Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Physiol Rev ; 98(3): 1241-1334, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29717932

RESUMEN

Hypoxia is one of the most common and severe challenges to the maintenance of homeostasis. Oxygen sensing is a property of all tissues, and the response to hypoxia is multidimensional involving complicated intracellular networks concerned with the transduction of hypoxia-induced responses. Of all the stresses to which the fetus and newborn infant are subjected, perhaps the most important and clinically relevant is that of hypoxia. Hypoxia during gestation impacts both the mother and fetal development through interactions with an individual's genetic traits acquired over multiple generations by natural selection and changes in gene expression patterns by altering the epigenetic code. Changes in the epigenome determine "genomic plasticity," i.e., the ability of genes to be differentially expressed according to environmental cues. The genomic plasticity defined by epigenomic mechanisms including DNA methylation, histone modifications, and noncoding RNAs during development is the mechanistic substrate for phenotypic programming that determines physiological response and risk for healthy or deleterious outcomes. This review explores the impact of gestational hypoxia on maternal health and fetal development, and epigenetic mechanisms of developmental plasticity with emphasis on the uteroplacental circulation, heart development, cerebral circulation, pulmonary development, and the hypothalamic-pituitary-adrenal axis and adipose tissue. The complex molecular and epigenetic interactions that may impact an individual's physiology and developmental programming of health and disease later in life are discussed.


Asunto(s)
Desarrollo Fetal , Hipoxia Fetal/metabolismo , Adaptación Fisiológica , Tejido Adiposo/embriología , Animales , Epigénesis Genética , Femenino , Corazón Fetal/crecimiento & desarrollo , Cardiopatías/etiología , Humanos , Hipertensión Pulmonar/congénito , Sistema Hipotálamo-Hipofisario , Salud Materna , Sistema Hipófiso-Suprarrenal , Circulación Placentaria , Embarazo
2.
Am J Physiol Heart Circ Physiol ; 320(5): H1873-H1886, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33739154

RESUMEN

Compared with acyanotic congenital heart disease (CHD), cyanotic CHD has an increased risk of lifelong mortality and morbidity. These adverse outcomes may be attributed to delayed cardiomyocyte maturation, since the transition from a hypoxic fetal milieu to oxygen-rich postnatal environment is disrupted. We established a rodent model to replicate hypoxic myocardial conditions spanning perinatal development, and tested the hypothesis that chronic hypoxia impairs cardiac development. Pregnant mice were housed in hypoxia beginning at embryonic day 16. Pups stayed in hypoxia until postnatal day (P)8 when cardiac development is nearly complete. Global gene expression was quantified at P8 and at P30, after recovering in normoxia. Phenotypic testing included electrocardiogram, echocardiogram, and ex vivo electrophysiology study. Hypoxic P8 animals were 47% smaller than controls with preserved heart size. Gene expression was grossly altered by hypoxia at P8 (1,427 genes affected), but normalized after recovery (P30). Electrocardiograms revealed bradycardia and slowed conduction velocity in hypoxic animals at P8, with noticeable resolution after recovery (P30). Notable differences that persisted after recovery (P30) included a 65% prolongation in ventricular effective refractory period, sinus node dysfunction, 23% reduction in ejection fraction, and 16% reduction in fractional shortening in animals exposed to hypoxia. We investigated the impact of chronic hypoxia on the developing heart. Perinatal hypoxia was associated with changes in gene expression and cardiac function. Persistent changes to the electrophysiological substrate and contractile function warrant further investigation and may contribute to adverse outcomes observed in the cyanotic CHD population.NEW & NOTEWORTHY We utilized a new mouse model of chronic perinatal hypoxia to simulate the hypoxic myocardial conditions present in cyanotic congenital heart disease. Hypoxia caused numerous abnormalities in cardiomyocyte gene expression, the electrophysiologic substrate of the heart, and contractile function. Taken together, alterations observed in the neonatal period suggest delayed cardiac development immediately following hypoxia.


Asunto(s)
Cianosis/etiología , Corazón Fetal/crecimiento & desarrollo , Cardiopatías Congénitas/etiología , Hipoxia/complicaciones , Factores de Edad , Animales , Animales Recién Nacidos , Enfermedad Crónica , Cianosis/genética , Cianosis/metabolismo , Cianosis/fisiopatología , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/metabolismo , Hipoxia Fetal/complicaciones , Hipoxia Fetal/genética , Hipoxia Fetal/metabolismo , Hipoxia Fetal/fisiopatología , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca , Hipoxia/genética , Hipoxia/metabolismo , Hipoxia/fisiopatología , Ratones , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Organogénesis , Embarazo , Efectos Tardíos de la Exposición Prenatal
3.
J Perinat Med ; 49(3): 371-376, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33085638

RESUMEN

OBJECTIVES: To evaluate 24-segment fractional shortening (FS) of the fetal heart using FetalHQ by speckle-tracking regarding reproducibility and the change with advancing gestation. METHODS: Eighty-one pregnant women at 18-21+6 and 28-31+6 weeks of gestation were studied using FetalHQ with the speckle-tracking technique to calculate 24-segment FS of left and right ventricles. Intra- and inter-class correlation coefficients and intra- and inter-observer agreements of measurements for FS were assessed in each segment. RESULTS: With respect to intra-observer reproducibility, all FS values showed correlations between 0.575 and 0.862 for the left ventricle, with good intra-observer agreements except for left ventricular segments 14-24. Right ventricular FS values showed correlations between 0.334 and 0.685, with good intra-observer agreements. With respect to inter-observer reproducibility, all FS values showed correlations between 0.491 and 0.801 for the left ventricle, with good intra-observer agreements except for left ventricular segments 16-22. Right ventricular FS values showed correlations between 0.375 and 0.575, with good inter-observer agreements. There were significant differences in the mean FS values in the basal segment (segments 1-5) of the left ventricle between 18 and 21+6 and 28-31+6 weeks of gestation (p<0.05), whereas there were significant differences in all mean FS values in the right ventricle between both gestational ages (p<0.05). CONCLUSIONS: These results suggest that the reproducibility of the 24-segment FS of the fetal heart using FetalHQ is fair. However, there may be significant differences in FS values with advancing gestational age, especially for the right ventricle.


Asunto(s)
Corazón Fetal , Ventrículos Cardíacos , Ultrasonografía Prenatal/métodos , Adulto , Femenino , Corazón Fetal/diagnóstico por imagen , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/fisiología , Madurez de los Órganos Fetales , Edad Gestacional , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/crecimiento & desarrollo , Humanos , Variaciones Dependientes del Observador , Tamaño de los Órganos , Embarazo , Reproducibilidad de los Resultados
4.
Ultrasound Obstet Gynecol ; 55(4): 516-522, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-30989734

RESUMEN

OBJECTIVE: EXTrauterine Environment for Neonatal Development (EXTEND) is a system to support ongoing fetal growth and organ development in an extrauterine environment, utilizing a pumpless low-resistance oxygenator circuit. The aim of this study was to evaluate hemodynamics and cardiac function in fetal sheep sustained on the EXTEND system. METHODS: This was a prospective study of fetal sheep supported for a minimum of 3 weeks on EXTEND. Hemodynamic parameters were assessed weekly and included heart rate, mean arterial pressure (MAP), Doppler-echocardiography-derived cardiac output (CO), pulsatility indices (PIs) of the fetal middle cerebral artery (MCA), umbilical artery (UA) and ductus venosus and cardiac function, as assessed by speckle-tracking-derived global longitudinal strain and strain rate in the right (RV) and left (LV) ventricles. Parameters were compared at 0 days and 1, 2 and 3 weeks following placement on EXTEND. RESULTS: Of 10 fetal sheep enrolled, seven survived for 3 weeks and were included in the analysis. Median gestational age at cannulation was 107 (range, 95-109) days. Heart rate decreased and MAP increased significantly, but within acceptable ranges, during the study period. The quantities and relative ratios of right and left CO remained stable within the anticipated physiological range throughout the study period. Vascular tracings and PIs appeared to be similar to those seen normally in the natural in-utero state, with MCA-PI being higher than UA-PI. UA tracings demonstrated maintained abundant diastolic flow despite the absence of placental circulation. In both the RV and LV, strain decreased significantly at 1 and 2 weeks relative to baseline but returned to baseline values by week 3. CONCLUSIONS: The EXTEND mechanical support system replicates natural physiology and creates a stable and sustainable cardiovascular construct that supports growth over a 3-week period. However, there is a period of depressed contractility within the first week with subsequent improvement by week 3. This may reflect a period of physiological accommodation that warrants further investigation. This study lays the foundation for further exploration as the EXTEND system moves towards human application. © 2019 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.


Asunto(s)
Cardiotocografía/métodos , Ecocardiografía Doppler/métodos , Oxigenación por Membrana Extracorpórea , Corazón Fetal/diagnóstico por imagen , Feto/diagnóstico por imagen , Animales , Animales Recién Nacidos/embriología , Animales Recién Nacidos/crecimiento & desarrollo , Gasto Cardíaco , Femenino , Desarrollo Fetal/fisiología , Corazón Fetal/embriología , Corazón Fetal/crecimiento & desarrollo , Feto/embriología , Feto/fisiopatología , Ventrículos Cardíacos/diagnóstico por imagen , Hemodinámica , Arteria Cerebral Media/embriología , Embarazo , Estudios Prospectivos , Flujo Pulsátil , Ovinos , Factores de Tiempo , Arterias Umbilicales/embriología
5.
BMC Cardiovasc Disord ; 20(1): 369, 2020 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-32795258

RESUMEN

BACKGROUND: It is unclear whether the offspring of subclinical hypothyroidism (SCH) pregnant rats still have abnormal cardiac development, and whether early intervention with L-T4 can improve the abnormality of these offspring. Therefore, the aim of this study was to investigate the effect of early L-T4 intervention on the heart development of offspring of SCH pregnant rats and its possible molecular mechanism. METHODS: Eighty female Wistar rats were randomly divided into Sham group (placebo control), SCH group, LT4-E10 group (L-T4 treatment started on the 10th day of gestation), and LT4-E13 group (L-T4 treatment started on the 13th day of gestation). Each group was further divided into E16 (16th day of gestation), E18 (18th day of gestation), P5 (5th day postnatal day), and P10 (10th day postnatal day) subgroups. The levels of serum TT4 and TSH, the ratio of heart weight to body weight of offspring rats, the expression of metabolic enzymes, and the histopathology of cardiomyocytes were determined. To elucidate the effects of L-T4 on cardiac development of offspring of SCH pregnant rats, the expression levels of GATA4, Nkx2-5 and proteins involved in BMP4/Smad4 signaling pathway were detected by immunohistochemistry, real time quantitative polymerase chain reaction and Western blotting to elucidate the molecular mechanism of L-T4 regulating the heart development of the offspring of SCH pregnant rats. RESULTS: Compared with Sham group, serum TSH was significantly increased in SCH pregnant rats. Moreover, early L-T4 intervention significantly reduced the levels of serum TSH. Compared with the offspring in the SCH group, early L-T4 intervention significantly increased the heart weight, heart weight to body weight ratio, the activities of succinate dehydrogenase (SDH), Na+/K+-ATPase and Ca2+-ATPase, but reduced myocardial cell shrinkage and nuclear staining, hyperemia/congestion and vacuolar degeneration. In addition, early L-T4 intervention not only significantly increased the mRNA and protein expression of Gata4 and Nkx2-5, but also increased the protein expression involved in BMP4/Smad4 signal pathway in myocardium of the offspring of SCH pregnant rats. CONCLUSIONS: Early L-T4 intervention can regulate the cardiac development of the offspring of SCH pregnant rats by activating BMP4/Smad4 signaling pathway and increasing the expression of Gata4 and Nkx2-5 proteins.


Asunto(s)
Proteína Morfogenética Ósea 4/metabolismo , Corazón Fetal/efectos de los fármacos , Hipotiroidismo/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Proteína Smad4/metabolismo , Tiroxina/farmacología , Animales , Enfermedades Asintomáticas , Modelos Animales de Enfermedad , Femenino , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/metabolismo , Factor de Transcripción GATA4/metabolismo , Edad Gestacional , Proteína Homeótica Nkx-2.5/metabolismo , Hipotiroidismo/metabolismo , Hipotiroidismo/fisiopatología , Miocitos Cardíacos/metabolismo , Embarazo , Ratas Wistar , Transducción de Señal
6.
Nutr Metab Cardiovasc Dis ; 29(2): 170-176, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30579777

RESUMEN

BACKGROUND AND AIMS: Intra-uterine metabolic environment predicts newborns' cardiac morphology, metabolism and future health. In adults, gut microbiota composition relates to altered cardiac structure and metabolism. We investigated the relationship between gut microbiota colonization and fetal cardiac growth. METHODS AND RESULTS: Bacterial composition in meconium samples of 26 healthy, full-term newborns was assessed by 16S rDNA gene sequencing. Its relationship with birth echocardiographic parameters, and the interaction with cord blood levels of inflammatory markers were investigated. Correlative and cluster analysis, linear discriminant analysis effect size and predictive functional analysis based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were applied. Fetal left ventricle growth was related to gut microbiota composition at birth. Specifically, left ventricle posterior wall thickness (LVPW) greater than 4 mm was associated with lower microbiota beta and alpha diversity, depletion (LDA score > 3) of several bacteria at each taxonomic level, including Lactobacillales, and enrichment (LDA score > 5) in Enterobacteriales and Enterobacteriaceae. The latter was significantly related to cord blood gamma-glutamyltransferase levels (r = 0.58, p = 0.0057). Functionally, a thicker LVPW was related to up-regulation of pathways involved in lipopolysaccharide biosynthesis (+50%, p = 0.045 in correlative analysis) and energy metabolism (+12%, p = 0.028), and down-regulation of pathways involved in xenobiotic biodegradation (-21 to -53%, p = 0.0063-0.039), PPAR signaling (-24%, p = 0.021) and cardiac muscle contraction (-100%, p = 0.049). CONCLUSION: Fetal cardiac growth and gut colonization are associated. Greater neonatal LVPW thickness is related to lower diversity of the gut microbiota community, depletion of bacteria having anti-remodeling effects, and enrichment in bacteria functionally linked to inflammation.


Asunto(s)
Bacterias/crecimiento & desarrollo , Corazón Fetal/crecimiento & desarrollo , Microbioma Gastrointestinal , Ventrículos Cardíacos/crecimiento & desarrollo , Intestinos/microbiología , Bacterias/clasificación , Bacterias/genética , Biomarcadores/sangre , Ecocardiografía , Sangre Fetal/química , Corazón Fetal/diagnóstico por imagen , Tracto Gastrointestinal , Ventrículos Cardíacos/diagnóstico por imagen , Interacciones Huésped-Patógeno , Humanos , Recién Nacido , Mediadores de Inflamación/sangre , Meconio/microbiología , Ribotipificación
7.
J Mol Cell Cardiol ; 121: 60-68, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29969579

RESUMEN

G-protein receptor kinases (GRKs) regulate adult hearts by modulating inotropic, chronotropic and hypertrophic signaling of 7-transmembrane spanning neurohormone receptors. GRK-mediated desensitization and downregulation of ß-adrenergic receptors has been implicated in adult heart failure; GRKs are therefore a promising therapeutic target. However, germ-line (but not cardiomyocyte-specific) GRK2 deletion provoked lethal fetal heart defects, suggesting an unexplained role for GRKs in heart development. Here we undertook to better understand the consequences of GRK deficiency on fetal heart development by creating mice and cultured murine embryonic fibroblasts (MEFs) having floxed GRK2 and GRK5 alleles on the GRK6 null background; simultaneous conditional deletion of these 3 GRK genes was achieved using Nkx2-5 Cre or adenoviral Cre, respectively. Phenotypes were related to GRK-modulated gene expression using whole-transcriptome RNA sequencing, RT-qPCR, and luciferase reporter assays. In cultured MEFs the atypical 7-transmembrane spanning protein and GRK2 substrate Smoothened (Smo) stimulated Gli-mediated transcriptional activity, which was interrupted by deleting GRK2/5/6. Mice with Nkx2-5 Cre mediated GRK2/5/6 ablation died between E15.5 and E16.5, whereas mice expressing any one of these 3 GRKs (i.e. GRK2/5, GRK2/6 or GRK5/6 deleted) were developmentally normal. GRK2/5/6 triple null mice at E14.5 exhibited left and right heart blood intermixing through single atrioventricular valves or large membranous ventricular septal defects. Hedgehog and GATA pathway gene expression promoted by Smo/Gli was suppressed in GRK2/5/6 deficient fetal hearts and MEFs. These data indicate that GRK2, GRK5 and GRK6 redundantly modulate Smo-GATA crosstalk in fetal mouse hearts, orchestrating transcriptional pathways previously linked to clinical and experimental atrioventricular canal defects. GRK modulation of Smo reflects convergence of conventional neurohormonal signaling and transcriptional regulation pathways, comprising an unanticipated mechanism for spatiotemporal orchestration of developmental gene expression in the heart.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Quinasa 2 del Receptor Acoplado a Proteína-G/genética , Quinasa 5 del Receptor Acoplado a Proteína-G/genética , Quinasas de Receptores Acoplados a Proteína-G/genética , Receptor Smoothened/genética , Animales , Embrión de Mamíferos , Desarrollo Embrionario/genética , Corazón Fetal/fisiopatología , Fibroblastos/metabolismo , Factor de Transcripción GATA1/genética , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Análisis de Secuencia de ARN , Transcriptoma/genética
8.
J Appl Toxicol ; 38(6): 834-842, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29377175

RESUMEN

Accumulating evidence has suggested a link between maternal di-(2-ethylhexyl)-phthalate (DEHP) exposure and various developmental abnormalities. However, the evidence regarding the effect of maternal DEHP exposure on fetal cardiac development is scarce. The present study aimed to determine the effect of maternal DEHP exposure on fetal cardiac development in mice and explore the possible involved mechanism preliminarily. The C57BL mice were randomly divided into four groups: the vehicle group (corn oil, n = 10), 250 mg kg-1 DEHP group (n = 15), 500 mg kg-1 DEHP group (n = 20) and 1 g kg-1 DEHP group (n = 20). Pregnant dams in different group received respective intervention by gavage once daily from embryonic day (E)6.5 to E14.5. Maternal weights were monitored every day and samples were collected at E15.5. Hematoxylin and eosin staining was used to examine fetal cardiac malformations. Real-time quantitative polymerase chain reaction and western blot were applied to detect peroxisome proliferator-activated receptor (PPAR)α/PPARγ/Nkx2.5/Gata4/Tbx5/Mef2c/Chf1 mRNA and protein expression, respectively. Maternal DEHP exposure significantly decreased maternal body weight, fetal weight and placental weight, and remarkably elevated fetal cardiac malformations rate. The phenotypes of cardiac anomalies mainly include septal defects, ventricular myocardium noncompaction and cardiac hypoplasia. Higher doses DEHP (500 mg kg-1 and 1 g kg-1 ) could significantly decreased fetal cardiac Gata4/Mef2c/Chf1 expression, while PPARγ expression was upregulated. Maternal exposure to higher doses of DEHP could result in fetal cardiac development malformations in mice and it might have resulted from the inhibition of cardiac GATA4/Mef2c/Chf1 expression via PPARγ activation.


Asunto(s)
Dietilhexil Ftalato/toxicidad , Corazón Fetal/efectos de los fármacos , Cardiopatías Congénitas/inducido químicamente , Plastificantes/toxicidad , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Femenino , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/metabolismo , Factor de Transcripción GATA4/genética , Factor de Transcripción GATA4/metabolismo , Regulación del Desarrollo de la Expresión Génica , Edad Gestacional , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/metabolismo , Cardiopatías Congénitas/fisiopatología , Factores de Transcripción MEF2/genética , Factores de Transcripción MEF2/metabolismo , Exposición Materna , Ratones Endogámicos C57BL , Morfogénesis/efectos de los fármacos , PPAR gamma/agonistas , PPAR gamma/genética , PPAR gamma/metabolismo , Embarazo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Adv Exp Med Biol ; 1065: 347-360, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30051395

RESUMEN

The size, hemodynamics, and function of cardiovascular structures change dramatically from the early fetal life to late adolescence. The principal determinants of cardiovascular dimensions are related to the blood flow needed to meet metabolic demands. This demand is in turn tightly related to body size and body composition, keeping in mind that various tissues may have different metabolic rates. There is no simple model that links cardiac dimensions with a single body size measurement. Consequently, despite abundant scientific literature, few studies have proposed pediatric reference values that efficiently and completely account for the effect of body size. Other factors influence cardiovascular size and function in children, including sex. The influence of sex is multifactorial and not fully understood, but differences in body size and body composition play an important role. We will first review the determinants of cardiovascular size and function in children. We then explore the evaluation and normalization of cardiovascular size and function in pediatric cardiology in relation to the growth of cardiovascular structures during childhood, with a particular focus on sex differences.


Asunto(s)
Desarrollo del Adolescente , Sistema Cardiovascular/crecimiento & desarrollo , Desarrollo Infantil , Corazón Fetal/crecimiento & desarrollo , Hemodinámica , Función Ventricular , Adolescente , Factores de Edad , Animales , Tamaño Corporal , Enfermedades Cardiovasculares/etiología , Enfermedades Cardiovasculares/fisiopatología , Sistema Cardiovascular/embriología , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino , Morfogénesis , Factores de Riesgo , Caracteres Sexuales , Factores Sexuales
10.
Heart Fail Rev ; 22(6): 861-877, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28730459

RESUMEN

Epidemiologic and experimental evidence suggests that adverse stimuli during critical periods in utero permanently alters organ structure and function and may have persistent consequences for the long-term health of the offspring. Fetal hypoxia, maternal malnutrition, or ventricular overloading are among the major adverse conditions that can compromise cardiovascular development in early life. With the heart as a central organ in fetal adaptive mechanisms, a deeper understanding of the fetal cardiovascular physiology and of the echocardiographic tools to assess both normal and stressed pregnancies would give precious information on fetal well-being and hopefully may help in early identification of special risk groups for cardiovascular diseases later in life. Assessment of cardiac function in the fetus represents an additional challenge when comparing to children and adults, requiring advanced training and a critical approach to properly acquire and interpret functional parameters. This review summarizes the basic fetal cardiovascular physiology and the main differences from the mature postnatal circulation, provides an overview of the particularities of echocardiographic evaluation in the fetus, and finally proposes an integrated view of in utero programming of cardiovascular diseases later in life, highlighting priorities for future clinical research.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Desarrollo Fetal/fisiología , Corazón Fetal/crecimiento & desarrollo , Adulto , Femenino , Humanos , Intercambio Materno-Fetal/fisiología , Embarazo
11.
Circ Res ; 116(7): 1245-53, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25814685

RESUMEN

Dynamic packaging of DNA into strings of nucleosomes is a major mechanism whereby eukaryotic cells regulate gene expression. Intricate control of nucleosomal structure and assembly governs access of RNA polymerase II to DNA and consequent RNA synthesis. As part of this, post-translational modifications of histone proteins are central to the regulation of chromatin structure, playing vital roles in regulating the activation and repression of gene transcription. In the heart, dynamic homeostasis of histone modification-driven by the actions of modifiers and recruitment of downstream effectors-is a fundamental regulator of the transcriptional reprogramming that occurs in the setting of disease-related stress. Here, we examine the growing evidence for histone modification as a key mechanism governing pathological growth and remodeling of the myocardium.


Asunto(s)
Cromatina/genética , Regulación de la Expresión Génica , Cardiopatías/genética , Histonas/fisiología , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Cardiomegalia/genética , Cardiomegalia/metabolismo , Cardiotónicos/uso terapéutico , Cromatina/metabolismo , Cromatina/ultraestructura , Ensamble y Desensamble de Cromatina , Epigénesis Genética , Corazón Fetal/crecimiento & desarrollo , Corazón/embriología , Histona Acetiltransferasas/fisiología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/fisiología , Histona Desacetilasas/uso terapéutico , Histona Demetilasas/fisiología , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/fisiología , Humanos , Metilación , Complejos Multiproteicos , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Nucleosomas/genética , Nucleosomas/ultraestructura , Estructura Terciaria de Proteína , Ratas , Transcripción Genética
12.
Pediatr Cardiol ; 38(4): 700-706, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28331934

RESUMEN

Although many changes have been discovered during heart maturation, the genetic mechanisms involved in the changes between immature and mature myocardium have only been partially elucidated. Here, gene expression profile changed between the human fetal and adult heart was characterized. A human microarray was applied to define the gene expression signatures of the fetal (13-17 weeks of gestation, n = 4) and adult hearts (30-40 years old, n = 4). Gene ontology analyses, pathway analyses, gene set enrichment analyses, and signal transduction network were performed to predict the function of the differentially expressed genes. Ten mRNAs were confirmed by quantificational real-time polymerase chain reaction. 5547 mRNAs were found to be significantly differentially expressed. "Cell cycle" was the most enriched pathway in the down-regulated genes. EFGR, IGF1R, and ITGB1 play a central role in the regulation of heart development. EGFR, IGF1R, and FGFR2 were the core genes regulating cardiac cell proliferation. The quantificational real-time polymerase chain reaction results were concordant with the microarray data. Our data identified the transcriptional regulation of heart development in the second trimester and the potential regulators that play a prominent role in the regulation of heart development and cardiac cells proliferation.


Asunto(s)
Desarrollo Fetal/genética , Corazón/crecimiento & desarrollo , Segundo Trimestre del Embarazo/genética , Proliferación Celular , Femenino , Corazón Fetal/embriología , Corazón Fetal/crecimiento & desarrollo , Regulación de la Expresión Génica , Ontología de Genes , Corazón/embriología , Desarrollo Humano/fisiología , Humanos , Análisis por Micromatrices , Miocitos Cardíacos/fisiología , Embarazo , Transducción de Señal/genética , Transcripción Genética/genética , Transcriptoma
13.
J Mol Cell Cardiol ; 90: 139-45, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26686990

RESUMEN

The transcription factor Wilms' Tumor-1 (WT1) is essential for cardiac development. Deletion of Wt1 in mice results in disturbed epicardial and myocardial formation and lack of cardiac vasculature, causing embryonic lethality. Little is known about the role of WT1 in the human fetal heart. Therefore, as a first step, we analyzed the expression pattern of WT1 protein during human cardiac development from week 4 till week 20. WT1 expression was apparent in epicardial, endothelial and endocardial cells in a spatiotemporal manner. The expression of WT1 follows a pattern starting at the epicardium and extending towards the lumen of the heart, with differences in timing and expression levels between the atria and ventricles. The expression of WT1 in cardiac arterial endothelial cells reduces in time, whereas WT1 expression in the endothelial cells of cardiac veins and capillaries remains present at all stages studied. This study provides for the first time a detailed description of the expression of WT1 protein during human cardiac development, which indicates an important role for WT1 also in human cardiogenesis.


Asunto(s)
Células Endoteliales/metabolismo , Corazón Fetal/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas WT1/genética , Endocardio/crecimiento & desarrollo , Endocardio/metabolismo , Endocardio/ultraestructura , Células Endoteliales/ultraestructura , Endotelio Vascular/crecimiento & desarrollo , Endotelio Vascular/metabolismo , Endotelio Vascular/ultraestructura , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/ultraestructura , Feto , Humanos , Miocardio/metabolismo , Miocardio/ultraestructura , Pericardio/crecimiento & desarrollo , Pericardio/metabolismo , Pericardio/ultraestructura , Proteínas WT1/metabolismo
14.
Circulation ; 132(2): 109-21, 2015 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-25995316

RESUMEN

BACKGROUND: Heart development is tightly regulated by signaling events acting on a defined number of progenitor and differentiated cardiac cells. Although loss of function of these signaling pathways leads to congenital malformation, the consequences of cardiac progenitor cell or embryonic cardiomyocyte loss are less clear. In this study, we tested the hypothesis that embryonic mouse hearts exhibit a robust mechanism for regeneration after extensive cell loss. METHODS AND RESULTS: By combining a conditional cell ablation approach with a novel blastocyst complementation strategy, we generated murine embryos that exhibit a full spectrum of cardiac progenitor cell or cardiomyocyte ablation. Remarkably, ablation of up to 60% of cardiac progenitor cells at embryonic day 7.5 was well tolerated and permitted embryo survival. Ablation of embryonic cardiomyocytes to a similar degree (50% to 60%) at embryonic day 9.0 could be fully rescued by residual myocytes with no obvious adult cardiac functional deficit. In both ablation models, an increase in cardiomyocyte proliferation rate was detected and accounted for at least some of the rapid recovery of myocardial cellularity and heart size. CONCLUSION: Our study defines the threshold for cell loss in the embryonic mammalian heart and reveals a robust cardiomyocyte compensatory response that sustains normal fetal development.


Asunto(s)
Proliferación Celular/fisiología , Células Madre Embrionarias/fisiología , Corazón Fetal/citología , Miocitos Cardíacos/fisiología , Animales , Recuento de Células/métodos , Corazón Fetal/crecimiento & desarrollo , Técnicas de Sustitución del Gen , Ratones , Ratones Transgénicos
15.
Biochem Biophys Res Commun ; 470(3): 575-578, 2016 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-26797277

RESUMEN

Vitamin D has been found to be associated with cardiovascular diseases. However, the role of vitamin D in heart development during embryonic period is largely unknown. Vitamin D induces its genomic effects through its nuclear receptor, the vitamin D receptor (VDR). The present study investigated the role of VDR on heart development by antisense-mediated knockdown approaches in zebrafish model system. In zebrafish embryos, two distinct VDR genes (vdra and vdrb) have been identified. Knockdown of vdra has little effect on heart development, whereas disrupting vdrb gene causes various cardiac phenotypes, characterized by pericardial edema, slower heart rate and laterality defects. Depletion of both vdra and vdrb (vdra/b) produce additive, but not synergistic effects. To determine whether atrioventricular (AV) cardiomyocytes are properly organized in these embryos, the expression of bmp4, which marks the developing AV boundary at 48 h post-fertilization, was examined. Notably, vdra/b-deficient embryos display ectopic expression of bmp4 towards the ventricle or throughout atrial and ventricular chambers. Taken together, these results suggest that VDR signaling plays an essential role in heart development.


Asunto(s)
Desarrollo Embrionario/fisiología , Corazón Fetal/embriología , Corazón Fetal/crecimiento & desarrollo , Receptores de Calcitriol/metabolismo , Pez Cebra/embriología , Pez Cebra/crecimiento & desarrollo , Animales , Frecuencia Cardíaca Fetal/fisiología , Transducción de Señal/fisiología
16.
Hum Mol Genet ; 22(16): 3269-82, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23595884

RESUMEN

Glucocorticoids are vital for the structural and functional maturation of foetal organs, yet excessive foetal exposure is detrimental to adult cardiovascular health. To elucidate the role of glucocorticoid signalling in late-gestation cardiovascular maturation, we have generated mice with conditional disruption of glucocorticoid receptor (GR) in cardiomyocytes and vascular smooth muscle cells using smooth muscle protein 22-driven Cre recombinase (SMGRKO mice) and compared them with mice with global deficiency in GR (GR(-/-)). Echocardiography shows impaired heart function in both SMGRKO and GR(-/-) mice at embryonic day (E)17.5, associated with generalized oedema. Cardiac ultrastructure is markedly disrupted in both SMGRKO and GR(-/-) mice at E17.5, with short, disorganized myofibrils and cardiomyocytes that fail to align in the compact myocardium. Failure to induce critical genes involved in contractile function, calcium handling and energy metabolism underpins this common phenotype. However, although hearts of GR(-/-) mice are smaller, with 22% reduced ventricular volume at E17.5, SMGRKO hearts are normally sized. Moreover, while levels of mRNA encoding atrial natriuretic peptide are reduced in E17.5 GR(-/-) hearts, they are normal in foetal SMGRKO hearts. These data demonstrate that structural, functional and biochemical maturation of the foetal heart is dependent on glucocorticoid signalling within cardiomyocytes and vascular smooth muscle, though some aspects of heart maturation (size, ANP expression) are independent of GR at these key sites.


Asunto(s)
Corazón Fetal/crecimiento & desarrollo , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Transducción de Señal , Animales , Corticosterona/sangre , Corticosterona/fisiología , Corazón Fetal/fisiología , Corazón/embriología , Corazón/fisiología , Ratones , Ratones Transgénicos , Músculo Liso Vascular/embriología , Músculo Liso Vascular/metabolismo , Contracción Miocárdica , Miocardio/ultraestructura , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Miofibrillas/ultraestructura
17.
Am J Physiol Regul Integr Comp Physiol ; 308(11): R965-72, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25810382

RESUMEN

ANG II increases fetal blood pressure and stimulates fetal heart growth; however, little is known regarding its direct effects on cardiomyocytes in vivo. We sought to determine whether ANG II stimulates heart growth and cardiomyocyte hypertrophy and/or hyperplasia in utero in the immature fetal heart independent of the effects on cardiac afterload. In twin gestation, fetal sheep at ∼100 days gestation (term 145 days), one fetus received a chronic (6 days) infusion of ANG II alone (50 µg·kg(-1)·min(-1)) or ANG II plus nitroprusside (NTP) to attenuate the increase in blood pressure; noninstrumented twins served as controls. ANG II alone, but not ANG II + NTP resulted in a significant increase in heart mass (left and right ventricle + septum, corrected for body weight) compared with controls. ANG II, but not ANG II+NTP, also significantly increased cardiomyocyte area compared with control and increased the percentage of binucleated myocytes. ANG II with or without concomitant infusion of NTP increased cardiac PCNA expression, a marker of proliferation. Steady-state protein expression of terminal mitogen-activated protein kinases, cyclin B1, cyclin E1, and p21 were similar among groups. We conclude that in vivo, ANG II increases fetal cardiac mass via cardiomyocyte hypertrophy, differentiation, and to a lesser extent hyperplasia. The effects of ANG II on hypertrophy appear dependent upon the increase in blood pressure (mechanical load), whereas effects on proliferation are load-independent.


Asunto(s)
Angiotensina II/toxicidad , Cardiomegalia/inducido químicamente , Aumento de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Tamaño de la Célula/efectos de los fármacos , Corazón Fetal/efectos de los fármacos , Miocitos Cardíacos/efectos de los fármacos , Animales , Antihipertensivos/farmacología , Biomarcadores/metabolismo , Presión Sanguínea/efectos de los fármacos , Cardiomegalia/metabolismo , Cardiomegalia/fisiopatología , Diferenciación Celular/efectos de los fármacos , Ciclina B1/metabolismo , Ciclina E/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Corazón Fetal/crecimiento & desarrollo , Edad Gestacional , Hiperplasia , Hipertensión/inducido químicamente , Hipertensión/fisiopatología , Hipertensión/prevención & control , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Miocitos Cardíacos/fisiología , Nitroprusiato/farmacología , Antígeno Nuclear de Célula en Proliferación/metabolismo , Ovinos , Transducción de Señal/efectos de los fármacos , Factores de Tiempo , Vasodilatadores/farmacología
18.
Am J Physiol Heart Circ Physiol ; 307(2): H134-42, 2014 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-24816259

RESUMEN

The mechanisms underlying developmental programming are poorly understood but may be associated with adaptations by the fetus in response to changes in the maternal environment during pregnancy. We hypothesized that maternal nutrient restriction during pregnancy alters vasodilator responses in fetal coronary arteries. Pregnant ewes were fed a control [100% U.S. National Research Council (NRC)] or nutrient-restricted (60% NRC) diet from days 50 to 130 of gestation (term = 145 days); fetal tissues were collected at day 130. In coronary arteries isolated from control fetal lambs, relaxation to bradykinin was unaffected by nitro-l-arginine (NLA). Iberiotoxin or contraction with KCl abolished the NLA-resistant response to bradykinin. In fetal coronary arteries from nutrient-restricted ewes, relaxation to bradykinin was fully suppressed by NLA. Large-conductance, calcium-activated potassium channel (BKCa) currents did not differ in coronary smooth muscle cells from control and nutrient-restricted animals. The BKCa openers, BMS 191011 and NS1619, and 14,15-epoxyeicosatrienoic acid [a putative endothelium-derived hyperpolarizing factor (EDHF)] each caused fetal coronary artery relaxation and BKCa current activation that was unaffected by maternal nutrient restriction. Expression of BKCa-channel subunits did not differ in fetal coronary arteries from control or undernourished ewes. The results indicate that maternal undernutrition during pregnancy results in loss of the EDHF-like pathway in fetal coronary arteries in response to bradykinin, an effect that cannot be explained by a decreased number or activity of BKCa channels or by decreased sensitivity to mediators that activate BKCa channels in vascular smooth muscle cells. Under these conditions, bradykinin-induced relaxation is completely dependent on nitric oxide, which may represent an adaptive response to compensate for the absence of the EDHF-like pathway.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Factores Biológicos/metabolismo , Vasos Coronarios/metabolismo , Desnutrición/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Vasodilatación , Animales , Bradiquinina/farmacología , Vasos Coronarios/efectos de los fármacos , Vasos Coronarios/embriología , Vasos Coronarios/fisiopatología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Femenino , Corazón Fetal/crecimiento & desarrollo , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/genética , Subunidades alfa de los Canales de Potasio de Gran Conductancia Activados por Calcio/metabolismo , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/genética , Subunidades beta de los Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Desnutrición/genética , Desnutrición/fisiopatología , Óxido Nítrico/metabolismo , Bloqueadores de los Canales de Potasio/farmacología , Embarazo , ARN Mensajero/metabolismo , Ovinos , Transducción de Señal , Vasodilatación/efectos de los fármacos , Vasodilatadores/farmacología
19.
J Cardiovasc Pharmacol ; 64(2): 142-50, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24705172

RESUMEN

To explore the physiological and pathological significance of the 2-pore domain potassium channel TWIK-related K(+) (TREK)-1 in rat heart, its expression and role during heart development and cardiac ischemia were investigated. In the former study, the ventricles of Sprague Dawley rats were collected from embryo day 19 to postnatal 18 months and examined for mRNA and protein expression of TREK-1. It was found that both increased during development, reached a maximum at postnatal day 28, and remained higher at postnatal day 3 through to postnatal 18 months. In the latter study, protein expression of TREK-1 was examined after initiation of acute heart ischemia by ligation of the left anterior descending coronary artery. TREK-1 expression was found to be increased in the endocardium but unchanged in the epicardium. In primary cultured rat neonatal ventricular myocytes subjected to hypoxia (oxygen-glucose deprivation), TREK-1 expression was increased. In cultured neonatal cardiomyocytes, silencing of the TREK-1 gene by lentivirus delivery of the short-hairpin RNAs, L-sh-492 and L-sh-605, was found to promote their viability and number. In addition, both short-hairpin RNA provided protection against hypoxia-induced injury to cardiomyocytes in vitro. These results suggest that TREK-1 plays an important role in neonatal rat heart development and downregulation of TREK-1 may provide protection against ischemic injury. It seems that TREK-1 is a potential drug target for treatment of acute heart ischemia.


Asunto(s)
Envejecimiento , Ventrículos Cardíacos/metabolismo , Isquemia Miocárdica/metabolismo , Miocardio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Interferencia de ARN , Envejecimiento/metabolismo , Envejecimiento/patología , Animales , Animales Recién Nacidos , Técnicas de Cultivo de Célula , Hipoxia de la Célula , Supervivencia Celular , Células Cultivadas , Femenino , Corazón Fetal/crecimiento & desarrollo , Corazón Fetal/metabolismo , Madurez de los Órganos Fetales , Vectores Genéticos , Edad Gestacional , Ventrículos Cardíacos/embriología , Ventrículos Cardíacos/crecimiento & desarrollo , Ventrículos Cardíacos/patología , Lentivirus/genética , Masculino , Isquemia Miocárdica/patología , Miocardio/patología , Miocitos Cardíacos/metabolismo , Canales de Potasio de Dominio Poro en Tándem/genética , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética , Ratas Sprague-Dawley
20.
ScientificWorldJournal ; 2014: 531324, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24707208

RESUMEN

BACKGROUND: Heart development is a complex process, and abnormal development may result in congenital heart disease (CHD). Currently, studies on animal models mainly focus on cardiac morphology and the availability of hemodynamic data, especially of the right heart half, is limited. Here we aimed to assess the morphological and hemodynamic parameters of normal developing mouse embryos/fetuses by using a high-frequency ultrasound system. METHODS: A timed breeding program was initiated with a WT mouse line (Swiss/129Sv background). All recordings were performed transabdominally, in isoflurane sedated pregnant mice, in hearts of sequential developmental stages: 12.5, 14.5, and 17.5 days after conception (n = 105). RESULTS: Along development the heart rate increased significantly from 125 ± 9.5 to 219 ± 8.3 beats per minute. Reliable flow measurements could be performed across the developing mitral and tricuspid valves and outflow tract. M-mode measurements could be obtained of all cardiac compartments. An overall increase of cardiac systolic and diastolic function with embryonic/fetal development was observed. CONCLUSION: High-frequency echocardiography is a promising and useful imaging modality for structural and hemodynamic analysis of embryonic/fetal mouse hearts.


Asunto(s)
Ecocardiografía Doppler de Pulso/métodos , Corazón Fetal/crecimiento & desarrollo , Animales , Diástole/fisiología , Femenino , Corazón Fetal/diagnóstico por imagen , Frecuencia Cardíaca , Masculino , Ratones , Embarazo , Ultrasonografía Prenatal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA