Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Protein Expr Purif ; 219: 106476, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38521114

RESUMEN

Base excision is a crucial DNA repair process mediated by endonuclease IV in nucleotide excision. In Chlamydia pneumoniae, CpendoIV is the exclusive AP endonuclease IV, exhibiting DNA replication error-proofreading capabilities, making it a promising target for anti-chlamydial drug development. Predicting the structure of CpendoIV, molecular docking with DNA was performed, analyzing complex binding sites and protein surface electrostatic potential. Comparative structural studies were conducted with E. coli EndoIV and DNA complex containing AP sites.CpendoIV was cloned, expressed in E. coli, and purified via Ni-NTA chelation and size-exclusion chromatography. Low NaCl concentrations induced aggregation during purification, while high concentrations enhanced purity.CpendoIV recognizes and cleaving AP sites on dsDNA, and Zn2+ influences the activity. Crystallization was achieved under 8% (v/v) Tacsimate pH 5.2, 25% (w/v) polyethylene glycol 3350, and 1.91 Å resolution X-ray diffraction data was obtained at 100 K. This research is significant for provides a deeper understanding of CpendoIV involvement in the base excision repair process, offering insights into Chlamydia pneumoniae.


Asunto(s)
Proteínas Bacterianas , Chlamydophila pneumoniae , Cristalización , Chlamydophila pneumoniae/enzimología , Chlamydophila pneumoniae/genética , Chlamydophila pneumoniae/química , Cristalografía por Rayos X , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/aislamiento & purificación , Clonación Molecular
2.
J Biol Chem ; 298(7): 102055, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35605665

RESUMEN

Apurinic/apyrimidinic (AP or abasic) sites are among the most abundant DNA lesions. Numerous proteins within different organisms ranging from bacteria to human have been demonstrated to react with AP sites to form covalent Schiff base DNA-protein cross-links (DPCs). These DPCs are unstable due to their spontaneous hydrolysis, but the half-lives of these cross-links can be as long as several hours. Such long-lived DPCs are extremely toxic due to their large sizes, which physically block DNA replication. Therefore, these adducts must be promptly eradicated to maintain genome integrity. Herein, we used in vitro reconstitution experiments with chemically synthesized, stable, and site-specific Schiff base AP-peptide/protein cross-link analogs to demonstrate for the first time that this type of DPC can be repaired by Escherichia coli (E. coli) long-patch base excision repair. We demonstrated that the repair process requires a minimum of three enzymes and five consecutive steps, including: (1) 5'-DNA strand incision of the DPC by endonuclease IV; (2 to 4) strand-displacement DNA synthesis, removal of the 5'-deoxyribose phosphate-peptide/protein adduct-containing flap, and gap-filling DNA synthesis by DNA polymerase I; and (5) strand ligation by a ligase. We further demonstrated that endonuclease IV plays a major role in incising an AP-peptide cross-link within E. coli cell extracts. We also report that eradicating model AP-protein (11.2-36.1 kDa) DPCs is less efficient than that of an AP-peptide10mer cross-link, supporting the emerging model that proteolysis is likely required for efficient DPC repair.


Asunto(s)
Reparación del ADN , ADN , Desoxirribonucleasa IV (Fago T4-Inducido) , Escherichia coli , Bases de Schiff , ADN/química , Daño del ADN , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Escherichia coli/química , Péptidos , Proteínas
3.
Biochemistry ; 59(7): 892-900, 2020 02 25.
Artículo en Inglés | MEDLINE | ID: mdl-31977191

RESUMEN

Colibactin is a genotoxic gut microbiome metabolite long suspected of playing an etiological role in colorectal cancer. Evidence suggests that colibactin forms DNA interstrand cross-links (ICLs) in eukaryotic cells and activates ICL repair pathways, leading to the production of ICL-dependent DNA double-strand breaks (DSBs). Here we show that colibactin ICLs can evolve directly to DNA DSBs. Using the topology of supercoiled plasmid DNA as a proxy for alkylation adduct stability, we find that colibactin-derived ICLs are unstable toward depurination and elimination of the 3' phosphate. This ICL degradation pathway leads progressively to single strand breaks (SSBs) and subsequently DSBs. The spontaneous conversion of ICLs to DSBs is consistent with the finding that nonhomologous end joining repair-deficient cells are sensitized to colibactin-producing bacteria. The results herein refine our understanding of colibactin-derived DNA damage and underscore the complexities underlying the DSB phenotype.


Asunto(s)
Reactivos de Enlaces Cruzados/farmacología , ADN/metabolismo , Péptidos/farmacología , Policétidos/farmacología , Reactivos de Enlaces Cruzados/química , ADN/química , ADN/genética , Roturas del ADN de Doble Cadena/efectos de los fármacos , Roturas del ADN de Cadena Simple/efectos de los fármacos , Reparación del ADN , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Escherichia coli/química , Péptidos/química , Plásmidos/química , Policétidos/química
4.
Mikrochim Acta ; 187(3): 193, 2020 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-32124067

RESUMEN

An ultrasensitive fluorescence sensing strategy for kanamycin (KANA) determination using endonuclease IV (Endo IV)-powered DNA walker, and hybridization chain reaction (HCR) amplification was reported. The sensing system consists of Endo IV-powered 3D DNA walker using for the specific recognition of KANA and the formation of the initiators, two metastable hairpin probes as the substrates of HCR and a tetrahydrofuran abasic site (AP site)-embeded fluorescence-quenched probe for fluorescence signal output. On account of this skilled design of sensing system, the specific binding between KANA and its aptamer activates DNA walker, in which the swing arm can move autonomously along the 3D track via Endo IV-mediated hydrolysis of the anchorages, inducing the formation of initiators that initiates HCR and the following Endo IV-assisted cyclic cleavage of fluorescence reporter probes. The use of Endo IV offers the advantages of simplified and accessible design without the need of specific sequence in DNA substrates. Under the optimal experimental conditions, the fluorescence biosensor shows excellent sensitivity toward KANA detection with a detection limit as low as 1.01 pM (the excitation wavelength is 486 nm). The practical applicability of this strategy is demonstrated by detecting KANA in spiked milk samples with recovery in the range of 98 to 102%. Therefore, this reported strategy might create an accurate and robust fluorescence sensing platform for trace amounts of antibiotic residues determination and related safety analysis. Graphical abstract Highly efficient fluorescence sensing of kanamycin using Endo IV-powered DNA Walker and hybridization chain, reaction amplification, Xiaonan Qu, Jingfeng Wang, Rufeng Zhang, Yihan Zhao, Shasha Li, Yu Wang, Su Liu*, Jiadong Huang, and Jinghua Yu, an ultrasensitive fluorescence sensing strategy for kanamycin determination using endonuclease IV-powered DNA walker, and hybridization chain reaction amplification is reported.


Asunto(s)
Antibacterianos/análisis , Técnicas Biosensibles/métodos , ADN/química , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Desoxirribonucleasa I/química , Colorantes Fluorescentes/química , Kanamicina/análisis , Animales , Aptámeros de Nucleótidos/química , Técnicas Biosensibles/instrumentación , Contaminación de Alimentos/análisis , Oro/química , Límite de Detección , Nanopartículas del Metal/química , Técnicas de Amplificación de Ácido Nucleico/métodos , Hibridación de Ácido Nucleico/métodos
5.
Analyst ; 144(9): 3064-3071, 2019 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-30916676

RESUMEN

DNA glycosylase (DG) plays a significant role in repairing DNA lesions, and the dysregulation of DG activity is associated with a variety of human pathologies. Thus, the detection of DG activity is essential for biomedical research and clinical diagnosis. Herein, we develop a facile fluorometric method based on the base excision repair (BER) mediated cascading triple-signal amplification for the sensitive detection of DG. The presence of human alkyladenine DNA glycosylase (hAAG) can initiate the cleavage of the substrate at the mismatched deoxyinosine site by endonuclease IV (Endo IV), resulting in the breaking of the DNA substrate. The cleaved DNA substrate functions as both a primer and a template to initiate strand displacement amplification (SDA) to release primers. The released primers can further bind to a circular template to induce an exponential primer generation rolling circle amplification (PG-RCA) reaction, producing a large number of primers. The primers that resulted from the SDA and PG-RCA reaction can induce the subsequent recycling cleavage of signal probes, leading to the generation of a fluorescence signal. Taking advantage of the high amplification efficiency of triple-signal amplification and the low background signal resulting from single uracil repair-mediated inhibition of nonspecific amplification, this method exhibits a low detection limit of 0.026 U mL-1 and a large dynamic range of 4 orders of magnitude for hAAG. Moreover, this method has distinct advantages of simplicity and low cost, and it can further quantify the hAAG activity from HeLa cell extracts, holding great potential in clinical diagnosis and biomedical research.


Asunto(s)
ADN Glicosilasas/sangre , Reparación del ADN , ADN/química , Pruebas de Enzimas/métodos , Fluorometría/métodos , Secuencia de Bases , ADN Polimerasa Dirigida por ADN/química , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Fluorescencia , Colorantes Fluorescentes/química , Geobacillus stearothermophilus/enzimología , Células HeLa , Humanos , Límite de Detección , Técnicas de Amplificación de Ácido Nucleico/métodos , Uracil-ADN Glicosidasa/química
6.
Analyst ; 144(10): 3389-3397, 2019 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-30990481

RESUMEN

DNA can be configured into unique high-order structures due to its significantly high programmability, such as a three-way junction-based structure (denoted Y-shaped DNA), for further applications. Herein, we report a label-free fluorescent signal-on biosensor based on the target-driven primer remodeling rolling circle amplification (RCA)-activated multisite-catalytic hairpin assembly (CHA) enabling the concurrent formation of Y-shaped DNA nanotorches (Y-DNTs) for ultrasensitive detection of ochratoxin A (OTA). Two kinds of masterfully-designed probes, termed Complex I and II, were pre-prepared by the combination of a circular template (CT) with an OTA aptamer (S1), a substrate probe (S2) and hairpin probe 1 (HP1), respectively. Target OTA specifically binds to Complex I, resulting in the release of the remnant element in S2 and successive remodeling into a mature primer for RCA by phi29 DNA polymerase, thus a usable primer-CT complex is produced, which actuates primary RCA. Then, numerous Complex II probes can anneal with the first-generation RCA product (RP) with multiple sites to activate the CHA process. With the participation of endonuclease IV (Endo IV) and phi29, HP1 as a pre-primer containing a tetrahydrofuran abasic site mimic (AP site) in Complex II is converted into a mature primer to initiate additional rounds of RCA. So, countless Y-DNTs are formed concurrently containing a G-quadruplex structure that enables the N-methylmesoporphyrin IX (NMM) to be embedded, generating remarkably strong fluorescence signals. The biosensor was demonstrated to enable rapid and accurate highly efficient and selective detection of OTA with an improved detection limit of as low as 0.0002 ng mL-1 and a widened dynamic range of over 4 orders of magnitude. Meanwhile, this method was proven to be capable of being used to analyze actual samples. Therefore, this proposed strategy may be established as a useful and practical platform for the ultrasensitive detection of mycotoxins in food safety testing.


Asunto(s)
Aptámeros de Nucleótidos/química , Técnicas Biosensibles/métodos , ADN/química , Nanoestructuras/química , Ocratoxinas/análisis , Aptámeros de Nucleótidos/genética , Fagos de Bacillus/enzimología , Bacteriófago T4/enzimología , Secuencia de Bases , ADN/genética , ADN Ligasas/química , ADN Polimerasa Dirigida por ADN/química , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Fluorescencia , Colorantes Fluorescentes/química , Contaminación de Alimentos/análisis , G-Cuádruplex , Secuencias Invertidas Repetidas , Límite de Detección , Mesoporfirinas/química , Técnicas de Amplificación de Ácido Nucleico , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Ocratoxinas/química , Espectrometría de Fluorescencia/métodos , Proteínas Virales/química , Vino/análisis
7.
Biochemistry ; 57(39): 5641-5647, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30199619

RESUMEN

Inosine at the "wobble" position (I34) is one of the few essential posttranscriptional modifications in tRNAs (tRNAs). It results from the deamination of adenosine and occurs in bacteria on tRNAArgACG and in eukarya on six or seven additional tRNA substrates. Because inosine is structurally a guanosine analogue, reverse transcriptases recognize it as a guanosine. Most methods used to examine the presence of inosine rely on this phenomenon and detect the modified base as a change in the DNA sequence that results from the reverse transcription reaction. These methods, however, cannot always be applied to tRNAs because reverse transcription can be compromised by the presence of other posttranscriptional modifications. Here we present SL-ID (splinted ligation-based inosine detection), a reverse transcription-free method for detecting inosine based on an I34-dependent specific cleavage of tRNAs by endonuclease V, followed by a splinted ligation and polyacrylamide gel electrophoresis analysis. We show that the method can detect I34 on different tRNA substrates and can be applied to total RNA derived from different species, cell types, and tissues. Here we apply the method to solve previous controversies regarding the modification status of mammalian tRNAArgACG.


Asunto(s)
Desoxirribonucleasa IV (Fago T4-Inducido)/química , Electroforesis en Gel de Poliacrilamida/métodos , Inosina/análisis , Oligodesoxirribonucleótidos/química , ARN de Transferencia de Arginina/química , ARN de Transferencia de Valina/química , Animales , Secuencia de Bases , Células HEK293 , Células HeLa , Humanos , Inosina/genética , Ratones , Hibridación de Ácido Nucleico , Oligodesoxirribonucleótidos/genética , ARN de Transferencia de Arginina/genética , ARN de Transferencia de Valina/genética
8.
Proc Natl Acad Sci U S A ; 110(33): E3071-80, 2013 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-23898172

RESUMEN

8,5'-cyclo-2'-deoxyadenosine (cdA) and 8,5'-cyclo-2'-deoxyguanosine generated in DNA by both endogenous oxidative stress and ionizing radiation are helix-distorting lesions and strong blocks for DNA replication and transcription. In duplex DNA, these lesions are repaired in the nucleotide excision repair (NER) pathway. However, lesions at DNA strand breaks are most likely poor substrates for NER. Here we report that the apurinic/apyrimidinic (AP) endonucleases--Escherichia coli Xth and human APE1--can remove 5'S cdA (S-cdA) at 3' termini of duplex DNA. In contrast, E. coli Nfo and yeast Apn1 are unable to carry out this reaction. None of these enzymes can remove S-cdA adduct located at 1 or more nt away from the 3' end. To understand the structural basis of 3' repair activity, we determined a high-resolution crystal structure of E. coli Nfo-H69A mutant bound to a duplex DNA containing an α-anomeric 2'-deoxyadenosine:T base pair. Surprisingly, the structure reveals a bound nucleotide incision repair (NIR) product with an abortive 3'-terminal dC close to the scissile position in the enzyme active site, providing insight into the mechanism for Nfo-catalyzed 3'→5' exonuclease function and its inhibition by 3'-terminal S-cdA residue. This structure was used as a template to model 3'-terminal residues in the APE1 active site and to explain biochemical data on APE1-catalyzed 3' repair activities. We propose that Xth and APE1 may act as a complementary repair pathway to NER to remove S-cdA adducts from 3' DNA termini in E. coli and human cells, respectively.


Asunto(s)
Aductos de ADN/metabolismo , Reparación del ADN/fisiología , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Proteínas de Escherichia coli/química , Exonucleasas/metabolismo , Modelos Moleculares , Conformación Proteica , Aductos de ADN/química , Reparación del ADN/genética , Electroforesis en Gel de Gradiente Desnaturalizante , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Desoxiguanosina/análogos & derivados , Desoxiguanosina/química , Desoxiguanosina/metabolismo , Escherichia coli , Humanos , Estructura Molecular , Oligonucleótidos/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Difracción de Rayos X , Levaduras
9.
J Biol Chem ; 288(12): 8445-8455, 2013 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-23355472

RESUMEN

Non-coding apurinic/apyrimidinic (AP) sites in DNA form spontaneously and as DNA base excision repair intermediates are the most common toxic and mutagenic in vivo DNA lesion. For repair, AP sites must be processed by 5' AP endonucleases in initial stages of base repair. Human APE1 and bacterial Nfo represent the two conserved 5' AP endonuclease families in the biosphere; they both recognize AP sites and incise the phosphodiester backbone 5' to the lesion, yet they lack similar structures and metal ion requirements. Here, we determined and analyzed crystal structures of a 2.4 Å resolution APE1-DNA product complex with Mg(2+) and a 0.92 Å Nfo with three metal ions. Structural and biochemical comparisons of these two evolutionarily distinct enzymes characterize key APE1 catalytic residues that are potentially functionally similar to Nfo active site components, as further tested and supported by computational analyses. We observe a magnesium-water cluster in the APE1 active site, with only Glu-96 forming the direct protein coordination to the Mg(2+). Despite differences in structure and metal requirements of APE1 and Nfo, comparison of their active site structures surprisingly reveals strong geometric conservation of the catalytic reaction, with APE1 catalytic side chains positioned analogously to Nfo metal positions, suggesting surprising functional equivalence between Nfo metal ions and APE1 residues. The finding that APE1 residues are positioned to substitute for Nfo metal ions is supported by the impact of mutations on activity. Collectively, the results illuminate the activities of residues, metal ions, and active site features for abasic site endonucleases.


Asunto(s)
Proteínas Bacterianas/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/química , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Thermotoga maritima/enzimología , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Dominio Catalítico , Secuencia Conservada , Cristalografía por Rayos X , ADN/química , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , Escherichia coli , Humanos , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Conformación de Ácido Nucleico , Unión Proteica , Estructura Secundaria de Proteína , Homología Estructural de Proteína
10.
Methods ; 64(3): 255-9, 2013 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-23816791

RESUMEN

By combination of a modified block PCR and endonuclease IV-based signal amplification system, we have developed a novel approach for ultra-sensitive detection of point mutations. The method can effectively identify mutant target sequence immersed in a large background of wild-type sequences with abundance down to 0.03% (for C→A) and 0.005% (for C→G). This sensitivity is among the highest in comparison with other existing approaches and the operating procedures are simple and time saving. The method holds great potential for future application in clinical diagnosis and biomedical research.


Asunto(s)
Análisis Mutacional de ADN , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Mutación Puntual , Emparejamiento Base , Secuencia de Bases , Sondas de ADN/química , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Datos de Secuencia Molecular , Reacción en Cadena de la Polimerasa , Temperatura de Transición
11.
DNA Repair (Amst) ; 119: 103390, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36088709

RESUMEN

Apurinic/apyrimidinic (AP) endonucleases are key enzymes involved in the repair of abasic sites and DNA strand breaks. Complete genome analysis of Staphylococcus aureus identified a single AP endonuclease, SaNfo, which is a member of the endonuclease IV family exemplified by Escherichia coli Nfo. At present, it remains unknown whether SaNfo possesses DNA repair activities similar to its counterparts from E. coli and other bacteria. Here, we report that the purified SaNfo protein contains efficient AP endonuclease and nucleotide incision repair (NIR) activities. Optimal reaction conditions for SaNfo-catalysed AP endonuclease activity are high ionic strength and Mn2+ concentration, pH in range 7.5-9.0 and the temperature optimum of 37-45 °C. Cell-free extracts of S. aureus exhibited efficient AP site cleavage and NIR activities. Heterologous expression of SaNfo strongly reduces the sensitivity of AP endonuclease-deficient E. coli xth nfo strain to methylmethanesulfonate and H2O2. Site-directed mutagenesis showed that the Glu258 residue is critical for the SaNfo enzyme function. The AP endonuclease but not the NIR activity of SaNfo were stimulated by the ß-clamp (SaDnaN dimer), suggesting that it might participate in the organization of BER in S. aureus. Overall, our data confirm that the activity, substrate specificity and in vivo functionality of S. aureus Nfo are consistent with this protein being the major AP endonuclease for the repair of DNA damage generated by endogenous and host-imposed factors.


Asunto(s)
ADN-(Sitio Apurínico o Apirimidínico) Liasa , Staphylococcus aureus , Clonación Molecular , ADN/metabolismo , Daño del ADN , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Endonucleasas/metabolismo , Escherichia coli/metabolismo , Peróxido de Hidrógeno , Nucleótidos , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
12.
Acta Crystallogr D Biol Crystallogr ; 67(Pt 3): 149-55, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21358045

RESUMEN

Endonuclease IV (EndoIV) is an endonuclease that acts at apurinic/apyrimidinic (AP) sites and is classified as either long-type or short-type. The crystal structures of representative types of EndoIV from Geobacillus kaustophilus and Thermus thermophilus HB8 were determined using X-ray crystallography. G. kaustophilus EndoIV (the long type) had a higher affinity for double-stranded DNA containing an AP-site analogue than T. thermophilus EndoIV (the short type). Structural analysis of the two different EndoIVs suggested that a C-terminal DNA-recognition loop that is only present in the long type contributes to its high affinity for AP sites. A mutation analysis showed that Lys267 in the C-terminal DNA-recognition loop plays an important role in DNA binding.


Asunto(s)
ADN/química , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Geobacillus/enzimología , Thermus thermophilus/enzimología , Secuencia de Aminoácidos , Cristalografía por Rayos X , ADN/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología de Secuencia de Aminoácido
13.
Chem Commun (Camb) ; 57(16): 2073-2076, 2021 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-33507186

RESUMEN

We demonstrate the development of a new fluorescent biosensor for sensitive DNA methylation assay by integrating single-molecule detection with endo IV-assisted signal amplification. This biosensor possesses the characteristics of good selectivity and high sensitivity with a detection limit of 7.3 × 10-17 M. It can distinguish as low as 0.01% methylation level, and can analyze genomic DNA methylation even in a single cancer cell.


Asunto(s)
Metilación de ADN , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Imagen Individual de Molécula , Técnicas Biosensibles , ADN/química , ADN/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Células Hep G2 , Humanos
14.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 66(Pt 9): 1003-12, 2010 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-20823514

RESUMEN

The most frequent lesion in DNA is at apurinic/apyrimidinic (AP) sites resulting from DNA-base losses. These AP-site lesions can stall DNA replication and lead to genome instability if left unrepaired. The AP endonucleases are an important class of enzymes that are involved in the repair of AP-site intermediates during damage-general DNA base-excision repair pathways. These enzymes hydrolytically cleave the 5'-phosphodiester bond at an AP site to generate a free 3'-hydroxyl group and a 5'-terminal sugar phosphate using their AP nuclease activity. Specifically, Thermotoga maritima endonuclease IV is a member of the second conserved AP endonuclease family that includes Escherichia coli endonuclease IV, which is the archetype of the AP endonuclease superfamily. In order to more fully characterize the AP endonuclease family of enzymes, two X-ray crystal structures of the T. maritima endonuclease IV homologue were determined in the presence of divalent metal ions bound in the active-site region. These structures of the T. maritima endonuclease IV homologue further revealed the use of the TIM-barrel fold and the trinuclear metal binding site as important highly conserved structural elements that are involved in DNA-binding and AP-site repair processes in the AP endonuclease superfamily.


Asunto(s)
Dominio Catalítico , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Thermotoga maritima/enzimología , Zinc/química , Secuencia de Aminoácidos , Cationes Bivalentes/química , Cristalografía por Rayos X , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Alineación de Secuencia , Homología Estructural de Proteína , Zinc/metabolismo
15.
Mutat Res ; 685(1-2): 70-9, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-19751747

RESUMEN

Aerobic respiration generates reactive oxygen species (ROS) as a by-product of cellular metabolism which can damage DNA. The complex nature of oxidative DNA damage requires actions of several repair pathways. Oxidized DNA bases are substrates for two overlapping pathways: base excision repair (BER) and nucleotide incision repair (NIR). In the BER pathway a DNA glycosylase cleaves the N-glycosylic bond between the abnormal base and deoxyribose, leaving either an abasic site or single-stranded DNA break. Alternatively, in the NIR pathway, an apurinic/apyrimidinic (AP) endonuclease incises duplex DNA 5' next to oxidatively damaged nucleotide. The multifunctional Escherichia coli endonuclease IV (Nfo) is involved in both BER and NIR pathways. Nfo incises duplex DNA 5' of a damaged residue but also possesses an intrinsic 3'-->5' exonuclease activity. Herein, we demonstrate that Nfo-catalyzed NIR and exonuclease activities can generate a single-strand gap at the 5' side of 5,6-dihydrouracil residue. Furthermore, we show that Nfo mutants carrying amino acid substitutions H69A and G149D are deficient in both NIR and exonuclease activities, suggesting that these two functions are genetically linked and governed by the same amino acid residues. The crystal structure of Nfo-H69A mutant reveals the loss of one of the active site zinc atoms (Zn1) and rearrangements of the catalytic site, but no gross changes in the overall enzyme conformation. We hypothesize that these minor changes strongly affect the DNA binding of Nfo. Decreased affinity may lead to a different kinking angle of the DNA helix and this in turn thwart nucleotide incision and exonuclease activities of Nfo mutants but to lesser extent of their AP endonuclease function. Based on the biochemical and genetic data we propose a model where nucleotide incision coupled to 3'-->5' exonuclease activity prevents formation of lethal double-strand breaks when repairing bi-stranded clustered DNA damage.


Asunto(s)
Daño del ADN , Reparación del ADN , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Proteínas de Escherichia coli/química , Sustitución de Aminoácidos , Dominio Catalítico , Roturas del ADN de Cadena Simple , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Genéticos , Modelos Moleculares , Mutación , Oxidación-Reducción , Conformación Proteica
16.
Anal Chim Acta ; 1104: 156-163, 2020 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32106947

RESUMEN

A novel fluorescence sensing strategy for ultrasensitive and highly specific detection of adenosine triphosphate (ATP) has been developed by the combination of the proximity ligation assay with bidirectional enzymatic repairing amplification (BERA). The strategy relies on proximity binding-triggered the release of palindromic tail that initiates bidirectional cyclic enzymatic repairing amplification reaction with the aid of polymerase and two DNA repairing enzymes, uracil-DNA glycosylase (UDG) and endonuclease IV (Endo IV). A fluorescence-quenched hairpin probe with a palindromic tail at the 3' end is skillfully designed that functions as not only the recognition element, primer, and polymerization template for BERA but also the indicator for fluorescence signal output. On the basis of the amplification strategy, this biosensor displays excellent sensitivity and selectivity for ATP detection with an outstanding detection limit of 0.81 pM. Through simultaneously enhancing the target response signal value and reducing nonspecific background, this work deducted the background effect, and showed high sensitivity and reproducibility. Moreover, our biosensor also shows promising potential in real sample analysis. Therefore, the proximity-enabled BERA strategy indeed creates a simple and valuable fluorescence sensing platform for ATP identification and related disease diagnosis and biomedical research.


Asunto(s)
Adenosina Trifosfato/análisis , Técnicas Biosensibles/métodos , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Técnicas de Amplificación de Ácido Nucleico , Uracil-ADN Glicosidasa/química , Adenosina Trifosfato/sangre , Técnicas Biosensibles/instrumentación , Cromatografía Líquida de Alta Presión , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Electroforesis en Gel de Poliacrilamida , Colorantes Fluorescentes/química , Células HeLa , Humanos , Límite de Detección , Espectrometría de Fluorescencia , Uracil-ADN Glicosidasa/genética
17.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 65(Pt 12): 1317-9, 2009 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-20054139

RESUMEN

The DNA-repair enzyme endonuclease IV from the thermophilic bacterium Thermotoga maritima MSB8 (reference sequence NC_000853) has been expressed in Escherichia coli and crystallized for X-ray analysis. T. maritima endonuclease IV is a 287-amino-acid protein with 32% sequence identity to E. coli endonuclease IV. The protein was purified to homogeneity and was crystallized using the sitting-drop vapor-diffusion method. The protein crystallized in space group P6(1), with one biological molecule in the asymmetric unit, corresponding to a Matthews coefficient of 2.39 A(3) Da(-1) and 47% solvent content. The unit-cell parameters of the crystals were a = b = 123.2, c = 35.6 A. Microseeding and further optimization yielded crystals with an X-ray diffraction limit of 2.36 A. A single 70 degrees data set was collected and processed, resulting in an overall R(merge) and a completeness of 9.5% and 99.3%, respectively.


Asunto(s)
Desoxirribonucleasa IV (Fago T4-Inducido)/química , Thermotoga maritima/enzimología , Cristalización , Cristalografía por Rayos X , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/aislamiento & purificación , Estabilidad de Enzimas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Thermotoga maritima/genética
18.
Nucleic Acids Res ; 35(20): 6692-700, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17913749

RESUMEN

Endonuclease (Endo) IV encoded by denB of bacteriophage T4 is an enzyme that cleaves single-stranded (ss) DNA in a dC-specific manner. Also the growth of dC-substituted T4 phage and host Escherichia coli cells is inhibited by denB expression presumably because of the inhibitory effect on replication of dC-containing DNA. Recently, we have demonstrated that an efficient cleavage by Endo IV occurs exclusively at the 5'-proximal dC (dC1) within a hexameric or an extended sequence consisting of dC residues at the 5'-proximal and the 3'-proximal positions (dCs tract), in which a third dC residue within the tract affects the polarized cleavage and cleavage rate. Here we isolate and characterize two denB mutants, denB(W88R) and denB(S176N). Both mutant alleles have lost the detrimental effect on the host cell. Endo IV(W88R) shows no enzymatic activity (<0.4% of that of wild-type Endo IV). On the other hand, Endo IV(S176N) retains cleavage activity (17.5% of that of wild-type Endo IV), but has lost the polarized and restricted cleavage of a dCs tract, indicating that the Ser176 residue of Endo IV is implicated in the polarized cleavage of a dCs tract which brings about a detrimental effect on the replication of dC-containing DNA.


Asunto(s)
Bacteriófago T4/enzimología , ADN Bacteriano/metabolismo , ADN de Cadena Simple/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Escherichia coli/virología , Desoxirribonucleasa IV (Fago T4-Inducido)/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Escherichia coli/genética , Mutación Puntual , Serina/metabolismo
19.
Structure ; 15(10): 1316-24, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17937920

RESUMEN

The ultraviolet damage endonuclease (UVDE) performs the initial step in an alternative excision repair pathway of UV-induced DNA damage, nicking immediately adjacent to the 5' phosphate of the damaged nucleotides. Unique for a single-protein DNA repair endonuclease, it can detect different types of damage. Here we show that Thermus thermophilus UVDE shares some essential structural features with Endo IV, an enzyme from the base excision repair pathway that exclusively nicks at abasic sites. A comparison between the structures indicates how DNA is bound by UVDE, how UVDE may recognize damage, and which of its residues are involved in catalysis. Furthermore, the comparison suggests an elegant explanation of UVDE's potential to recognize different types of damage. Incision assays including point mutants of UVDE confirmed the relevance of these conclusions.


Asunto(s)
Enzimas Reparadoras del ADN/química , Reparación del ADN/fisiología , Endonucleasas/química , Rayos Ultravioleta , Disparidad de Par Base , Sitios de Unión , Cristalografía por Rayos X , ADN , Daño del ADN , Enzimas Reparadoras del ADN/metabolismo , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Desoxirribonucleasa IV (Fago T4-Inducido)/metabolismo , Endonucleasas/metabolismo , Modelos Moleculares , Alineación de Secuencia , Thermus thermophilus/enzimología
20.
Anal Chim Acta ; 1075: 137-143, 2019 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-31196419

RESUMEN

Nucleic acid probes are very useful tools in biological and medical science. However, the essential sensing mechanism of nucleic acid probes was prone to the interference of surrounding sequences. Especially when the target sequences formed secondary structures such as hairpin or quadruplex, the nucleic acid probes were hindered from hybridizing with target strands, greatly disabled the function of probes. Herein, we have established an Open strand based strategy for eliminating the influence of secondary structures on the performance of nucleic acid probes. The strategy was general toward different lengths, secondary structures and sequences of the targeting strand, and we found that the improvement was higher when the secondary structure of the targeting strand was more complicated. Experiments on synthetic single stranded DNA and real clinical genomic DNA samples were conducted for low abundance mutation detection, and the limit of detection for TERT-C228T and BRCA2 rs80359065 mutations could be 0.02% and 0.05% respectively, demonstrating the clinical practicability of our proposed strategy in low abundance mutation detection.


Asunto(s)
Sondas de ADN/química , ADN de Cadena Simple/análisis , Proteína BRCA2/genética , Sondas de ADN/genética , ADN de Cadena Simple/genética , Desoxirribonucleasa IV (Fago T4-Inducido)/química , Femenino , Colorantes Fluorescentes/química , Humanos , Límite de Detección , Mediciones Luminiscentes/métodos , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Neoplasias Ováricas/genética , Mutación Puntual , Telomerasa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA