Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.937
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 163(1): 95-107, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406373

RESUMEN

To understand how different diets, the consumers' gut microbiota, and the enteric nervous system (ENS) interact to regulate gut motility, we developed a gnotobiotic mouse model that mimics short-term dietary changes that happen when humans are traveling to places with different culinary traditions. Studying animals transplanted with the microbiota from humans representing diverse culinary traditions and fed a sequence of diets representing those of all donors, we found that correlations between bacterial species abundances and transit times are diet dependent. However, the levels of unconjugated bile acids-generated by bacterial bile salt hydrolases (BSH)-correlated with faster transit, including during consumption of a Bangladeshi diet. Mice harboring a consortium of sequenced cultured bacterial strains from the Bangladeshi donor's microbiota and fed a Bangladeshi diet revealed that the commonly used cholekinetic spice, turmeric, affects gut motility through a mechanism that reflects bacterial BSH activity and Ret signaling in the ENS. These results demonstrate how a single food ingredient interacts with a functional microbiota trait to regulate host physiology.


Asunto(s)
Dieta , Motilidad Gastrointestinal , Tracto Gastrointestinal/microbiología , Tracto Gastrointestinal/fisiología , Modelos Animales , Viaje , Animales , Bangladesh , Ácidos y Sales Biliares/metabolismo , Curcuma/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota , Organismos Libres de Patógenos Específicos
2.
J Cell Mol Med ; 28(8): e18303, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38613362

RESUMEN

Curcuma longa, best known for its culinary application as the main constituent of curry powder, has shown potential impact on the reproductive system. This study aimed to investigate the efficacy of Curcuma longa extract (CLE) on Kidney-Yang deficiency mice induced by hydrocortisone and the possible roles in testosterone secretion in Leydig cells. We evaluated male sexual behaviour, reproductive organ weight, testosterone levels, and histological tissue changes in hydrocortisone-induced mice. CLE effectively reversed hydrocortisone-induced Kidney-Yang deficiency syndrome by improving sexual behaviour, testis and epididymis weight, testosterone levels and reducing pathological damage. Our in vitro study further indicated that CLE stimulated testosterone production via upregulating the mRNA and protein expression of steroidogenic enzymes in Leydig cells. It significantly improved H89-inhibited protein expression of StAR and cAMP-response element-binding (CREB), as well as melatonin-suppressed StAR protein expression. The data obtained from this study suggest that CLE could alleviate Kidney-Yang deficiency symptoms and stimulate testosterone production by upregulating the steroidogenic pathway. This research identifies CLE as a potential nutraceutical option for addressing testosterone deficiency diseases.


Asunto(s)
Glomerulonefritis , Extractos Vegetales , Testosterona , Masculino , Animales , Ratones , Células Intersticiales del Testículo , Curcuma , Hidrocortisona , Deficiencia Yang
3.
Plant J ; 116(3): 773-785, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37537754

RESUMEN

Hybridization is a widespread phenomenon in the evolution of plants and exploring its role is crucial to understanding diversification processes of many taxonomic groups. Recently, more attention is focused on the role of ancient hybridization that has repeatedly been shown as triggers of evolutionary radiation, although in some cases, it can prevent further diversification. The causes, frequency, and consequences of ancient hybridization remain to be explored. Here, we present an account of several events of ancient hybridization in turmeric, the economically important plant genus Curcuma (Zingiberaceae), which harbors about 130 known species. We analyzed 1094 targeted low-copy genes and plastomes obtained by next-generation sequencing of 37 species of Curcuma, representing the known genetic diversity and spanning the geographical distribution of the genus. Using phylogenetic network analysis, we show that the entire genus Curcuma as well as its most speciose lineage arose via introgression from the genus Pyrgophyllum and one of the extinct lineages, respectively. We also document a single event of ancient hybridization, with C. vamana as a product, that represents an evolutionary dead end. We further discuss distinct circumstances of those hybridization events that deal mainly with (in)congruence in chromosome counts of the parental lineages.


Asunto(s)
Curcuma , Zingiberaceae , Curcuma/genética , Filogenia , Hibridación Genética
4.
Planta ; 260(1): 26, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861179

RESUMEN

MAIN CONCLUSION: CaTPS2 and CaTPS3 were significantly expressed in flowers of Curcuma alismatifolia 'Shadow' and demonstrated bifunctional enzyme activity, CaTPS2 generated linalool and nerolidol as products, and CaTPS3 catalyzed ß-myrcene and ß-farnesene formation. This study presents the discovery and functional characterization of floral terpene synthase (TPS) genes in Curcuma alismatifolia 'Shadow', a cultivar renowned for its unique fragrance. Addressing the gap in understanding the genetic basis of floral scent in this species, we identified eight TPS genes through comprehensive transcriptome sequencing. Among these, CaTPS2 and CaTPS3 were significantly expressed in floral tissues and demonstrated bifunctional enzyme activity corresponding to the major volatile compounds detected in 'Shadow'. Functional analyses, including in vitro assays complemented with rigorous controls and alternative identification methods, elucidated the roles of these TPS genes in terpenoid biosynthesis. In vitro studies were conducted via heterologous expression in E. coli, followed by purification of the recombinant protein using affinity chromatography, enzyme assays were performed with GPP/FPP as the substrate, and volatile products were inserted into the GC-MS for analysis. Partially purified recombinant protein of CaTPS2 catalyzed GPP and FPP to produce linalool and nerolidol, respectively, while partially purified recombinant protein of CaTPS3 generated ß-myrcene and ß-farnesene with GPP and FPP as substrates, respectively. Real-time quantitative PCR further validated the expression patterns of these genes, correlating with terpenoid accumulation in different plant tissues. Our findings illuminate the molecular mechanisms underpinning floral fragrance in C. alismatifolia and provide a foundation for future genetic enhancements of floral scent in ornamental plants. This study, therefore, contributes to the broader understanding of terpenoid biosynthesis in plant fragrances, paving the way for biotechnological applications in horticulture plant breeding.


Asunto(s)
Monoterpenos Acíclicos , Transferasas Alquil y Aril , Curcuma , Flores , Sesquiterpenos , Transferasas Alquil y Aril/genética , Transferasas Alquil y Aril/metabolismo , Flores/genética , Flores/enzimología , Flores/metabolismo , Sesquiterpenos/metabolismo , Monoterpenos Acíclicos/metabolismo , Curcuma/genética , Curcuma/enzimología , Curcuma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Filogenia , Odorantes
5.
Plant Cell Environ ; 47(8): 3090-3110, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38679901

RESUMEN

Plant JASMONATE ZIM-DOMAIN (JAZ) genes play crucial roles in regulating the biosynthesis of specialized metabolites and stressful responses. However, understanding of JAZs controlling these biological processes lags due to numerous JAZ copies. Here, we found that two leaf-specific CwJAZ4/9 genes from Curcuma wenyujin are strongly induced by methyl-jasmonate (MeJA) and negatively correlated with terpenoid biosynthesis. Yeast two-hybrid, luciferase complementation imaging and in vitro pull-down assays confirmed that CwJAZ4/9 proteins interact with CwMYC2 to form the CwJAZ4/9-CwMYC2 regulatory cascade. Furthermore, transgenic hairy roots showed that CwJAZ4/9 acts as repressors of MeJA-induced terpenoid biosynthesis by inhibiting the terpenoid pathway and jasmonate response, thus reducing terpenoid accumulation. In addition, we revealed that CwJAZ4/9 decreases salt sensitivity and sustains the growth of hairy roots under salt stress by suppressing the salt-mediated jasmonate responses. Transcriptome analysis for MeJA-mediated transgenic hairy root lines further confirmed that CwJAZ4/9 negatively regulates the terpenoid pathway genes and massively alters the expression of genes related to salt stress signaling and responses, and crosstalks of multiple phytohormones. Altogether, our results establish a genetic framework to understand how CwJAZ4/9 inhibits terpenoid biosynthesis and confers salt tolerance, which provides a potential strategy for producing high-value pharmaceutical terpenoids and improving resistant C. wenyujin varieties by a genetic approach.


Asunto(s)
Acetatos , Curcuma , Ciclopentanos , Regulación de la Expresión Génica de las Plantas , Oxilipinas , Proteínas de Plantas , Tolerancia a la Sal , Terpenos , Oxilipinas/metabolismo , Ciclopentanos/metabolismo , Tolerancia a la Sal/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Terpenos/metabolismo , Acetatos/farmacología , Acetatos/metabolismo , Curcuma/metabolismo , Curcuma/genética , Plantas Modificadas Genéticamente , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/efectos de los fármacos
6.
Langmuir ; 40(2): 1381-1398, 2024 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-38159065

RESUMEN

In order to better understand the bioavailability and biocompatibility of polyphenol-assisted surface-modified bioengineered nanoparticles in nanomedicine applications, here, we address a series of photophysical experiments to quantify the binding affinity of serum albumin toward polyphenol-capped gold nanoparticles. For this, two different gold nanoparticles (AuNPs) were synthesized via the green synthesis approach, where curcumin and turmeric extract act as reducing as well as capping agents. The size, surface charge, and surface plasmon bands of the AuNPs were highly affected by the adsorption of human serum albumin (HSA) during protein corona formation, which was investigated using dynamic light scattering (DLS), ξ-potential, ultraviolet-visible (UV-vis) spectroscopy, and transmission electron microscopy (TEM) measurements. Fluorescence-based methods, absorbance, and SERS experiments were carried out to evaluate the binding aspects of AuNPs with HSA. We found that the AuNPs show moderate binding affinity toward HSA (Kb ∼ 104 M-1), irrespective of the capping agents on the surface. Hydrophobic association, along with some contribution of electrostatic interaction, played a key role in the binding process. The binding interaction was more toward the subdomain IIA region of HSA, as indicated by the competitive displacement studies using site-specific binders (warfarin and flufenamic acid). Because of the large surface curvature of small-sized AuNPs, the secondary structural conformations of HSA were slightly altered, as revealed by circular dichroism (CD), Fourier transform infrared (FT-IR) spectroscopy, and surface-enhanced Raman scattering (SERS) measurements. Additionally, the findings of the binding interactions were re-evaluated using molecular dynamics (MD) simulation studies by determining the root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), and changes in the binding energy of HSA upon complexation with AuNPs. To determine the tentative evidence for pharmacokinetic administration, these biocompatible AuNPs were applied to inhibit the amyloid fibril formation of HSA and monitored by using the thioflavin T (ThT) assay, ANS fluorescence assay, fluorescence microscopic imaging, and FESEM. AuNPs were found to show better resistance toward fibrillation of the adsorbed protein.


Asunto(s)
Curcumina , Nanopartículas del Metal , Corona de Proteínas , Humanos , Albúmina Sérica Humana , Oro/química , Espectroscopía Infrarroja por Transformada de Fourier , Curcuma , Nanopartículas del Metal/química , Dicroismo Circular , Termodinámica , Polifenoles , Unión Proteica , Espectrometría de Fluorescencia , Sitios de Unión
7.
Photochem Photobiol Sci ; 23(6): 1179-1194, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38771468

RESUMEN

In this study, photostability and photodynamic antimicrobial performance of dye extracts from Hibiscus sabdariffa (HS) calyces, Sorghum bicolor (SB) leaf sheaths, Lawsonia inermis (LI) leaves and Curcuma longa (CL) roots were investigated in Acetate-HCl (AH) Buffer (pH 4.6), Tris Base-HCl (TBH) Buffer (pH 8.6), distilled water (dH2O), and Phosphate Buffer Saline (PBS, pH 7.2) using Bacillus subtilis as model for gram positive bacteria, Escherichia coli as model for gram negative bacteria, phage MS2 as model for non-envelope viruses and phage phi6 as model for envelope viruses including SARS CoV-2 which is the causative agent of COVID-19. Our results showed that the photostability of the dye extracts is in the decreasing order of LI > CL > SB > HS. The dye extract-HS is photostable in dH2O but bleaches in buffers-AH, TBH and PBS. The rate of bleaching is higher in AH compared to in TBH and PBS. The bleaching and buffers affected the photodynamic and non-photodynamic antimicrobial activity of the dye extracts. The photodynamic antibacterial activity of the dye extracts is in the decreasing order of CL > HS > LI > SB while the non-photodynamic antibacterial activity is in the decreasing order of LI > CL > HS > SB. The non-photodynamic antiviral activity pattern observed is the same as that of non-photodynamic antibacterial activity observed. However, the photodynamic antiviral activity of the dye extracts is in the decreasing order of CL > LI > HS > SB. Given their performance, the dye extracts maybe mostly suitable for environmental applications including fresh produce and food disinfection, sanitation of hands and contact surfaces where water can serve as diluent for the extracts and the microenvironment is free of salts.


Asunto(s)
Extractos Vegetales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Sorghum/química , Hibiscus/química , Curcuma/química , Escherichia coli/efectos de los fármacos , Levivirus/efectos de los fármacos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Bacillus subtilis/efectos de los fármacos , Desinfección , Antibacterianos/farmacología , Antibacterianos/química , SARS-CoV-2/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Colorantes/química , Colorantes/farmacología , COVID-19 , Hojas de la Planta/química , Antiinfecciosos/farmacología , Antiinfecciosos/química , Luz
8.
Bioorg Chem ; 147: 107357, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38604020

RESUMEN

Turmeric (Curcuma longa), a typical source with recognized anti-inflammatory activity, is one such medicine-food homology source, yet its anti-inflammatory mechanisms and specific component combinations remain unclear. In this study, a net fishing method combining bio-affinity ultrafiltration and ultra-high performance liquid chromatography-mass spectrometry (AUF-LC/MS) was employed and 13 potential COX-2 inhibitors were screened out from C. longa. 5 of them (C1, 17, 20, 22, 25) were accurately isolated and identified. Initially, their IC50 values were measured (IC50 of C1, 17, 20, 22 and 25 is 55.08, 48.26, 29.13, 111.28 and 150.48 µM, respectively), and their downregulation of COX-2 under safe concentrations (400, 40, 120, 50 and 400 µM for C1, 17, 20, 22 and 25, respectively) was confirmed on RAW 264.7 cells. Further, in transgenic zebrafish (Danio rerio), significant anti-inflammatory activity at safe concentrations (15, 3, 1.5, 1.5 and 3 µg/mL for C1, 17, 20, 22 and 25, respectively) were observed in a dose-dependent manner. More importantly, molecular docking analysis further revealed the mode of interaction between them and the key active site residues of COX-2. This study screened out and verified unreported COX-2 ligands, potentially accelerating the discovery of new bioactive compounds in other functional foods.


Asunto(s)
Curcuma , Inhibidores de la Ciclooxigenasa 2 , Ciclooxigenasa 2 , Ultrafiltración , Pez Cebra , Animales , Curcuma/química , Inhibidores de la Ciclooxigenasa 2/farmacología , Inhibidores de la Ciclooxigenasa 2/química , Ratones , Ciclooxigenasa 2/metabolismo , Cromatografía Líquida de Alta Presión , Células RAW 264.7 , Relación Dosis-Respuesta a Droga , Simulación del Acoplamiento Molecular , Estructura Molecular , Relación Estructura-Actividad , Espectrometría de Masas , Humanos
9.
Bioorg Chem ; 143: 107046, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38141332

RESUMEN

This study was aimed at investigating the neuroprotective potential of a co-extract obtained by supercritical fluid extraction (SFE) of turmeric powder and dried coconut shreds against aluminium chloride (AlCl3)-induced Alzheimer's disease (AD) in male Wistar rats. Fifty animals were allocated to five groups, which received saline (vehicle control, group 1), a combination of saline and aluminium chloride (AlCl3) (disease control, group 2), coconut oil (COO) (SFE extracted, treatment group 3), turmeric oleoresin (Cur) (SFE extracted, treatment group 4) and SFE co-extract of turmeric powder and coconut shreds (CurCOO) (treatment group 5). Animals were subjected to behavioural evaluation. In addition, the hippocampal section of the brain from all groups was subjected to biochemical, molecular and histopathological evaluations. The results showed CurCOO administered intranasally improved cognitive abilities, reversed histological alterations in the brain, reduced hippocampus inflammation studied through proinflammatory cytokine markers like TNF-α and IL-6 as compared to the disease control group. The impact of CurCOO on preventive neurodegeneration was also observed through a reduction in protein transcription factor NF-kB in the treated group 5 as compared to a disease control group. The effect of intranasal delivery of CurCOO on the neurons responsible for memory consolidation was evident from low acetylcholinesterase (AChE) enzyme activity in the treated groups with respect to AlCl3 induced group. Summarily, the results demonstrated intranasal delivery of CurCOO to show better efficacy than Cur and COO in preventing neurodegeneration associated with AlCl3 induced Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Ratas , Masculino , Animales , Cloruro de Aluminio , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Compuestos de Aluminio/efectos adversos , Compuestos de Aluminio/metabolismo , Cloruros/efectos adversos , Cloruros/metabolismo , Curcuma , Polvos/efectos adversos , Polvos/metabolismo , Ratas Wistar , Neuroprotección , Acetilcolinesterasa/metabolismo , Cocos/metabolismo , Encéfalo/metabolismo
10.
Cell Biochem Funct ; 42(1): e3911, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38269517

RESUMEN

Curcumin is a natural compound derived from turmeric and can target malignant tumor molecules involved in cancer propagation. It has potent antioxidant activity, but its effectiveness is limited due to poor absorption and rapid elimination from the body. Various curcumin derivatives have also shown anticancer potential in in-vitro and in-vivo models. Curcumin can target multiple signaling pathways involved in cancer development/progression or induce cancer cell death through apoptosis. In addition, curcumin and its derivatives could also enhance the effectiveness of conventional chemotherapy, radiation therapy and reduce their associated side effects. Lately, nanoparticle-based delivery systems are being developed/explored to overcome the challenges associated with curcumin's delivery, increasing its overall efficacy. The use of an imaging system to track these formulations could also give beneficial information about the bioavailability and distribution of the nano-curcumin complex. In conclusion, curcumin holds significant promise in the fight against cancer, especially in its nanoform, and could provide precise delivery to cancer cells without affecting normal healthy cells.


Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Curcumina/farmacología , Apoptosis , Muerte Celular , Curcuma , Neoplasias/tratamiento farmacológico
11.
Lett Appl Microbiol ; 77(6)2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38794899

RESUMEN

Non-antibiotic adjuncts may improve Helicobacter pylori infection control. Our aim was to emphasize curcumin benefits in controlling H. pylori infection. We discussed publications in English mostly published since 2020 using keyword search. Curcumin is the main bioactive substance in turmeric. Curcumin inhibited H. pylori growth, urease activity, three cag genes, and biofilms through dose- and strain-dependent activities. Curcumin also displayed numerous anticancer activities such as apoptosis induction, anti-inflammatory and anti-angiogenic effects, caspase-3 upregulation, Bax protein enhancement, p53 gene activation, and chemosensitization. Supplementing triple regimens, the agent increased H. pylori eradication success in three Iranian studies. Bioavailability was improved by liposomal preparations, lipid conjugates, electrospray-encapsulation, and nano-complexation with proteins. The agent was safe at doses of 0.5->4 g daily, the most common (in 16% of the users) adverse effect being gastrointestinal upset. Notably, curcumin favorably influences the intestinal microbiota and inhibits Clostridioides difficile. Previous reports showed the inhibitory effect of curcumin on H pylori growth. Curcumin may become an additive in the therapy of H. pylori infection, an adjunct for gastric cancer control, and an agent beneficial to the intestinal microbiota. Further examination is necessary to determine its optimal dosage, synergy with antibiotics, supplementation to various eradication regimens, and prophylactic potential.


Asunto(s)
Antibacterianos , Curcuma , Curcumina , Infecciones por Helicobacter , Helicobacter pylori , Curcumina/farmacología , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/genética , Humanos , Antibacterianos/farmacología , Microbioma Gastrointestinal/efectos de los fármacos
12.
Anim Biotechnol ; 35(1): 2371519, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38990689

RESUMEN

The present study aimed to evaluate the effect of dry turmeric rhizomes on in vitro biogas production and diet fermentability. Turmeric rhizomes were included at gradually increased levels: 0, 0.5, 1, 1.5 and 2% of a diet containing per kg dr matter (DM): 500 g concentrate feed mixture, 400 g berseem hay and 100 g rice straw, and incubated for 48 h. Gas chromatography-mass spectrometry analysis showed that ar-turmerone, α-turmerone and ß-turmerone were the major bioactive compounds in the rhizomes. Turmeric rhizomes increased (p < 0.01) asymptotic gas production (GP) and rate and lag of CH4 production and decreased (p < 0.01) rate of GP, lag of GP, asymptotic CH4 production and proportion of CH4 production. Turmeric rhizome administration linearly increased (p < 0.01) DM and fiber degradability and concentrations of total short-chain fatty acids, acetic and propionic acids and ammonia-N and quadratically (p < 0.05) decreased fermentation pH. It is concluded that including up to 2% turmeric rhizomes improved in vitro ruminal fermentation and decreased CH4 production.


Asunto(s)
Curcuma , Fermentación , Metano , Rizoma , Curcuma/química , Rizoma/química , Animales , Metano/metabolismo , Rumen/metabolismo , Alimentación Animal/análisis , Dieta/veterinaria , Digestión/efectos de los fármacos
13.
Altern Ther Health Med ; 30(4): 18-23, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38702159

RESUMEN

Objective: Curcuminoids, the major component of which is curcumin, are natural polyphenolic compounds from the rhizome of Curcuma longa Linn. and possess extensive biopharmacological properties that are limited in humans due to poor bioavailability. Currently, most commercial bioavailable turmeric extracts use synthetic excipients or the addition of piperine to enhance bioavailability, and are needed in multiple daily doses to achieve clinical efficacy. This study was conducted to compare the bioavailability of a natural, water-dispersible turmeric extract containing 60% natural curcuminoids, the test product, WDTE60N (1 × 250 mg per day), with the reference product, turmeric extract capsules (500 mg curcuminoids and 5 mg piperine, CPC; 3 × 500 mg per day). Methods: Sixteen healthy adult male subjects fasted overnight for 10 hours and then were dosed with either one capsule of the test product WDTE60N or three capsules of reference product CPC orally (One capsule administered at every 6 hours interval i.e. at 0.00 hrs, 6.00 hrs and at 12.00 hrs) in each study period. Blood sampling before and after dosing was carried out at defined time points at -12.00, -02.00, 00.00 (within 10 minutes prior to dosing) hours in morning before dosing and post-dose (First dose) at 00.50, 01.00, 02.00, 03.00, 04.00, 05.00, 06.50, 07.00, 08.00, 09.00, 10.00, 11.00, 12.50, 13.00, 14.00, 16.00, 18.00, 20.00 and 24.00 hours in each period. Plasma concentration of curcuminoids was determined using a validated liquid chromatography with tandem mass spectrometry bioanalytical method. Results: The Cmax (GLSM) for the test product WDTE60N was observed to be 74.56 ng/mL; and same for the reference CPC was 22.75 ng/mL. AUC0-t (GLSM) for test WDTE60N was 419.00 h∙ng/mL; and for reference CPC it was 359.86 h∙ng/mL for total curcuminoids. Conclusion: The test formulation WDTE60N showed improved relative absorption and equivalent exposure at a 10-fold-lower dose of actives than the reference formulation CPC.


Asunto(s)
Alcaloides , Benzodioxoles , Estudios Cruzados , Curcuma , Curcumina , Piperidinas , Extractos Vegetales , Humanos , Masculino , Extractos Vegetales/farmacología , Extractos Vegetales/farmacocinética , Curcuma/química , Adulto , Alcaloides/farmacocinética , Alcaloides/farmacología , Benzodioxoles/farmacocinética , Benzodioxoles/farmacología , Curcumina/farmacocinética , Curcumina/farmacología , Piperidinas/farmacocinética , Piperidinas/farmacología , Disponibilidad Biológica , Adulto Joven , Alcamidas Poliinsaturadas/farmacología , Alcamidas Poliinsaturadas/farmacocinética
14.
Phytother Res ; 38(6): 2687-2706, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38503513

RESUMEN

Turmeric has been gaining popularity as a treatment option for digestive disorders, although a rigorous synthesis of efficacy has not been conducted. This study aimed to summarize the evidence for the efficacy and safety of turmeric in the treatment of digestive disorders, including inflammatory bowel diseases (IBD), irritable bowel syndrome (IBS), dyspepsia, gastroesophageal reflux disease, and peptic ulcers. Literature searches were conducted in Medline, EMBASE, AMED, the Cochrane Central Register of Control Trials, and Dissertation Abstracts from inception to November 15, 2021. Dual independent screening of citations and full texts was conducted and studies meeting inclusion criteria were retained: randomized controlled trials (RCT) and comparative observational studies evaluating turmeric use in people of any age with one of the digestive disorders of interest. Extraction of relevant data and risk of bias assessments were performed by two reviewers independently. Meta-analysis was not conducted due to high heterogeneity. From 1136 citations screened, 26 eligible studies were retained. Most studies were assessed to have a high risk of bias, and many had methodological limitations. Descriptive summaries suggest that turmeric is safe, with possible efficacy in patients with IBD or IBS, but its effects were inconsistent for other conditions. The efficacy of turmeric in digestive disorders remains unclear due to the high risk of bias and methodological limitations of the included studies. Future studies should be designed to include larger sample sizes, use rigorous statistical methods, employ core outcome sets, and adhere to reporting guidance for RCTs of herbal interventions to facilitate more meaningful comparisons and robust conclusions.


Asunto(s)
Curcuma , Humanos , Curcuma/química , Ensayos Clínicos Controlados Aleatorios como Asunto , Extractos Vegetales/uso terapéutico , Extractos Vegetales/efectos adversos , Síndrome del Colon Irritable/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades del Sistema Digestivo/tratamiento farmacológico
15.
Phytother Res ; 38(1): 98-116, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37813398

RESUMEN

Cigarette smoking (CS) is a crucial modifiable risk of developing several human diseases and cancers. It causes lung, bladder, breast, and esophageal cancers, respiratory disorders, as well as cardiovascular and metabolic diseases. Because of these adverse health effects, continual efforts to decrease the prevalence and toxicity of CS are imperative. Until the past decades, the impacts of natural compounds have been under investigation on the harmful effects of CS. Turmeric (Curcuma longa), a rhizomatous herbaceous perennial plant that belongs to the Zingiberaceae family, is the main source of curcumin. This review is an attempt to find out the current knowledge on CS's harmful effects and protective potential of curcumin in the pulmonary, liver, brain, gastrointestinal, and testis organs. According to the present review, simultaneous consumption of curcumin and CS can attenuate CS toxicities including chronic obstructive pulmonary disease, gastrointestinal toxicity, metabolic diseases, testis injury, and neurotoxicity. Moreover, curcumin suppresses carcinogenesis in the skin, liver, lungs, breast, colon, and stomach. Curcumin mediates these protective effects through antioxidant, anti-inflammatory, anti-apoptotic, and anti-carcinogenicity properties.


Asunto(s)
Fumar Cigarrillos , Curcumina , Enfermedades Metabólicas , Masculino , Humanos , Curcumina/farmacología , Pulmón , Antioxidantes/farmacología , Antioxidantes/metabolismo , Curcuma
16.
Phytother Res ; 38(2): 539-555, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37918958

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. The evidence for curcumin's effects on patients with NAFLD is accumulating; however, meta-analyses have reported mixed results. The current umbrella meta-analysis aimed to assess the present evidence and provide an accurate estimate of the overall effects of curcumin/turmeric on NAFLD patients. The Web of Science, Scopus, PubMed, ScienceDirect, and Google Scholar databases were searched till March 2023 using MeSH terms and related keywords based on the PICO criteria. Meta-analysis studies evaluating the effects of curcumin/turmeric supplementation on NAFLD patients that reported the effect sizes (ES) and corresponding confidence intervals (CI) were eligible for inclusion in this study. All articles were screened by considering the eligibility criteria by two independent reviewers and required data were extracted from the included meta-analyses. The meta-analysis was performed utilizing a random-effects model by STATA software. Findings of 11 meta-analyses of 99 randomized controlled trials comprising 5546 participants revealed that curcumin/turmeric supplementation reduced AST (ES = -1.072, 95% CI (-1.656, -0.488), p = 0.000), ALT (ES = -0.625, 95% CI (-1.170, -0.134), p = 0.014), and TG (ES = -0.469, 95% CI (-1.057, 0.119), p = 0.128) levels, and HOMA-IR (ES = -0.291, 95% CI (-0.368, -0.214), p = 0.000), BMI (ES = -0.205, 95% CI (-0.304, -0.107), p = 0.000), and WC (ES = -1.290, 95% CI (-2.038, -0.541), p = 0.001) in comparison to the control group. However, the effects of curcumin on GGT, ALP, TC, LDL-C, HDL-C, FBS, and HbA1C levels and body weight were not significant. The findings suggest the beneficial effects of curcumin/turmeric supplementation in patients with NAFLD, such as improving liver function, decreasing serum TG levels, ameliorating insulin resistance, and reducing general and central obesity. Nevertheless, high-quality research is further required to prove these achievements.


Asunto(s)
Curcumina , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Curcumina/farmacología , Curcumina/uso terapéutico , Curcuma , Índice Glucémico , Lípidos , Suplementos Dietéticos
17.
Phytother Res ; 38(5): 2165-2181, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38396341

RESUMEN

Ethanol toxicity is a major public health problem that can cause damage to various organs in the body by several mechanisms inducing oxidative stress, inflammation, and apoptosis. Recently, there has been a growing interest in the potential of herbal medicines as therapeutic agents for the prevention and treatment of various disorders. Turmeric (Curcuma longa) extracts and its main components including curcumin have antioxidant, anti-inflammatory, and anti-apoptotic properties. This review aims to evaluate the literature on the ameliorative effects of turmeric extracts and their main components on ethanol toxicity. The relevant studies were identified through searches of Google Scholar, PubMed, and Scopus without any time limitation. The underlying mechanisms of turmeric and curcumin were also discussed. The findings suggest that turmeric and curcumin ameliorate ethanol-induced organ damage by suppressing oxidative stress, inflammation, apoptosis, MAPK activation, TGF-ß/Smad signaling pathway, hyperlipidemia, regulating hepatic enzymes, expression of SREBP-1c and PPAR-α. However, the limited clinical evidence suggests that further research is needed to determine the efficacy and safety of turmeric and curcumin in human subjects. In conclusion, the available evidence supports the potential use of turmeric and curcumin as alternative treatments for ethanol toxicity, but further high-quality studies are needed to firmly establish the clinical efficacy of the plant.


Asunto(s)
Antioxidantes , Curcuma , Curcumina , Etanol , Extractos Vegetales , Curcuma/química , Curcumina/farmacología , Humanos , Extractos Vegetales/farmacología , Etanol/química , Animales , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antiinflamatorios/farmacología , Inflamación/tratamiento farmacológico
18.
Phytother Res ; 38(7): 3307-3336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38622915

RESUMEN

Over the past five decades, Curcumin (Cur), derived from turmeric (Curcuma longa), has gained considerable attention for its potential therapeutic applications. Synthesizing insights from clinical trials conducted over the last 25 years, this review delves into diseases where Cur has demonstrated promise, offering a nuanced understanding of its pharmacokinetics, safety, and effectiveness. Focusing on specific examples, the impact of Cur on various human diseases is explored. Endocrine glands and associated signaling pathways are highlighted, elucidating how Cur influences cellular signaling. The article underscores molecular mechanisms such as hormone level alteration, receptor interaction, cytokine and adipokine expression inhibition, antioxidant enzyme activity, and modulation of transcription factors. Cur showcases diverse protective mechanisms against inflammation and oxidative damage by suppressing antiapoptotic genes and impeding tumor promotion. This comprehensive overview emphasizes the potential of Cur as a natural agent for countering aging and degenerative diseases, calling for further dedicated research in this realm.


Asunto(s)
Curcuma , Curcumina , Enfermedades del Sistema Endocrino , Curcumina/farmacología , Curcumina/uso terapéutico , Humanos , Curcuma/química , Enfermedades del Sistema Endocrino/tratamiento farmacológico , Animales , Transducción de Señal/efectos de los fármacos , Antioxidantes/farmacología , Estrés Oxidativo/efectos de los fármacos
19.
Phytother Res ; 38(6): 3169-3189, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38616356

RESUMEN

Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the accumulation of amyloid-beta plaques and neurofibrillary tangles, leading to neuronal loss. Curcumin, a polyphenolic compound derived from Curcuma longa, has shown potential neuroprotective effects due to its anti-inflammatory and antioxidant properties. This review aims to synthesize current preclinical data on the anti-neuroinflammatory mechanisms of curcumin in the context of AD, addressing its pharmacokinetics, bioavailability, and potential as a therapeutic adjunct. An exhaustive literature search was conducted, focusing on recent studies within the last 10 years related to curcumin's impact on neuroinflammation and its neuroprotective role in AD. The review methodology included sourcing articles from specialized databases using specific medical subject headings terms to ensure precision and relevance. Curcumin demonstrates significant neuroprotective properties by modulating neuroinflammatory pathways, scavenging reactive oxygen species, and inhibiting the production of pro-inflammatory cytokines. Despite its potential, challenges remain regarding its limited bioavailability and the scarcity of comprehensive human clinical trials. Curcumin emerges as a promising therapeutic adjunct in AD due to its multimodal neuroprotective benefits. However, further research is required to overcome challenges related to bioavailability and to establish effective dosing regimens in human subjects. Developing novel delivery systems and formulations may enhance curcumin's therapeutic potential in AD treatment.


Asunto(s)
Enfermedad de Alzheimer , Antiinflamatorios , Curcumina , Fármacos Neuroprotectores , Curcumina/farmacología , Curcumina/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Humanos , Fármacos Neuroprotectores/farmacología , Antiinflamatorios/farmacología , Animales , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Antioxidantes/farmacología , Curcuma/química , Disponibilidad Biológica
20.
Phytother Res ; 38(7): 3525-3551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38699926

RESUMEN

Colorectal cancer (CRC) development and progression, one of the most common cancers globally, is supported by specific mechanisms to escape cell death despite chemotherapy, including cellular autophagy. Autophagy is an evolutionarily highly conserved degradation pathway involved in a variety of cellular processes, such as the maintenance of cellular homeostasis and clearance of foreign bodies, and its imbalance is associated with many diseases. However, the role of autophagy in CRC progression remains controversial, as it has a dual function, affecting either cell death or survival, and is associated with cellular senescence in tumor therapy. Indeed, numerous data have been presented that autophagy in cancers serves as an alternative to cell apoptosis when the latter is ineffective or in apoptosis-resistant cells, which is why it is also referred to as programmed cell death type II. Curcumin, one of the active constituents of Curcuma longa, has great potential to combat CRC by influencing various cellular signaling pathways and epigenetic regulation in a safe and cost-effective approach. This review discusses the efficacy of curcumin against CRC in vitro and in vivo, particularly its modulation of autophagy and apoptosis in various cellular pathways. While clinical studies have assessed the potential of curcumin in cancer prevention and treatment, none have specifically examined its role in autophagy. Nonetheless, we offer an overview of potential correlations to support the use of this polyphenol as a prophylactic or co-therapeutic agent in CRC.


Asunto(s)
Apoptosis , Autofagia , Neoplasias Colorrectales , Curcumina , Curcumina/farmacología , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Autofagia/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales , Transducción de Señal/efectos de los fármacos , Curcuma/química , Antineoplásicos Fitogénicos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA