Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 988
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 22(8): 511-528, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33953379

RESUMEN

Understanding how chromatin is folded in the nucleus is fundamental to understanding its function. Although 3D genome organization has been historically difficult to study owing to a lack of relevant methodologies, major technological breakthroughs in genome-wide mapping of chromatin contacts and advances in imaging technologies in the twenty-first century considerably improved our understanding of chromosome conformation and nuclear architecture. In this Review, we discuss methods of 3D genome organization analysis, including sequencing-based techniques, such as Hi-C and its derivatives, Micro-C, DamID and others; microscopy-based techniques, such as super-resolution imaging coupled with fluorescence in situ hybridization (FISH), multiplex FISH, in situ genome sequencing and live microscopy methods; and computational and modelling approaches. We describe the most commonly used techniques and their contribution to our current knowledge of nuclear architecture and, finally, we provide a perspective on up-and-coming methods that open possibilities for future major discoveries.


Asunto(s)
Cromatina/química , Genoma , Cromatina/genética , Cromatina/metabolismo , Mapeo Cromosómico , Cromosomas/química , Cromosomas/genética , Cromosomas/metabolismo , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Microscopía , Modelos Moleculares , Análisis de Secuencia de ADN
2.
Cell ; 170(6): 1045-1047, 2017 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-28886374

RESUMEN

It's the stuff of life, and we're fascinated by DNA and how it's packaged into chromatin and compacted into chromosomes. Advances in looking at chromatin organization in cells are letting us see this polymer, its packing, and its function with fresh eyes.


Asunto(s)
Cromatina/química , Cromatina/ultraestructura , Microscopía por Crioelectrón/métodos , Empaquetamiento del ADN , Tomografía/métodos , Animales , Núcleo Celular/química , Núcleo Celular/ultraestructura , Cromosomas/química , Cromosomas/ultraestructura , ADN/química , Humanos , Nucleosomas/química
3.
Cell ; 171(3): 588-600.e24, 2017 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-28988770

RESUMEN

Condensin protein complexes coordinate the formation of mitotic chromosomes and thereby ensure the successful segregation of replicated genomes. Insights into how condensin complexes bind to chromosomes and alter their topology are essential for understanding the molecular principles behind the large-scale chromatin rearrangements that take place during cell divisions. Here, we identify a direct DNA-binding site in the eukaryotic condensin complex, which is formed by its Ycg1Cnd3 HEAT-repeat and Brn1Cnd2 kleisin subunits. DNA co-crystal structures reveal a conserved, positively charged groove that accommodates the DNA double helix. A peptide loop of the kleisin subunit encircles the bound DNA and, like a safety belt, prevents its dissociation. Firm closure of the kleisin loop around DNA is essential for the association of condensin complexes with chromosomes and their DNA-stimulated ATPase activity. Our data suggest a sophisticated molecular basis for anchoring condensin complexes to chromosomes that enables the formation of large-sized chromatin loops.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes/metabolismo , Proteínas Fúngicas/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/química , Secuencia de Aminoácidos , Chaetomium/metabolismo , Cromosomas/química , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Proteínas de Unión al ADN/química , Eucariontes/química , Proteínas Fúngicas/química , Células HeLa , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Saccharomyces cerevisiae/metabolismo , Alineación de Secuencia
4.
Cell ; 167(5): 1430-1430.e1, 2016 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-27863253

RESUMEN

This SnapShot depicts key sequencing-based methods used in the analysis of epigenomes, including (1)bisulfite sequencing, (2) chromatin immunoprecipiation sequencing, (3) determination of open chromatin, and (4) 3D chromatin capture.


Asunto(s)
Inmunoprecipitación de Cromatina , Epigenómica/métodos , 5-Metilcitosina/metabolismo , Cromosomas/química , Metilación de ADN
5.
Cell ; 165(2): 259-61, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27058655

RESUMEN

Genetic material is not randomly organized within the nucleus of a cell. How this organization occurs and why it matters are questions that Cell editor Marta Koch posed to Mitchell Guttman, Job Dekker, and Stavros Lomvardas. Excerpts from this Conversation are presented below, and an audio file of the full discussion is available with the article online.


Asunto(s)
Núcleo Celular/química , Cromosomas/química , ADN/química , Animales , Núcleo Celular/genética , Núcleo Celular/fisiología , Cromosomas/genética , Cromosomas/metabolismo , ADN/genética , ADN/metabolismo , Genómica , National Institutes of Health (U.S.) , Estados Unidos
6.
Cell ; 164(5): 847-57, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26919425

RESUMEN

Condensins are large protein complexes that play a central role in chromosome organization and segregation in the three domains of life. They display highly characteristic, rod-shaped structures with SMC (structural maintenance of chromosomes) ATPases as their core subunits and organize large-scale chromosome structure through active mechanisms. Most eukaryotic species have two distinct condensin complexes whose balanced usage is adapted flexibly to different organisms and cell types. Studies of bacterial condensins provide deep insights into the fundamental mechanisms of chromosome segregation. This Review surveys both conserved features and rich variations of condensin-based chromosome organization and discusses their evolutionary implications.


Asunto(s)
Adenosina Trifosfatasas/química , Cromosomas/química , Proteínas de Unión al ADN/química , Complejos Multiproteicos/química , Adenosina Trifosfatasas/metabolismo , Animales , Bacterias , Ciclo Celular , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/química , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/metabolismo , Proteínas de Unión al ADN/metabolismo , Eucariontes , Humanos , Complejos Multiproteicos/metabolismo , Cohesinas
7.
Cell ; 164(1-2): 326-326.e1, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26771499

RESUMEN

This first of two SnapShots on SMC proteins depicts the composition and architecture of SMC protein complexes and their regulators. Their roles at different stages of the cell cycle will appear in Part II. To view this SnapShot, open or download the PDF.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Células Eucariotas/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas Cromosómicas no Histona/química , Cromosomas/química , Cromosomas/metabolismo , Células Eucariotas/química , Complejos Multiproteicos/química , Cohesinas
8.
Cell ; 163(1): 134-47, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26365489

RESUMEN

Mammalian interphase chromosomes interact with the nuclear lamina (NL) through hundreds of large lamina-associated domains (LADs). We report a method to map NL contacts genome-wide in single human cells. Analysis of nearly 400 maps reveals a core architecture consisting of gene-poor LADs that contact the NL with high cell-to-cell consistency, interspersed by LADs with more variable NL interactions. The variable contacts tend to be cell-type specific and are more sensitive to changes in genome ploidy than the consistent contacts. Single-cell maps indicate that NL contacts involve multivalent interactions over hundreds of kilobases. Moreover, we observe extensive intra-chromosomal coordination of NL contacts, even over tens of megabases. Such coordinated loci exhibit preferential interactions as detected by Hi-C. Finally, the consistency of NL contacts is inversely linked to gene activity in single cells and correlates positively with the heterochromatic histone modification H3K9me3. These results highlight fundamental principles of single-cell chromatin organization. VIDEO ABSTRACT.


Asunto(s)
Cromatina/metabolismo , Lámina Nuclear/metabolismo , Análisis de la Célula Individual/métodos , Línea Celular Tumoral , Cromatina/química , Cromosomas/química , Cromosomas/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Hibridación Fluorescente in Situ , Interfase
9.
Cell ; 160(6): 1049-59, 2015 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-25768903

RESUMEN

The genome must be highly compacted to fit within eukaryotic nuclei but must be accessible to the transcriptional machinery to allow appropriate expression of genes in different cell types and throughout developmental pathways. A growing body of work has shown that the genome, analogously to proteins, forms an ordered, hierarchical structure that closely correlates and may even be causally linked with regulation of functions such as transcription. This review describes our current understanding of how these functional genomic "secondary and tertiary structures" form a blueprint for global nuclear architecture and the potential they hold for understanding and manipulating genomic regulation.


Asunto(s)
Cromosomas/química , Animales , Diferenciación Celular , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , Cromosomas/genética , Cromosomas/metabolismo , Elementos de Facilitación Genéticos , Genoma , Humanos , Regiones Promotoras Genéticas , Células Madre/citología , Células Madre/metabolismo
10.
Cell ; 162(4): 900-10, 2015 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-26276636

RESUMEN

CTCF and the associated cohesin complex play a central role in insulator function and higher-order chromatin organization of mammalian genomes. Recent studies identified a correlation between the orientation of CTCF-binding sites (CBSs) and chromatin loops. To test the functional significance of this observation, we combined CRISPR/Cas9-based genomic-DNA-fragment editing with chromosome-conformation-capture experiments to show that the location and relative orientations of CBSs determine the specificity of long-range chromatin looping in mammalian genomes, using protocadherin (Pcdh) and ß-globin as model genes. Inversion of CBS elements within the Pcdh enhancer reconfigures the topology of chromatin loops between the distal enhancer and target promoters and alters gene-expression patterns. Thus, although enhancers can function in an orientation-independent manner in reporter assays, in the native chromosome context, the orientation of at least some enhancers carrying CBSs can determine both the architecture of topological chromatin domains and enhancer/promoter specificity. These findings reveal how 3D chromosome architecture can be encoded by linear genome sequences.


Asunto(s)
Cromosomas/metabolismo , Técnicas Genéticas , Proteínas Represoras/metabolismo , Animales , Sitios de Unión , Factor de Unión a CCCTC , Cadherinas/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Cromosomas/química , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , ADN/química , Elementos de Facilitación Genéticos , Expresión Génica , Genoma Humano , Humanos , Células K562 , Ratones , Regiones Promotoras Genéticas , Globinas beta/genética , Cohesinas
11.
Nature ; 627(8002): 196-203, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38355805

RESUMEN

It is well established that neutrophils adopt malleable polymorphonuclear shapes to migrate through narrow interstitial tissue spaces1-3. However, how polymorphonuclear structures are assembled remains unknown4. Here we show that in neutrophil progenitors, halting loop extrusion-a motor-powered process that generates DNA loops by pulling in chromatin5-leads to the assembly of polymorphonuclear genomes. Specifically, we found that in mononuclear neutrophil progenitors, acute depletion of the loop-extrusion loading factor nipped-B-like protein (NIPBL) induced the assembly of horseshoe, banded, ringed and hypersegmented nuclear structures and led to a reduction in nuclear volume, mirroring what is observed during the differentiation of neutrophils. Depletion of NIPBL also induced cell-cycle arrest, activated a neutrophil-specific gene program and conditioned a loss of interactions across topologically associating domains to generate a chromatin architecture that resembled that of differentiated neutrophils. Removing NIPBL resulted in enrichment for mega-loops and interchromosomal hubs that contain genes associated with neutrophil-specific enhancer repertoires and an inflammatory gene program. On the basis of these observations, we propose that in neutrophil progenitors, loop-extrusion programs produce lineage-specific chromatin architectures that permit the packing of chromosomes into geometrically confined lobular structures. Our data also provide a blueprint for the assembly of polymorphonuclear structures, and point to the possibility of engineering de novo nuclear shapes to facilitate the migration of effector cells in densely populated tumorigenic environments.


Asunto(s)
Movimiento Celular , Forma del Núcleo Celular , Neutrófilos , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/deficiencia , Proteínas de Ciclo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Cromosomas/química , Cromosomas/metabolismo , Neutrófilos/citología , Neutrófilos/metabolismo , Conformación de Ácido Nucleico , Diferenciación Celular/genética , Inflamación/genética , Elementos de Facilitación Genéticos , Linaje de la Célula/genética
12.
Cell ; 157(4): 950-63, 2014 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-24813616

RESUMEN

A new level of chromosome organization, topologically associating domains (TADs), was recently uncovered by chromosome conformation capture (3C) techniques. To explore TAD structure and function, we developed a polymer model that can extract the full repertoire of chromatin conformations within TADs from population-based 3C data. This model predicts actual physical distances and to what extent chromosomal contacts vary between cells. It also identifies interactions within single TADs that stabilize boundaries between TADs and allows us to identify and genetically validate key structural elements within TADs. Combining the model's predictions with high-resolution DNA FISH and quantitative RNA FISH for TADs within the X-inactivation center (Xic), we dissect the relationship between transcription and spatial proximity to cis-regulatory elements. We demonstrate that contacts between potential regulatory elements occur in the context of fluctuating structures rather than stable loops and propose that such fluctuations may contribute to asymmetric expression in the Xic during X inactivation.


Asunto(s)
Cromosomas/química , Transcripción Genética , Inactivación del Cromosoma X , Animales , Cromatina/química , Femenino , Hibridación Fluorescente in Situ , Masculino , Ratones , Modelos Biológicos , Modelos Moleculares , ARN Largo no Codificante/metabolismo
13.
Mol Cell ; 81(15): 3033-3037, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34358454

RESUMEN

Some biological questions are tough to solve through standard molecular and cell biological methods and naturally lend themselves to investigation by physical approaches. Below, a group of formally trained physicists discuss, among other things, how they apply physics to address biological questions and how physical approaches complement conventional biological approaches.


Asunto(s)
Biofisica/métodos , Modelos Biológicos , Física/métodos , Imagen Individual de Molécula , Biología/educación , Biofisica/tendencias , Cromosomas/química , Cromosomas/ultraestructura , Simulación por Computador , Humanos , Proteínas Motoras Moleculares/química , Origen de la Vida , Física/educación , Imagen Individual de Molécula/métodos
14.
Mol Cell ; 81(21): 4377-4397.e12, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34478647

RESUMEN

Structural heterogeneity of nucleosomes in functional chromosomes is unknown. Here, we devise the template-, reference- and selection-free (TRSF) cryo-EM pipeline to simultaneously reconstruct cryo-EM structures of protein complexes from interphase or metaphase chromosomes. The reconstructed interphase and metaphase nucleosome structures are on average indistinguishable from canonical nucleosome structures, despite DNA sequence heterogeneity, cell-cycle-specific posttranslational modifications, and interacting proteins. Nucleosome structures determined by a decoy-classifying method and structure variability analyses reveal the nucleosome structural variations in linker DNA, histone tails, and nucleosome core particle configurations, suggesting that the opening of linker DNA, which is correlated with H2A C-terminal tail positioning, is suppressed in chromosomes. High-resolution (3.4-3.5 Å) nucleosome structures indicate DNA-sequence-independent stabilization of superhelical locations ±0-1 and ±3.5-4.5. The linker histone H1.8 preferentially binds to metaphase chromatin, from which chromatosome cryo-EM structures with H1.8 at the on-dyad position are reconstituted. This study presents the structural characteristics of nucleosomes in chromosomes.


Asunto(s)
Cromosomas/química , Interfase , Metafase , Nucleosomas/metabolismo , Animales , Comunicación Celular , Ciclo Celular , División Celular , Cromatina/química , Simulación por Computador , Microscopía por Crioelectrón , ADN/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nucleosomas/química , Conformación Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional , Xenopus
16.
Cell ; 152(6): 1270-84, 2013 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-23498936

RESUMEN

The architecture of interphase chromosomes is important for the regulation of gene expression and genome maintenance. Chromosomes are linearly segmented into hundreds of domains with different protein compositions. Furthermore, the spatial organization of chromosomes is nonrandom and is characterized by many local and long-range contacts among genes and other sequence elements. A variety of genome-wide mapping techniques have made it possible to chart these properties at high resolution. Combined with microscopy and computational modeling, the results begin to yield a more coherent picture that integrates linear and three-dimensional (3D) views of chromosome organization in relation to gene regulation and other nuclear functions.


Asunto(s)
Núcleo Celular/genética , Cromosomas/química , Interfase , Animales , Nucléolo Celular/metabolismo , Estructuras Cromosómicas , Cromosomas/metabolismo , Humanos , Lámina Nuclear/metabolismo
17.
Cell ; 155(3): 606-20, 2013 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-24243018

RESUMEN

Transcription of coregulated genes occurs in the context of long-range chromosomal contacts that form multigene complexes. Such contacts and transcription are lost in knockout studies of transcription factors and structural chromatin proteins. To ask whether chromosomal contacts are required for cotranscription in multigene complexes, we devised a strategy using TALENs to cleave and disrupt gene loops in a well-characterized multigene complex. Monitoring this disruption using RNA FISH and immunofluorescence microscopy revealed that perturbing the site of contact had a direct effect on transcription of other interacting genes. Unexpectedly, this effect on cotranscription was hierarchical, with dominant and subordinate members of the multigene complex engaged in both intra- and interchromosomal contact. This observation reveals the profound influence of these chromosomal contacts on the transcription of coregulated genes in a multigene complex.


Asunto(s)
Cromosomas , Regulación de la Expresión Génica , Técnicas Genéticas , Análisis de la Célula Individual , Transcripción Genética , Cromosomas/química , Desoxirribonucleasas/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hibridación Fluorescente in Situ , Proteínas Represoras/genética , Factor de Necrosis Tumoral alfa/metabolismo
18.
Mol Cell ; 78(1): 96-111.e6, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32105612

RESUMEN

Current models suggest that chromosome domains segregate into either an active (A) or inactive (B) compartment. B-compartment chromatin is physically separated from the A compartment and compacted by the nuclear lamina. To examine these models in the developmental context of C. elegans embryogenesis, we undertook chromosome tracing to map the trajectories of entire autosomes. Early embryonic chromosomes organized into an unconventional barbell-like configuration, with two densely folded B compartments separated by a central A compartment. Upon gastrulation, this conformation matured into conventional A/B compartments. We used unsupervised clustering to uncover subpopulations with differing folding properties and variable positioning of compartment boundaries. These conformations relied on tethering to the lamina to stretch the chromosome; detachment from the lamina compacted, and allowed intermingling between, A/B compartments. These findings reveal the diverse conformations of early embryonic chromosomes and uncover a previously unappreciated role for the lamina in systemic chromosome stretching.


Asunto(s)
Caenorhabditis elegans/genética , Cromosomas/química , Lámina Nuclear/fisiología , Animales , Caenorhabditis elegans/embriología , Cromosomas/ultraestructura , Embrión no Mamífero/ultraestructura , Gastrulación/genética , Hibridación Fluorescente in Situ , Conformación Molecular
19.
Annu Rev Genet ; 53: 445-482, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31577909

RESUMEN

Structural maintenance of chromosomes (SMC) complexes are key organizers of chromosome architecture in all kingdoms of life. Despite seemingly divergent functions, such as chromosome segregation, chromosome maintenance, sister chromatid cohesion, and mitotic chromosome compaction, it appears that these complexes function via highly conserved mechanisms and that they represent a novel class of DNA translocases.


Asunto(s)
Cromátides , Cromosomas/metabolismo , ADN/química , ADN/metabolismo , Complejos Multiproteicos/metabolismo , Adenosina Trifosfatasas/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Cromátides/química , Cromátides/genética , Proteínas Cromosómicas no Histona/metabolismo , Segregación Cromosómica , Cromosomas/química , Cromosomas/genética , Proteínas de Unión al ADN/metabolismo , Elementos de Facilitación Genéticos , Mitosis , Complejos Multiproteicos/química , Regiones Promotoras Genéticas , Recombinación V(D)J , Cohesinas
20.
Nat Rev Mol Cell Biol ; 16(4): 245-57, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25757416

RESUMEN

The different cell types of an organism share the same DNA, but during cell differentiation their genomes undergo diverse structural and organizational changes that affect gene expression and other cellular functions. These can range from large-scale folding of whole chromosomes or of smaller genomic regions, to the re-organization of local interactions between enhancers and promoters, mediated by the binding of transcription factors and chromatin looping. The higher-order organization of chromatin is also influenced by the specificity of the contacts that it makes with nuclear structures such as the lamina. Sophisticated methods for mapping chromatin contacts are generating genome-wide data that provide deep insights into the formation of chromatin interactions, and into their roles in the organization and function of the eukaryotic cell nucleus.


Asunto(s)
Cromatina/química , Cromosomas/química , Genoma/genética , Modelos Biológicos , Animales , Humanos , Pliegue de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA