RESUMEN
The dipeptidyl peptidase 3 (Dpp3) is a ubiquitous zinc-dependent aminopeptidase, participating in the activation or degradation of signaling peptides and in the Keap1−Nrf2 antioxidant pathway. The absence of Dpp3 in the Dpp3 knockout mouse model causes increased osteoclast activity, altered osteogenic function, sustained oxidative stress in the bone tissue, and bone loss. We aimed to assess the association of Dpp3 activity with bone fragility in postmenopausal osteoporosis and the impact of denosumab on enzymatic activity. We conducted a two-phase study including 69 postmenopausal women with severe osteoporosis and 36 postmenopausal women without osteometabolic conditions, as controls (cross-sectional phase). Subjects with severe osteoporosis were assessed at baseline and 14 days after the first denosumab administration (prospective phase). The results showed significant reduction in serum Dpp3 activity (expressed as nmoles of formed product/mg proteins/min) in patients vs. controls (0.791 ± 0.232 vs. 1.195 ± 0.338; p < 0.001), and significant association with bone mass at the femoral neck (r = 0.28, p = 0.02) in patients prior to treatment. We found a negative correlation between C-terminal telopeptide (CTX) or N-terminal pro-peptide of type 1 procollagen (P1NP) levels and Dpp3 activity (respectively, r = −0.29, p = 0.012; and r = −0.2572, p = 0.033). Dpp3 activity did not change after denosumab injection. Our findings support a critical role played by Dpp3 in bone homeostasis as a potential bone protective factor. Additional clinical studies in larger cohorts might explore the implementation of Dpp3 assessment as a biomarker of bone health status.
Asunto(s)
Conservadores de la Densidad Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Animales , Biomarcadores , Densidad Ósea , Conservadores de la Densidad Ósea/farmacología , Conservadores de la Densidad Ósea/uso terapéutico , Estudios Transversales , Denosumab/metabolismo , Denosumab/farmacología , Denosumab/uso terapéutico , Dipeptidil-Peptidasas y Tripeptidil-Peptidasas , Femenino , Humanos , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Ratones , Factor 2 Relacionado con NF-E2/metabolismo , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/genética , Posmenopausia , Estudios ProspectivosRESUMEN
BACKGROUND: External root resorption is an irreversible loss of dental hard tissue as a result of odontoclastic action. Multiple external cervical root resorptions in permanent teeth are rare. The exact cause of external cervical root resorption is unclear. It is currently well established that RANK/RANKL signaling is essential for osteoclastogenesis and osteoclast-mediated bone resorption. Denosumab is an anti-RANKL antibody used for the treatment of postmenopausal osteoporosis. RANK/RANKL pathway suppression by denosumab is expected to suppress the activity of clastic cells responsible for hard tissue resorption involving both osteoclasts and odontoclasts. CASE PRESENTATION: This case report demonstrates aggressive and generalized idiopathic external cervical root resorption that started and advanced during ongoing antiresorptive therapy with the human monoclonal RANKL-blocking antibody denosumab without discontinuation of therapy in a 74-year-old female patient treated for postmenopausal osteoporosis. The extent of resorptive defects was too large and progressively led to fractures of the teeth. The number of teeth involved and the extend of destruction excluded conservative treatment. The affected teeth had to be extracted for functional prosthetic reconstruction. CONCLUSIONS: This finding suggests that treatment with denosumab may be associated with severe and aggressive odontoclastic resorption of multiple dental roots despite an adequate inhibitory effect on osteoclasts in the treatment of osteoporosis. The RANKL-independent pathways of clastic cell formation are likely to be involved in this pathological process.
Asunto(s)
Osteoporosis Posmenopáusica , Osteoporosis , Resorción Radicular , Anciano , Anticuerpos Monoclonales/metabolismo , Anticuerpos Monoclonales/farmacología , Denosumab/metabolismo , Denosumab/farmacología , Denosumab/uso terapéutico , Femenino , Humanos , Osteoclastos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Osteoporosis Posmenopáusica/patología , Resorción Radicular/tratamiento farmacológicoRESUMEN
N-glycosylation may affect the safety and efficacy of biopharmaceuticals and is thus monitored during manufacturing. Mass spectrometry of the intact protein is increasingly used to reveal co-existing glycosylation variants. However, quantification of N-glycoforms via this approach may be biased by single hexose residues as introduced by glycation or O-glycosylation. Herein, we describe a simple strategy to reveal actual N-glycoform abundances of therapeutic antibodies, involving experimental determination of glycation levels followed by computational elimination of the "hexosylation bias". We show that actual N-glycoform abundances may significantly deviate from initially determined values. Indeed, glycation may even obscure considerable differences in N-glycosylation patterns of drug product batches. Our observations may thus have implications for biopharmaceutical quality control. Moreover, we solve an instance of the problem of isobaricity, which is fundamental to mass spectrometry.
Asunto(s)
Productos Biológicos/metabolismo , Hexosas/metabolismo , Algoritmos , Animales , Bevacizumab/metabolismo , Células CHO , Cricetulus , Denosumab/metabolismo , GlicosilaciónRESUMEN
Denosumab is an anti-RANKL Ab that potently suppresses bone resorption, increases bone mass, and reduces fracture risk. Discontinuation of denosumab causes rapid rebound bone resorption and bone loss, but the molecular mechanisms are unclear. We generated humanized RANKL mice and treated them with denosumab to examine the cellular and molecular conditions associated with rebound resorption. Denosumab potently suppressed both osteoclast and osteoblast numbers in cancellous bone in humanized RANKL mice. The decrease in osteoclast number was not associated with changes in osteoclast progenitors in bone marrow. Long-term, but not short-term, denosumab administration reduced osteoprotegerin (OPG) mRNA in bone. Localization of OPG expression revealed that OPG mRNA is produced by a subpopulation of osteocytes. Long-term denosumab administration reduced osteocyte OPG mRNA, suggesting that OPG expression declines as osteocytes age. Consistent with this, osteocyte expression of OPG was more prevalent near the surface of cortical bone in humans and mice. These results suggest that new osteocytes are an important source of OPG in remodeling bone and that suppression of remodeling reduces OPG abundance by reducing new osteocyte formation. The lack of new osteocytes and the OPG they produce may contribute to rebound resorption after denosumab discontinuation.
Asunto(s)
Resorción Ósea , Osteocitos , Humanos , Ratones , Animales , Osteocitos/metabolismo , Denosumab/farmacología , Denosumab/uso terapéutico , Denosumab/metabolismo , Osteoprotegerina/genética , Osteoprotegerina/metabolismo , Osteoclastos/metabolismo , Resorción Ósea/metabolismoRESUMEN
Oncohistones represent compelling evidence for a causative role of epigenetic perturbations in cancer. Giant cell tumours of bone (GCTs) are characterised by a mutated histone H3.3 as the sole genetic driver present in bone-forming osteoprogenitor cells but absent from abnormally large bone-resorbing osteoclasts which represent the hallmark of these neoplasms. While these striking features imply a pathogenic interaction between mesenchymal and myelomonocytic lineages during GCT development, the underlying mechanisms remain unknown. We show that the changes in the transcriptome and epigenome in the mesenchymal cells caused by the H3.3-G34W mutation contribute to increase osteoclast recruitment in part via reduced expression of the TGFß-like soluble factor, SCUBE3. Transcriptional changes in SCUBE3 are associated with altered histone marks and H3.3G34W enrichment at its enhancer regions. In turn, osteoclasts secrete unregulated amounts of SEMA4D which enhances proliferation of mutated osteoprogenitors arresting their maturation. These findings provide a mechanism by which GCTs undergo differentiation in response to denosumab, a drug that depletes the tumour of osteoclasts. In contrast, hTERT alterations, commonly found in malignant GCT, result in the histone-mutated neoplastic cells being independent of osteoclasts for their proliferation, predicting unresponsiveness to denosumab. We provide a mechanism for the initiation of GCT, the basis of which is dysfunctional cross-talk between bone-forming and bone-resorbing cells. The findings highlight the role of tumour/microenvironment bidirectional interactions in tumorigenesis and how this is exploited in the treatment of GCT.
Asunto(s)
Neoplasias Óseas , Tumor Óseo de Células Gigantes , Humanos , Tumor Óseo de Células Gigantes/genética , Tumor Óseo de Células Gigantes/tratamiento farmacológico , Tumor Óseo de Células Gigantes/patología , Histonas/genética , Histonas/metabolismo , Denosumab/metabolismo , Denosumab/uso terapéutico , Neoplasias Óseas/genética , Neoplasias Óseas/tratamiento farmacológico , Neoplasias Óseas/metabolismo , Osteoclastos/metabolismo , Remodelación Ósea/genética , Microambiente Tumoral , Proteínas de Unión al Calcio/metabolismoRESUMEN
As a local delivery carrier of bone metabolic proteins, we have previously reported hydroxyapatite/chondroitin sulfate composite microparticles (HAp/ChS) and their formulation method using zinc cations (Zn), and the in vitro release properties of proteins from the microparticles. Herein, we report the release properties of model antibodies such as immunoglobulin (IgG), human IgG (hIgG), and denosumab (Dmab) from HAp/ChS using this formulation method. Adding Zn in the formulation of IgG loaded with HAp/ChS microparticles enhanced the release of antibodies from HAp/ChS in phosphate buffer saline. In addition, the biological activity of Dmab released from HAp/ChS formulated with Zn was significantly higher than that without Zn. These results suggest a possible beneficial effect on the treatment for local bone diseases. The sclerostin monoclonal antibody (Sclmab) promotes fracture healing. We prepared HAp/ChS microparticles loaded with Sclmab and locally administered the microparticles into a drilled hole in the distal femoral bone of young rats. After three weeks, the area of the newly formed osteoid around the drilled hole where HAp/ChS loaded with Sclmab and Zn was locally administered was significantly higher than that observed in the control group (normal saline). Thus, HAp/ChS microparticles and the formulation method of monoclonal antibodies using Zn could be useful in the treatment of local bone diseases.
Asunto(s)
Sulfatos de Condroitina/química , Denosumab/química , Durapatita/química , Fémur/química , Inmunoglobulinas/química , Nanocompuestos/química , Animales , Materiales Biocompatibles/administración & dosificación , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Cationes/química , Denosumab/administración & dosificación , Denosumab/metabolismo , Fémur/metabolismo , Humanos , Inmunoglobulinas/administración & dosificación , Inmunoglobulinas/metabolismo , Masculino , Tamaño de la Partícula , Ratas , Ratas Wistar , Propiedades de Superficie , Zinc/químicaRESUMEN
BACKGROUND: Proteomics-based LC-MS/MS methods using trypsin solution have some problems including ion suppression and long protein digestion times. Few practical methods to quantify denosumab in human serum have been published. METHODOLOGY: Immunoglobulins in serum were extracted using immobilized protein G. Denatured, reduced and alkylated serum samples were digested with immobilized trypsin for 14 min. A denosumab-unique peptide was identified using a Fourier transform mass spectrometer as a signature peptide. The signature peptide was quantitated with a hybrid triple-quadrupole/linear ion-trap mass spectrometer. CONCLUSION: A rapid and practical proteomics-based LC-MS/MS method using immobilized trypsin for denosumab quantitation in human serum was developed. The present method has an acceptable analytical performance and can be helpful for the determination of serum denosumab in clinical settings.
Asunto(s)
Análisis Químico de la Sangre/métodos , Denosumab/sangre , Denosumab/metabolismo , Enzimas Inmovilizadas/metabolismo , Proteolisis , Tripsina/metabolismo , Secuencia de Aminoácidos , Calibración , Cromatografía Liquida , Denosumab/química , Enzimas Inmovilizadas/química , Humanos , Cinética , Espectrometría de Masas en Tándem , Tripsina/químicaRESUMEN
AIM: Denosumab is a recombinant fully human IgG2 that has a high affinity and specificity for human RANKL. Commercially available RANKL labeled with an Fc fragment cannot be used to establish an indirect ELISA. To characterize denosumab pharmacokinetic a robust and accuracy method should be developed urgently. RESULTS: In this study, an immunoaffinity enrichment method coupled with LC-MS/MS was established. The LC-MS/MS method acquired a linear range from 0.1 to 30 µg/ml. The intra- and inter-run precision (CV%) was within 11.5 and 10.5%, respectively. More importantly, the LC-MS/MS pharmacokinetic data were consistent with ELISA. CONCLUSION: This approach accelerated the quantification, reduced the costs and provided an alternative in case of lacking the special antigen to denosumab or a RANKL-biotinylated reagent.
Asunto(s)
Análisis Químico de la Sangre/métodos , Denosumab/sangre , Péptidos/metabolismo , Tripsina/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Liquida , Denosumab/inmunología , Denosumab/metabolismo , Denosumab/farmacocinética , Inmunoglobulina G/metabolismo , Macaca fascicularis , Masculino , Péptidos/química , Ligando RANK/metabolismo , Espectrometría de Masas en TándemRESUMEN
INTRODUCTION: Rheumatoid arthritis (RA) is a chronic inflammatory disorder characterized by focal pathologic bone resorption due to excessive activity of osteoclasts (OC). Receptor activator of nuclear factor kappa B ligand (RANKL) is essential for the proliferation, differentiation, and survival of OC. Denosumab (DMab) is a humanized monoclonal antibody that binds to RANKL with high affinity and blocks its subsequent association with its receptor RANK on the surface of OC precursors. Area covered: The authors review the molecular and cellular mechanisms underlying therapeutic applications of DMab, provide recent highlights on pharmacology, efficacy and safety of DMab, and discuss the potential of DMab as a novel therapeutic option for the treatment of rheumatoid arthritis. Expert opinion: Clinical results suggest that DMab is efficient both in systemic and articular bone loss in RA with limited side effects. Diminished bone erosion activity was also noted in RA patients on corticosteroids and bisphosphonates. Combination of DMab with an anti-TNF agent was not associated with increased infection rates. Collectively, these data indicate that DMab, in combination with methotrexate and possibly other conventional synthetic Disease Modifying Anti-Rheumatic Drugs (csDMARDs), is an effective, safe and cost-effective option for the treatment of RA.