níquel/metabolismo , Fosfatos/metabolismo , ARN Ribosómico 16S/genética , Metales Pesados/toxicidad , Metales Pesados/metabolismo , Zinc/metabolismo , Bacterias/metabolismo , Suelo , Contaminantes del Suelo/metabolismoRESUMEN
BACKGROUND: Brassica napus, a hybrid resulting from the crossing of Brassica rapa and Brassica oleracea, is one of the most important oil crops. Despite its significance, B. napus productivity faces substantial challenges due to heavy metal stress, especially in response to cadmium (Cd), which poses a significant threat among heavy metals. Natural resistance-associated macrophage proteins (NRAMPs) play pivotal roles in Cd uptake and transport within plants. However, our understanding of the role of BnNRAMPs in B. napus is limited. Thus, this study aimed to conduct genome-wide identification and bioinformatics analysis of three Brassica species: B. napus, B. rapa, and B. oleracea. RESULTS: A total of 37 NRAMPs were identified across the three Brassica species and classified into two distinct subfamilies based on evolutionary relationships. Conservative motif analysis revealed that motif 6 and motif 8 might significantly contribute to the differentiation between subfamily I and subfamily II within Brassica species. Evolutionary analyses and chromosome mapping revealed a reduction in the NRAMP gene family during B. napus evolutionary history, resulting in the loss of an orthologous gene derived from BoNRAMP3.2. Cis-acting element analysis suggested potential regulation of the NRAMP gene family by specific plant hormones, such as abscisic acid (ABA) and methyl jasmonate (MeJA). However, gene expression pattern analyses under hormonal or stress treatments indicated limited responsiveness of the NRAMP gene family to these treatments, warranting further experimental validation. Under Cd stress in B. napus, expression pattern analysis of the NRAMP gene family revealed a decrease in the expression levels of most BnNRAMP genes with increasing Cd concentrations. Notably, BnNRAMP5.1/5.2 exhibited a unique response pattern, being stimulated at low Cd concentrations and inhibited at high Cd concentrations, suggesting potential response mechanisms distinct from those of other NRAMP genes. CONCLUSIONS: In summary, this study indicates complex molecular dynamics within the NRAMP gene family under Cd stress, suggesting potential applications in enhancing plant resilience, particularly against Cd. The findings also offer valuable insights for further understanding the functionality and regulatory mechanisms of the NRAMP gene family.
Asunto(s)
Brassica , Proteínas de Plantas , Estrés Fisiológico , Brassica/genética , Estudio de Asociación del Genoma Completo , Genoma de Planta , Proteínas de Plantas/genética , Genes de Plantas , Cadmio/metabolismo , Cadmio/toxicidad , Contaminantes del Suelo/metabolismo , Contaminantes del Suelo/toxicidad , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Proteínas de Transporte de Catión/genética , Estrés Fisiológico/genética , Fenómenos Fisiológicos de las PlantasRESUMEN
BACKGROUND: Soil contamination with heavy metals poses a significant threat to plant health and human well-being. This study explores the potential of nano silica as a solution for mitigating heavy metal uptake in Calendula officinalis. RESULTS: Greenhouse experiments demonstrated, 1000 mgâ¢kg- 1 nano silica caused a 6% increase in soil pH compared to the control treatment. Also in 1000 mg. kg- 1 nano silica, the concentrations of available Pb (lead), Zn (zinc), Cu (copper), Ni (nickel), and Cr (chromium) in soil decreased by 12%, 11%, 11.6%, 10%, and 9.5%, respectively, compared to the control. Nano silica application significantly reduces heavy metal accumulation in C. officinalis exposed to contaminated soil except Zn. In 1000 mg.kg- 1 nano silica shoots Zn 13.28% increased and roots Zn increased 13% compared to the control treatment. Applying nano silica leads to increase the amount of phosphorus (P) 25%, potassium (K) 26% uptake by plant, In 1000 mg.kg - 1 treatment the highest amount of urease enzyme activity was 2.5%, dehydrogenase enzyme activity, 23.6% and the highest level of alkaline phosphatase enzyme activity was 13.5% higher than the control treatment. CONCLUSION: Nano silica, particularly at a concentration of 1000 mg.kg - 1, enhanced roots and shoots length, dry weight, and soil enzyme activity Moreover, it increased P and K concentrations in plant tissues while decreasing heavy metals uptake by plant.
Asunto(s)
Calendula , Metales Pesados , Dióxido de Silicio , Contaminantes del Suelo , Metales Pesados/metabolismo , Contaminantes del Suelo/metabolismo , Calendula/metabolismo , Nanopartículas , Suelo/química , Raíces de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacosRESUMEN
BACKGROUND: Grain quality is an important index of rice production, particularly when plants are grown under stress. Arsenic (As) contamination in paddy fields severely affects rice grain yield and quality. Here, the effects of As and combinations of As(III)-oxidizing bacteria (Pseudomonas stutzeri 4.25, 4.27, and 4.44) and plant growth-promoting bacteria (Delftia acidovorans KKU2500-12 and Cupriavidus taiwanensis KKU2500-3) on enzymes related to starch accumulation in grains and the grain quality of Khao Dawk Mali 105 rice cultivated in As-contaminated soil under greenhouse conditions were investigated. RESULTS: Arsenic affected the activities of starch biosynthesis-related enzymes, and decreases of up to 76.27%, 71.53%, 49.74%, 73.39%, and 47.46% in AGPase, SSS, GBSS, SBE, and SDBE activities, respectively, and 9.42-61.07% in starch accumulation in grains were detected after growth in As-contaminated soil. However, the KKU2500-3/4.25 and KKU2500-3/4.44 combinations yielded the greatest enzyme activities in grains, and compared with the results observed in uninoculated seedlings, increases in starch accumulation of up to 51.16% and 23.81% were found in the inoculated seedlings after growth in medium- and high-As-contaminated soils, at 10-17 and 10-24 days after anthesis, respectively. The bacteria increased the 2-AP content in rice under As stress, possibly via the induction of proline, a 2-AP substrate. Bacterium-inoculated rice had significantly greater 2-AP levels than uninoculated rice, and 2.16-9.93% and 26.57-42.04% increases were detected in rice plants grown in medium- and high-As-contaminated soils, respectively. CONCLUSIONS: Arsenic toxicity can be mitigated in rice growing under greenhouse conditions by maintaining starch biosynthesis, accumulating amylose, and increasing 2-AP content. The effectiveness of these bacteria should be validated in paddy fields; hence, safe rice grains with a good starch content and aroma could be produced.
Asunto(s)
Arsénico , Oryza , Almidón , Oryza/microbiología , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Almidón/metabolismo , Arsénico/metabolismo , Grano Comestible/microbiología , Contaminantes del Suelo/metabolismo , Microbiología del Suelo , Estrés FisiológicoRESUMEN
BACKGROUND: Soil pollution by petroleum hydrocarbons (PHCs) reduces yield by changing the physico-chemical properties of soil and plants due to PHCs' biotoxicity and persistence. Thus, removing PHCs from the soil is crucial for ecological sustainability. Microbes-assisted phytoremediation is an economical and eco-friendly solution. The current work aimed to develop and use bacterial consortia (BC) for PHCs degradation and plant growth enhancement in hydrocarbon-contaminated soil. Initially, the enriched microbial cultures (that were prepared from PHCs-contaminated soils from five distinct regions) were obtained via screening through microcosm experiments. Afterward, two best microbial cultures were tested for PHCs degradation under various temperature and pH ranges. After culture optimization, isolation and characterization of bacterial strains were done to construct two BC. These constructed BC were tested in a pot experiment for hydrocarbons degradation and chickpea growth in PHCs contaminated soil. RESULTS: Findings revealed that PHCs exerted significant phytotoxic effects on chickpea growth and physiology when cultivated in PHCs contaminated soil, reducing agronomic and physiological traits by 13-29% and 12-43%, respectively. However, in the presence of BC, the phytotoxic impacts of PHCs on chickpea plants were reduced, resulting in up to 24 - 35% improvement in agronomic and physiological characteristics as compared to un-inoculated contaminated controls. Furthermore, the bacterial consortia boosted chickpea's nutritional absorption and antioxidant mechanism. Most importantly, chickpea plants phytoremediated 52% of the initial PHCs concentration; however, adding BC1 and BC2 with chickpea plants further increased this removal and remediated 74% and 80% of the initial PHCs concentration, respectively. CONCLUSION: In general, BC2 outperformed BC1 (with few exceptions) in promoting plant growth and PHCs elimination. Therefore, using multi-trait BC for PHCs degradation and plant growth improvement under PHCs stress may be an efficient and environmentally friendly strategy to deal with PHCs pollution and toxicity.
Asunto(s)
Biodegradación Ambiental , Cicer , Hidrocarburos , Consorcios Microbianos , Microbiología del Suelo , Contaminantes del Suelo , Cicer/microbiología , Cicer/crecimiento & desarrollo , Cicer/metabolismo , Contaminantes del Suelo/metabolismo , Hidrocarburos/metabolismo , Bacterias/metabolismo , Rizosfera , Petróleo/metabolismoRESUMEN
BACKGROUND: Gadolinium (Gd) is an increasingly found lanthanide element in soil; thus, understanding its impact on plant physiology, biochemistry, and molecular responses is crucial. Here, we aimed to provide a comprehensive understanding of Gd (150 mg kg- 1) impacts on guar (Cyamopsis tetragonoloba L.) plant yield and metabolism and whether the symbiotic relationship with arbuscular mycorrhizal fungi (AMF) can mitigate Gd toxicity of soil contamination. RESULTS: AMF treatment improved mineral nutrient uptake and seed yield by 38-41% under Gd stress compared to non-inoculated stressed plants. Metabolic analysis unveiled the defense mechanisms adopted by AMF-treated plants, revealing carbon and nitrogen metabolism adaptations to withstand Gd contamination. This included an increase in the synthesis of primary metabolites, such as total sugar (+ 39% compared to control), soluble sugars (+ 29%), starch (+ 30%), and some main amino acids like proline (+ 57%) and phenylalanine (+ 87%) in the seeds of AMF-treated plants grown under Gd contamination. Furthermore, fatty acid and organic acid profile changes were accompanied by the production of secondary metabolites, including tocopherols, polyamines, phenolic acids, flavones, and anthocyanins. CONCLUSIONS: Overall, the coordinated synthesis of these compounds underscores the intricate regulatory mechanisms underlying plant-AMF interactions and highlights the potential of AMF to modulate plant secondary metabolism for enhanced Gd stress tolerance.
Asunto(s)
Cyamopsis , Gadolinio , Micorrizas , Simbiosis , Micorrizas/fisiología , Cyamopsis/metabolismo , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Semillas/microbiología , Semillas/efectos de los fármacosRESUMEN
Soil pollution with heavy metals has grown to be a big hassle, leading to the loss in farming production particularly in developing countries like Pakistan, where no proper channel is present for irrigation and extraction of these toxic heavy metals. The present study aims to ameliorate the damages caused by heavy metal ions (Hg-Mercury) on rapeseed (Brassica napus L.) via a growth regulator (α-tocopherol 150 mg/L) and thermopriming technique at 4 °C and 50 °C to maintain plant agronomical and physiological characteristics. In pot experiments, we designed total of 11 treatments viz.( T0 (control), T1 (Hg4ppm), T2 (Hg8ppm), T3 (Hg4ppm + 4 °C), T4 (Hg4ppm + 4 °C + tocopherol (150 m/L)), T5 (Hg4ppm + 50 °C), T6 (Hg4ppm + 50 °C + tocopherol (150 mg/L)), T7 (Hg8ppm + 4 °C), T8 (Hg8ppm + 4 °C + tocopherol (150 mg/L)), T9 (Hg8ppm + 50 °C), T10 (Hg8ppm + 50 °C + tocopherol (150 mg/L) the results revealed that chlorophyll content at p < 0.05 with growth regulator and antioxidant enzymes such as catalase, peroxidase, and malondialdehyde enhanced up to the maximum level at T5 = Hg4ppm + 50 °C (50 °C thermopriming under 4 ppm mercuric chloride stress), suggesting that high temperature initiate the antioxidant system to reduce photosystem damage. However, protein, proline, superoxide dismutase at p < 0.05, and carotenoid, soluble sugar, and ascorbate peroxidase were increased non-significantly (p > 0.05) 50 °C thermopriming under 8 ppm high mercuric chloride stress (T9 = Hg8ppm + 50 °C) representing the tolerance of selected specie by synthesizing osmolytes to resist oxidation mechanism. Furthermore, reduction in % MC (moisture content) is easily improved with foliar application of α-tocopherol and 50 °C thermopriming and 4 ppm heavy metal stress at T6 = Hg4ppm + 50 °C + α-tocopherol (150 mg/L), with a remarkable increase in plant vigor and germination energy. It has resulted that the inhibitory effect of only lower concentration (4 ppm) of heavy metal stress was ameliorated by exogenous application of α-tocopherol and thermopriming technique by synthesizing high levels of proline and antioxidant activities in maintaining seedling growth and development on heavy metal contaminated soil.
Asunto(s)
Brassica napus , Metales Pesados , Contaminantes del Suelo , Antioxidantes/metabolismo , alfa-Tocoferol/farmacología , alfa-Tocoferol/metabolismo , Brassica napus/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Tocoferoles/metabolismo , Tocoferoles/farmacología , Metales Pesados/metabolismo , Prolina/metabolismo , Contaminantes del Suelo/metabolismoRESUMEN
BACKGROUND: The pollution of soil by heavy metals, particularly Cd, is constitutes a critical international environmental concern. Willow species are renowned for their efficacy in the phytoremediation of heavy metals owing to their high Cd absorption rate and rapid growth. However, the mechanisms underlying microbial regulation for high- and low-accumulating willow species remain poorly understood. Therefore, we investigated the responses of soil and rhizosphere microbial communities to high- and low-Cd-accumulating willows and Cd contamination. We analyzed soil properties were analyzed in bulk soil (SM) and rhizosphere soil (RM) planted with high-accumulating (H) and low-accumulating (L) willow species. RESULTS: Rhizosphere soil for different willow species had more NH4+ than that of bulk soil, and RM-H soil had more than RM-L had. The available phosphorus content was greater in hyper-accumulated species than it was in lower-accumulated species, especially in RM-H. Genome sequencing of bacterial and fungal communities showed that RM-L exhibited the highest bacterial diversity, whereas RM-H displayed the greatest richness than the other groups. SM-L exhibited the highest diversity and richness of fungal communities. Ralstonia emerged as the predominant bacterium in RM-H, whereas Basidiomycota and Cercozoa were the most enriched fungi in SM-H. Annotation of the N and C metabolism pathways revealed differential patterns: expression levels of NRT2, NarB, nirA, nirD, nrfA, and nosZ were highest in RM-H, demonstrating the effects of NO3-and N on the high accumulation of Cd in RM-H. The annotated genes associated with C metabolism indicated a preference for the tricarboxylic pathway in RM-H, whereas the hydroxypropionate-hydroxybutyrate cycle was implicated in C sequestration in SM-L. CONCLUSIONS: These contribute to elucidation of the mechanism underlying high Cd accumulation in willows, particularly in respect of the roles of microbes and N and C utilization. This will provide valuable insights for repairing polluted soil using N and employing organic acids to improve heavy metal remediation efficiency.
Asunto(s)
Biodegradación Ambiental , Cadmio , Microbiota , Rizosfera , Salix , Microbiología del Suelo , Contaminantes del Suelo , Salix/microbiología , Salix/metabolismo , Cadmio/metabolismo , Contaminantes del Suelo/metabolismo , Bacterias/metabolismo , Bacterias/genética , Bacterias/clasificación , Hongos/metabolismo , Hongos/genética , Suelo/químicaRESUMEN
The accumulation of arsenic (As) in rice (Oryza sativa L.) grain poses a significant health concern in Bangladesh. To address this, we investigated the efficacy of various organic amendments and phytoremediation techniques in reducing As buildup in O. sativa. We evaluated the impact of five doses of biochar (BC; BC0.1: 0.1%, BC0.28: 0.28%, BC0.55: 0.55%, BC0.82: 0.82% and BC1.0: 1.0%, w/w), vermicompost (VC; VC1.0: 1.0%, VC1.8: 1.8%, VC3.0: 3.0%, VC4.2: 4.2% and VC5.0: 5.0%, w/w), and floating duckweed (DW; DW100: 100, DW160: 160, DW250: 250, DW340: 340 and DW400: 400 g m- 2) on O. sativa cultivated in As-contaminated soil. Employing a three-factor five-level central composite design and response surface methodology (RSM), we optimized the application rates of BC-VC-DW. Our findings revealed that As contamination in the soil negatively impacted O. sativa growth. However, the addition of BC, VC, and DW significantly enhanced plant morphological parameters, SPAD value, and grain yield per pot. Notably, a combination of moderate BC-DW and high VC (BC0.55VC5DW250) increased grain yield by 44.4% compared to the control (BC0VC0DW0). As contamination increased root, straw, and grain As levels, and oxidative stress in O. sativa leaves. However, treatment BC0.82VC4.2DW340 significantly reduced grain As (G-As) by 56%, leaf hydrogen peroxide by 71%, and malondialdehyde by 50% compared to the control. Lower doses of BC-VC-DW (BC0.28VC1.8DW160) increased antioxidant enzyme activities, while moderate to high doses resulted in a decline in these activities. Bioconcentration and translocation factors below 1 indicated limited As uptake and translocation in plant tissues. Through RSM optimization, we determined that optimal doses of BC (0.76%), VC (4.62%), and DW (290.0 g m- 2) could maximize grain yield (32.96 g pot- 1, 44% higher than control) and minimize G-As content (0.189 mg kg- 1, 54% lower than control). These findings underscore effective strategies for enhancing yield and reducing As accumulation in grains from contaminated areas, thereby ensuring agricultural productivity, human health, and long-term sustainability. Overall, our study contributes to safer food production and improved public health in As-affected regions.
Asunto(s)
Arsénico , Biodegradación Ambiental , Carbón Orgánico , Oryza , Contaminantes del Suelo , Oryza/metabolismo , Oryza/crecimiento & desarrollo , Arsénico/metabolismo , Contaminantes del Suelo/metabolismo , Compostaje/métodos , Araceae/metabolismo , Araceae/efectos de los fármacos , Araceae/crecimiento & desarrollo , Suelo/químicaRESUMEN
BACKGROUND: Wheat is one of major sources of human cadmium (Cd) intake. Reducing the grain Cd concentrations in wheat is urgently required to ensure food security and human health. In this study, we performed a field experiment at Wenjiang experimental field of Sichuan Agricultural University (Chengdu, China) to reveal the effects of FeCl3 and Fe2(SO4)3 on reducing grain Cd concentrations in dwarf Polish wheat (Triticum polonicum L., 2n = 4x = 28, AABB). RESULTS: Soil application of FeCl3 and Fe2(SO4)3 (0.04 M Fe3+/m2) significantly reduced grain Cd concentration in DPW at maturity by 19.04% and 33.33%, respectively. They did not reduce Cd uptake or root-to-shoot Cd translocation, but increased Cd distribution in lower leaves, lower internodes, and glumes. Meanwhile, application of FeCl3 and Fe2(SO4)3 up-regulated the expression of TpNRAMP5, TpNRAMP2 and TpYSL15 in roots, and TpYSL15 and TpZIP3 in shoots; they also downregulated the expression of TpZIP1 and TpZIP3 in roots, and TpIRT1 and TpNRAMP5 in shoots. CONCLUSIONS: The reduction in grain Cd concentration caused by application of FeCl3 and Fe2(SO4)3 was resulted from changes in shoot Cd distribution via regulating the expression of some metal transporter genes. Overall, this study reports the physiological pathways of soil applied Fe fertilizer on grain Cd concentration in wheat, suggests a strategy for reducing grain Cd concentration by altering shoot Cd distribution.
Asunto(s)
Cadmio , Compuestos Férricos , Triticum , Triticum/metabolismo , Triticum/genética , Cadmio/metabolismo , Compuestos Férricos/metabolismo , Cloruros/metabolismo , Fertilizantes , Suelo/química , Contaminantes del Suelo/metabolismo , Raíces de Plantas/metabolismo , Grano Comestible/metabolismo , Grano Comestible/genética , China , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genéticaRESUMEN
Microplastic (MP) pollution in terrestrial ecosystems is gaining attention, but there is limited research on its effects on leafy vegetables when combined with heavy metals. This study examines the impact of three MP types-polyethylene (PE), polyethylene terephthalate (PET), and polystyrene (PS)-at concentrations of 0.02, 0.05, and 0.1% w/w, along with cadmium (Cd) and biochar (B), on germination, growth, nutrient absorption, and heavy metal uptake in red amaranth (Amaranthus tricolor L.). We found that different MP types and concentrations did not negatively affect germination parameters like germination rate, relative germination rate, germination vigor, relative germination vigor, and germination speed. However, they increased phytotoxicity and decreased stress tolerance compared to an untreated control (CK1). The presence of MPs, particularly the PS type, reduced phosphorus and potassium uptake while enhancing Cd uptake. For example, treatments PS0.02CdB, PS0.05CdB, and PS0.1CdB increased Cd content in A. tricolor seedlings by 158%, 126%, and 44%, respectively, compared to the treatment CdB (CK2). Additionally, MP contamination led to reduced plant height, leaf dry matter content, and fresh and dry weights, indicating adverse effects on plant growth. Moreover, the presence of MPs increased bioconcentration factors and translocation factors for Cd, suggesting that MPs might act as carriers for heavy metal absorption in plants. On the positive side, the addition of biochar improved several root parameters, including root length, volume, surface area, and the number of root tips in the presence of MPs, indicating potential benefits for plant growth. Our study shows that the combination of MPs and Cd reduces plant growth and increases the risk of heavy metal contamination in food crops. Further research is needed to understand how different MP types and concentrations affect various plant species, which will aid in developing targeted mitigation strategies and in exploring the mechanisms through which MPs impact plant growth and heavy metal uptake. Finally, investigating the potential of biochar application in conjunction with other amendments in mitigating these effects could be key to addressing MP and heavy metal contamination in agricultural systems.