Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.141
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 166(5): 1269-1281.e19, 2016 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-27565349

RESUMEN

The glucocorticoid receptor (GR) binds the human genome at >10,000 sites but only regulates the expression of hundreds of genes. To determine the functional effect of each site, we measured the glucocorticoid (GC) responsive activity of nearly all GR binding sites (GBSs) captured using chromatin immunoprecipitation (ChIP) in A549 cells. 13% of GBSs assayed had GC-induced activity. The responsive sites were defined by direct GR binding via a GC response element (GRE) and exclusively increased reporter-gene expression. Meanwhile, most GBSs lacked GC-induced reporter activity. The non-responsive sites had epigenetic features of steady-state enhancers and clustered around direct GBSs. Together, our data support a model in which clusters of GBSs observed with ChIP-seq reflect interactions between direct and tethered GBSs over tens of kilobases. We further show that those interactions can synergistically modulate the activity of direct GBSs and may therefore play a major role in driving gene activation in response to GCs.


Asunto(s)
Genoma Humano , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/metabolismo , Factores de Transcripción/metabolismo , Activación Transcripcional , Células A549 , Sitios de Unión/efectos de los fármacos , Inmunoprecipitación de Cromatina , Dexametasona/metabolismo , Dexametasona/farmacología , Genes Reporteros , Glucocorticoides/farmacología , Humanos , Unión Proteica/efectos de los fármacos , Elementos de Respuesta
2.
Nature ; 567(7749): 540-544, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30867597

RESUMEN

Diversity within or between tumours and metastases (known as intra-patient tumour heterogeneity) that develops during disease progression is a serious hurdle for therapy1-3. Metastasis is the fatal hallmark of cancer and the mechanisms of colonization, the most complex step in the metastatic cascade4, remain poorly defined. A clearer understanding of the cellular and molecular processes that underlie both intra-patient tumour heterogeneity and metastasis is crucial for the success of personalized cancer therapy. Here, using transcriptional profiling of tumours and matched metastases in patient-derived xenograft models in mice, we show cancer-site-specific phenotypes and increased glucocorticoid receptor activity in distant metastases. The glucocorticoid receptor mediates the effects of stress hormones, and of synthetic derivatives of these hormones that are used widely in the clinic as anti-inflammatory and immunosuppressive agents. We show that the increase in stress hormones during breast cancer progression results in the activation of the glucocorticoid receptor at distant metastatic sites, increased colonization and reduced survival. Our transcriptomics, proteomics and phospho-proteomics studies implicate the glucocorticoid receptor in the activation of multiple processes in metastasis and in the increased expression of kinase ROR1, both of which correlate with reduced survival. The ablation of ROR1 reduced metastatic outgrowth and prolonged survival in preclinical models. Our results indicate that the activation of the glucocorticoid receptor increases heterogeneity and metastasis, which suggests that caution is needed when using glucocorticoids to treat patients with breast cancer who have developed cancer-related complications.


Asunto(s)
Neoplasias de la Mama/patología , Glucocorticoides/efectos adversos , Glucocorticoides/metabolismo , Metástasis de la Neoplasia/patología , Animales , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Dexametasona/efectos adversos , Dexametasona/metabolismo , Progresión de la Enfermedad , Femenino , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones , Ratones Endogámicos BALB C , Proteínas Quinasas/metabolismo , Receptores Huérfanos Similares al Receptor Tirosina Quinasa/metabolismo , Receptores de Glucocorticoides/metabolismo , Transducción de Señal/efectos de los fármacos , Tasa de Supervivencia
3.
Biochem Biophys Res Commun ; 708: 149763, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38503169

RESUMEN

Plant derived saponins or other glycosides are widely used for their anti-inflammatory, antioxidant, and anti-viral properties in therapeutic medicine. In this study, we focus on understanding the function of the less known steroidal saponin from the roots of Liriope muscari L. H. Bailey - saponin C (also known as DT-13) in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages in comparison to the well-known saponin ginsenoside Rk1 and anti-inflammatory drug dexamethasone. We proved that DT-13 reduces LPS-induced inflammation by inhibiting nitric oxide (NO) production, interleukin-6 (IL-6) release, cycloxygenase-2 (COX-2), tumour necrosis factor-alpha (TNF-α) gene expression, and nuclear factor kappa-B (NFκB) translocation into the nucleus. It also inhibits the inflammasome component NOD-like receptor family pyrin domain containing protein 3 (NLRP3) regulating the inflammasome activation. This was supported by the significant inhibition of caspase-1 and interleukin-1 beta (IL-1ß) expression and release. This study demonstrates the anti-inflammatory effect of saponins on LPS-stimulated macrophages. For the first time, an in vitro study shows the attenuating effect of DT-13 on NLRP3-inflammasome activation. In comparison to the existing anti-inflammatory drug, dexamethasone, and triterpenoid saponin Rk1, DT-13 more efficiently inhibits inflammation in the applied cell culture model. Therefore, DT-13 may serve as a lead compound for the development of new more effective anti-inflammatory drugs with minimised side effects.


Asunto(s)
Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/metabolismo , Inflamación/patología , Antiinflamatorios/uso terapéutico , FN-kappa B/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo
4.
EMBO Rep ; 23(1): e53083, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34699114

RESUMEN

Here, we investigate the impact of hypoxia on the hepatic response of glucocorticoid receptor (GR) to dexamethasone (DEX) in mice via RNA-sequencing. Hypoxia causes three types of reprogramming of GR: (i) much weaker induction of classical GR-responsive genes by DEX in hypoxia, (ii) a number of genes is induced by DEX specifically in hypoxia, and (iii) hypoxia induces a group of genes via activation of the hypothalamic-pituitary-adrenal (HPA) axis. Transcriptional profiles are reflected by changed GR DNA-binding as measured by ChIP sequencing. The HPA axis is induced by hypothalamic HIF1α and HIF2α activation and leads to GR-dependent lipolysis and ketogenesis. Acute inflammation, induced by lipopolysaccharide, is prevented by DEX in normoxia but not during hypoxia, and this is attributed to HPA axis activation by hypoxia. We unfold new physiological pathways that have consequences for patients suffering from GC resistance.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Dexametasona/metabolismo , Dexametasona/farmacología , Glucocorticoides/metabolismo , Glucocorticoides/farmacología , Humanos , Sistema Hipotálamo-Hipofisario/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Sistema Hipófiso-Suprarrenal/metabolismo , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
5.
Cell Mol Life Sci ; 80(9): 249, 2023 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-37578563

RESUMEN

The glucocorticoid receptor (GR) is a crucial drug target in multiple myeloma as its activation with glucocorticoids effectively triggers myeloma cell death. However, as high-dose glucocorticoids are also associated with deleterious side effects, novel approaches are urgently needed to improve GR action in myeloma. Here, we reveal a functional crosstalk between GR and the mineralocorticoid receptor (MR) that plays a role in improved myeloma cell killing. We show that the GR agonist dexamethasone (Dex) downregulates MR levels in a GR-dependent way in myeloma cells. Co-treatment of Dex with the MR antagonist spironolactone (Spi) enhances Dex-induced cell killing in primary, newly diagnosed GC-sensitive myeloma cells. In a relapsed GC-resistant setting, Spi alone induces distinct myeloma cell killing. On a mechanistic level, we find that a GR-MR crosstalk likely arises from an endogenous interaction between GR and MR in myeloma cells. Quantitative dimerization assays show that Spi reduces Dex-induced GR-MR heterodimerization and completely abolishes Dex-induced MR-MR homodimerization, while leaving GR-GR homodimerization intact. Unbiased transcriptomics analyses reveal that c-myc and many of its target genes are downregulated most by combined Dex-Spi treatment. Proteomics analyses further identify that several metabolic hallmarks are modulated most by this combination treatment. Finally, we identified a subset of Dex-Spi downregulated genes and proteins that may predict prognosis in the CoMMpass myeloma patient cohort. Our study demonstrates that GR-MR crosstalk is therapeutically relevant in myeloma as it provides novel strategies for glucocorticoid-based dose-reduction.


Asunto(s)
Glucocorticoides , Mieloma Múltiple , Humanos , Glucocorticoides/farmacología , Receptores de Mineralocorticoides/genética , Dexametasona/farmacología , Dexametasona/metabolismo , Dexametasona/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Espironolactona/uso terapéutico
6.
Chem Biodivers ; 21(2): e202301525, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38129310

RESUMEN

Over the past decades, the synthetic glucocorticoids (GCs) have been widely used in clinical practice and animal husbandry. Given the health hazard of these toxic residues in food, it is necessary to explore the detailed interaction mechanisms of typical GCs and their main target glucocorticoid receptor (GR). Hence, this work compared the GR binding and agonist activities of typical GCs. Fluorescence polarization assay showed that these GCs were potent ligands of GR. Their GR binding affinities were in the order of methylprednisolone>betamethasone≈prednisolone>dexamethasone, with IC50 values of 1.67, 2.94, 2.95, and 5.58 nM. Additionally, the limits of detection of dexamethasone, betamethasone, prednisolone, and methylprednisolone were 0.32, 0.14, 0.19, and 0.09 µg/kg in fluorescence polarization assay. Reporter gene assay showed that these GCs induced GR transactivation in a dose-dependent manner, confirming their GR agonist activities. Among which, dexamethasone at the concentration of 100 nM produced a maximal induction of more than 11-fold over the blank control. Molecular docking and molecular dynamics simulations suggested that hydrogen-bonding and hydrophobic interactions played an important role in stabilizing the GC-GR-LBD complexes. In summary, this work might help to understand the GR-mediated endocrine disrupting effects of typical GCs.


Asunto(s)
Glucocorticoides , Receptores de Glucocorticoides , Animales , Glucocorticoides/farmacología , Glucocorticoides/química , Glucocorticoides/metabolismo , Receptores de Glucocorticoides/química , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Simulación del Acoplamiento Molecular , Dexametasona/farmacología , Dexametasona/química , Dexametasona/metabolismo , Metilprednisolona
7.
Am J Respir Cell Mol Biol ; 69(5): 545-555, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37552822

RESUMEN

Abnormal lung development is the main cause of morbidity and mortality in neonates with congenital diaphragmatic hernia (CDH), a common birth defect (1:2,500) of largely unknown pathobiology. Recent studies discovered that inflammatory processes, and specifically NF-κB-associated pathways, are enriched in human and experimental CDH. However, the molecular signaling of NF-κB in abnormal CDH lung development and its potential as a therapeutic target require further investigation. Using sections and hypoplastic lung explant cultures from the nitrofen rat model of CDH and human fetal CDH lungs, we demonstrate that NF-κB and its downstream transcriptional targets are hyperactive during abnormal lung formation in CDH. NF-κB activity was especially elevated in the airway epithelium of nitrofen and human CDH lungs at different developmental stages. Fetal rat lung explants had impaired pseudoglandular airway branching after exposure to nitrofen, together with increased phosphorylation and transcriptional activity of NF-κB. Dexamethasone, the broad and clinically applicable antiinflammatory NF-κB antagonist, rescued lung branching and normalized NF-κB signaling in hypoplastic lung explants. Moreover, specific NF-κB inhibition with curcumenol similarly rescued ex vivo lung hypoplasia and restored NF-κB signaling. Last, we showed that prenatal intraperitoneal dexamethasone administration to pregnant rat dams carrying fetuses with hypoplastic lungs significantly improves lung branching and normalizes NF-κB in vivo. Our results indicate that NF-κB is aberrantly activated in human and nitrofen CDH lungs. Antiinflammatory treatment with dexamethasone and/or specific NF-κB inhibition should be investigated further as a therapeutic avenue to target lung hypoplasia in CDH.


Asunto(s)
Hernias Diafragmáticas Congénitas , Enfermedades Pulmonares , Embarazo , Femenino , Humanos , Ratas , Animales , Hernias Diafragmáticas Congénitas/metabolismo , FN-kappa B/metabolismo , Ratas Sprague-Dawley , Pulmón/metabolismo , Enfermedades Pulmonares/metabolismo , Dexametasona/metabolismo , Modelos Animales de Enfermedad
8.
J Cell Mol Med ; 27(23): 3911-3927, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37749949

RESUMEN

Steroid-induced femoral head necrosis (SIFHN) is a serious clinical complication that is caused by prolonged or excessive use of glucocorticoids (GCs). Osteoblast apoptosis and osteogenic differentiation dysfunction caused by GC-induced oxidative stress and mitochondrial impairment are strongly implicated in SIFHN. Apocynin (APO) is a kind of acetophenone extracted from an herb. In recent years, APO has received much attention for its antiapoptotic and antioxidant properties. This study aimed to investigate whether APO could protect against SIFHN and explore the mechanism. In our study, low-dose APO had no toxic effects on osteoblasts and restored dexamethasone (Dex)-treated osteoblasts by improving survival, inhibiting OS and restoring mitochondrial dysfunction. Mechanistically, APO alleviated Dex-induced osteoblast injury by activating the Nrf2 pathway, and the use of ML385 to block Nrf2 significantly eliminated the protective effect of APO. In addition, APO could reduce the formation of empty lacunae, restore bone mass and promote the expression of Nrf2 in SIFHN rats. In conclusion, APO protects osteoblasts from Dex-induced oxidative stress and mitochondrial dysfunction through activation of the Nrf2 pathway and may be a beneficial drug for the treatment of SIFHN.


Asunto(s)
Dexametasona , Enfermedades Mitocondriales , Ratas , Animales , Dexametasona/farmacología , Dexametasona/metabolismo , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Osteogénesis , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Estrés Oxidativo , Acetofenonas/farmacología , Apoptosis , Osteoblastos/metabolismo , Enfermedades Mitocondriales/metabolismo
9.
Genes Cells ; 27(2): 138-144, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34929062

RESUMEN

Skeletal muscle atrophy is the loss of muscle tissue caused by factors such as inactivity, malnutrition, aging, and injury. In this study, we aimed to investigate whether egg components exert inhibitory effects on muscle atrophy. An egg mix solution was orally administered for 10 consecutive days to male C57BL/6J mice injected with cardiotoxin in the tibialis anterior (TA) muscle. The administration of egg mixture significantly decreased the atrogin-1 and MuRF-1 protein levels, key factors in muscle atrophy, as observed by western blotting. Furthermore, we investigated the effects of egg components such as avidin, lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine on dexamethasone (DEX)-treated C2C12 myotubes. Lecithin, biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine in egg yolk significantly recovered the diameters of C2C12 myotubes decreased upon DEX application. Avidin did not show such reversal. Biotin, 3-sn-phosphatidylcholine, and L-α-phosphatidylcholine also attenuated atrogin-1 protein expression enhanced by DEX. Our findings reveal that egg yolk components could contribute to the reversal of skeletal muscle atrophy induced by muscle injury.


Asunto(s)
Dexametasona , Atrofia Muscular , Animales , Dexametasona/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo
10.
Clin Exp Immunol ; 211(3): 288-300, 2023 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-36645209

RESUMEN

Psoriasis is a genetically determined, environmentally triggered, immune system-mediated autoimmune disease. Different animal models are needed to investigate the complex pathological mechanisms underlying this disease. Therefore, we established mannan-induced psoriasis model and compared with the most commonly used imiquimod-induced psoriasis in terms of disease, induction of innate immune cells, expression of cytokines, and the effect of dexamethasone treatment. Mannan significantly induced more severe psoriasis with better disease relapsing feature than imiquimod (IMQ). As determined by immunohistochemistry, IMQ induced significantly more infiltration of CD11c+ and F4/80+ cells than mannan in the skin. However, cytometric analysis showed a significant increase in the percentage of Gr-1+ neutrophils in the spleen and lymph nodes as well as F4/80+ macrophages in the spleen after mannan exposure. Variation in the percentage of significantly increased Vγ4 T cells was also found to be dependent on the lymphoid organs tested. However, there is a clear difference between these models in terms of expression of certain cytokine genes: IL-22, IL-23, IL-17E, and IL-17F were expressed more predominantly in mannan-induced inflammation, while IL-6 and IL-17A expressions were significantly higher in IMQ model. Interestingly, dexamethasone treatment strongly reduced epidermal thickness and histological scores induced by mannan than IMQ. Despite inducing psoriasis-like inflammation, certain differences and similarities were observed in the immune responses induced by mannan and IMQ. However, mannan-induced psoriasis model is relatively more simple, economical and less harmful to mice with an increased possibility to develop a chronic psoriasis model by exposing mice to mannan.


Asunto(s)
Mananos , Psoriasis , Ratones , Animales , Imiquimod/efectos adversos , Imiquimod/metabolismo , Mananos/metabolismo , Modelos Animales de Enfermedad , Piel/patología , Inflamación/patología , Dexametasona/efectos adversos , Dexametasona/metabolismo , Ratones Endogámicos BALB C
11.
Cardiovasc Drugs Ther ; 37(5): 1027-1029, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-35554772

RESUMEN

PURPOSE: Glucocorticoids, which are widely prescribed around the world, cause cardiac remodeling in long-term treatment by triggering insulin resistance and increasing blood pressure. However, its role in cardiac remodeling remains unclear. Galectin-3 (gal-3) is a member of a beta-galactoside-binding animal lectins, upregulated as a result of insulin resistance and in the pressure-overloaded myocardium and regulate cardiac remodeling. We hypothesized that gal-3 may be upregulated in the myocardium with prolonged use of glucocorticoids and associated with cardiac hypertrophy. METHODS: To examine the involvement of glucocorticoids in gal-3 levels in rat myocardium, sixteen female Wistar Albino rats were assigned to control (C; n = 8) and dexamethasone (Dex; n = 8) groups. Daily dexamethasone was injected subcutaneously for 28 days at a dose of 1 mg.kg-1. Control animals were injected with the same volume of saline. The body weight and heart weights were determined. Gal-3 levels in myocardium were determined by Western blot. RESULTS: Our data shows that dexamethasone administration resulted in significant increase in heart weight (p < 0.05) and HW/BW ratios (p < 0.001) and 28 days of dexamethasone administration with the dose of 1 mg.kg-1 caused a twofold increase in the gal-3 expression in the left ventricle (p < 0.001). CONCLUSION: The finding of the current study is the first to show that dexamethasone causes an increase in gal-3 levels in myocardium. Our study provides an important step in the development of possible therapeutics by determining that dexamethasone causes an increase in gal-3 levels in the myocardium and raises awareness about the follow-up of patients receiving long-term glucocorticoid therapy.


Asunto(s)
Galectina 3 , Resistencia a la Insulina , Humanos , Ratas , Femenino , Animales , Galectina 3/metabolismo , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Remodelación Ventricular/fisiología , Ratas Wistar , Miocardio/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo
12.
Gen Comp Endocrinol ; 344: 114371, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37640145

RESUMEN

This study approached the long-term oral administration of cortisol (F) and dexamethasone (DEX), two synthetic glucocorticoids, compared to a control group (CT) in the juveniles of a marine teleost, the gilthead seabream (Sparus aurata). Physiologically, DEX treatment impaired growth, which appears to be linked to carbohydrate allocation in muscle and liver, hepatic triglycerides depletion, and reduced hematocrit. Hypophyseal gh mRNA expression was 2-fold higher in DEX than in CT or F groups. Similarly, hypothalamic trh and hypophyseal pomcb followed this pattern. Plasma cortisol levels were significantly lower in DEX than in CT, while F presented intermediate levels. In the posterior intestine, measured short circuit-current (Isc) was more anion absorptive in CT and F compared to the DEX group, whereas Isc remained unaffected in the anterior intestine. The derived transepithelial electric resistance (TEER) significantly differed between intestinal regions in the DEX group. These results provide new insights to understand better potential targeted biomarkers indicative of the differential glucocorticoid or mineralocorticoid-receptors activation in fish.


Asunto(s)
Dorada , Animales , Dorada/metabolismo , Hidrocortisona/metabolismo , Intestinos , Hipotálamo , Glucocorticoides/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo
13.
Biochemistry (Mosc) ; 88(12): 2094-2106, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38462453

RESUMEN

Neutrophils play a dual role in protecting the body. They are able to penetrate infected tissues and destroy pathogens there by releasing aggressive bactericidal substances. While into the surrounding tissues, the aggressive products secreted by neutrophils initiate development of inflammatory processes. Invasion of neutrophils into tissues is observed during the development of pneumonia in the patients with lung diseases of various etiologies, including acute respiratory distress syndrome caused by coronavirus disease. Synthetic corticosteroid hormone dexamethasone has a therapeutic effect in treatment of lung diseases, including reducing mortality in the patients with severe COVID-19. The acute (short-term) effect of dexamethasone on neutrophil adhesion to fibrinogen and concomitant secretion was studied. Dexamethasone did not affect either attachment of neutrophils to the substrate or their morphology. Production of reactive oxygen species (ROS) and nitric oxide (NO) by neutrophils during adhesion also did not change in the presence of dexamethasone. Dexamethasone stimulated release of metalloproteinases in addition to the proteins secreted by neutrophils during adhesion under control conditions, and selectively stimulated release of free amino acid hydroxylysine, a product of lysyl hydroxylase. Metalloproteinases play a key role and closely interact with lysyl hydroxylase in the processes of modification of the extracellular matrix. Therapeutic effect of dexamethasone could be associated with its ability to reorganize extracellular matrix in the tissues by changing composition of the neutrophil secretions, which could result in the improved gas exchange in the patients with severe lung diseases.


Asunto(s)
Enfermedades Pulmonares , Neutrófilos , Humanos , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/farmacología , Dexametasona/farmacología , Dexametasona/metabolismo , Metaloproteasas/metabolismo , Metaloproteasas/farmacología , Enfermedades Pulmonares/metabolismo
14.
Ecotoxicol Environ Saf ; 254: 114722, 2023 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-36870310

RESUMEN

Dexamethasone (DEX) is a synthetic glucocorticoid widely found in a variety of aquatic environments and has potential adverse effects on aquatic organisms. This study was to assess the toxic effects of exposure to different concentrations (0, 5 and 50 µg/L) of DEX for 60 days on adult male mosquitofish (Gambusia affinis). Morphological analyses of skeleton and anal fin, histological effects of testes and livers, and transcriptional expression levels of genes related to reproductive and immune system were determined. The results showed that exposure to DEX significantly increased 14L and 14D values of hemal spines, which suggested DEX could affect skeleton development and result in more masculine characteristics in male fish. In addition, the damage to testis and liver tissue was observed after DEX treatment. It also enhanced mRNA expression of Erß gene in the brain and Hsd11b1 gene in the testis. The findings of this study reveal physiological and transcriptional effects of DEX on male mosquitofish.


Asunto(s)
Ciprinodontiformes , Contaminantes Químicos del Agua , Animales , Masculino , Reproducción , Ciprinodontiformes/metabolismo , Dexametasona/toxicidad , Dexametasona/análisis , Dexametasona/metabolismo , Contaminantes Químicos del Agua/análisis
15.
Int J Mol Sci ; 24(21)2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37958886

RESUMEN

Many treatments for autoimmune diseases, caused by the loss of immune self-tolerance, are broadly immunosuppressive. Dendritic cells (DCs) can be induced to develop anti-inflammatory/tolerogenic properties to suppress aberrant self-directed immunity by promoting immune tolerance in an antigen-specific manner. Dexamethasone can generate tolerogenic DCs and upregulates MERTK expression. As MERTK can inhibit inflammation, we investigated whether dexamethasone's tolerogenic effects are mediated via MERTK, potentially providing a novel therapeutic approach. Monocyte-derived DCs were treated with dexamethasone, and with and without MERTK ligands or MERTK inhibitors. Flow cytometry was used to assess effects of MERTK modulation on co-stimulatory molecule expression, efferocytosis, cytokine secretion and T cell proliferation. The influence on expression of Rab17, which coordinates the diversion of efferocytosed material away from cell surface presentation, was assessed. Dexamethasone-treated DCs had upregulated MERTK expression, decreased expression of co-stimulatory molecules, maturation and proliferation of co-cultured T cells and increased uptake of myelin debris. MERTK ligands did not potentiate these properties, whilst specific MERTK inhibition only reversed dexamethasone's effect on myelin uptake. Cells undergoing efferocytosis had higher Rab17 expression. Dexamethasone-enhanced efferocytosis in DCs is MERTK-dependent and could exert its tolerogenic effects by increasing Rab17 expression to prevent the presentation of efferocytosed material on the cell surface to activate adaptive immune responses.


Asunto(s)
Células Dendríticas , Linfocitos T , Tirosina Quinasa c-Mer/genética , Tirosina Quinasa c-Mer/metabolismo , Inmunosupresores/farmacología , Tolerancia Inmunológica , Dexametasona/farmacología , Dexametasona/metabolismo
16.
Int J Mol Sci ; 24(2)2023 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-36674678

RESUMEN

Since depression produces a long-term negative impact on quality of life, understanding the pathophysiological changes implicated in this disorder is urgent. There is growing evidence that demonstrates a key role for dysfunctional energy metabolism in driving the onset of depression; thus, bioenergetic alterations should be extensively studied. Brain metabolism is known to be a glucocorticoid-sensitive process, but the long-lasting consequences in adulthood following high levels of glucocorticoids at the early stages of life are unclear. We examined a possible association between brain energetic changes induced by synthetic glucocorticoid-dexamethasone treatment in the prenatal period and depressive-like behavior. The results show a reduction in the oxidative phosphorylation process, Krebs cycle impairment, and a weakening of the connection between the Krebs cycle and glycolysis in the frontal cortex of animals receiving dexamethasone, which leads to ATP reduction. These changes appear to be mainly due to decreased expression of pyruvate dehydrogenase, impairment of lactate transport to neurons, and pyruvate to the mitochondria. Acute stress in adulthood only slightly modified the observed alterations in the frontal cortex, while in the case of the hippocampus, prenatal exposure to dexamethasone made this structure more sensitive to future adverse factors.


Asunto(s)
Glucocorticoides , Efectos Tardíos de la Exposición Prenatal , Animales , Femenino , Embarazo , Humanos , Glucocorticoides/metabolismo , Dexametasona/efectos adversos , Dexametasona/metabolismo , Depresión/metabolismo , Calidad de Vida , Encéfalo/metabolismo , Homeostasis , Piruvatos/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo
17.
Int J Mol Sci ; 24(23)2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-38069130

RESUMEN

In glioblastoma (GBM), the interplay of different immune cell subtypes, cytokines, and/or drugs shows high context-dependencies. Interrelations between the routinely applied dexamethasone (Dex) and microglia remain elusive. Here, we exploited rat organotypic brain slice co-cultures (OBSC) to examine the effects on a rat GBM cell line (S635) outgrowth resulting from the presence of Dex and pretreatment with the colony-stimulating factor receptor 1 (CSF1-R) inhibitor PLX5622: in native OBSC (without PLX5622-pretreatment), a diminished S635 spheroid outgrowth was observable, whereas Dex-treatment enhanced outgrowth in this condition compared to PLX5622-pretreated OBSC. Screening the supernatants of our model with a proteome profiler, we found that CXCL2 was differentially secreted in a Dex- and PLX5622-dependent fashion. To analyze causal interrelations, we interrupted the CXCL2/CXCR2-axis: in the native OBSC condition, CXCR2-blocking resulted in increased outgrowth, in combination with Dex, we found potentiated outgrowth. No effect was found in the PLX5622-pretreated. Our method allowed us to study the influence of three different factors-dexamethasone, PLX5622, and CXCL2-in a well-controlled, simplified, and straight-forward mechanistic manner, and at the same time in a more realistic ex vivo scenario compared to in vitro studies. In our model, we showed a GBM outgrowth enhancing synergism between CXCR2-blocking and Dex-treatment in the native condition, which was levelled by PLX5622-pretreatment.


Asunto(s)
Glioblastoma , Ratas , Animales , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Microglía/metabolismo , Encéfalo/metabolismo , Línea Celular , Dexametasona/farmacología , Dexametasona/metabolismo
18.
Int J Mol Sci ; 24(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36768200

RESUMEN

Skeletal muscle atrophy occurs when protein degradation exceeds protein synthesis and is associated with increased circulating glucocorticoid levels. Salvia plebeia R.Br. (SPR) has been used as herbal remedy for a variety of inflammatory diseases and has various biological actions such as antioxidant and anti-inflammatory activities. However, there are no reports on the effects of SPR and its bioactive components on muscle atrophy. Herein, we investigated the anti-atrophic effect of SPR and rosmarinic acid (RosA), a major compound of SPR, on dexamethasone (DEX)-induced skeletal muscle atrophy in C2C12 myotubes. Myotubes were treated with 10 µM DEX in the presence or absence of SPR or RosA at different concentrations for 24 h and subjected to immunocytochemistry, western blot, and measurements of ROS and ATP levels. SPR and RosA increased viability and inhibited protein degradation in DEX-treated C2C12 myotubes. In addition, RosA promoted the Akt/p70S6K/mTOR pathway and reduced ROS production, and apoptosis. Furthermore, the treatment of RosA significantly recovered SOD activity, autophagy activity, mitochondrial contents, and APT levels in DEX-treated myotubes. These findings suggest that SPR and RosA may provide protective effects against DEX-induced muscle atrophy and have promising potential as a nutraceutical remedy for the treatment of muscle weakness and atrophy.


Asunto(s)
Dexametasona , Fibras Musculares Esqueléticas , Humanos , Dexametasona/efectos adversos , Dexametasona/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Línea Celular , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/inducido químicamente , Atrofia Muscular/tratamiento farmacológico , Atrofia Muscular/metabolismo , Músculo Esquelético/metabolismo , Ácido Rosmarínico
19.
Int J Mol Sci ; 24(13)2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37446324

RESUMEN

Effects of modulation of glucocorticoid and mineralocorticoid receptors (GR and MR, respectively) on acute neuroinflammatory response were studied in the dorsal (DH) and ventral (VH) parts of the hippocampus of male Wistar rats. Local neuroinflammatory response was induced by administration of bacterial lipopolysaccharide (LPS) to the DH. The modulation of GR and MR was performed by dexamethasone (GR activation), mifepristone, and spironolactone (GR and MR inhibition, respectively). Experimental drugs were delivered to the dentate gyrus of the DH bilaterally by stereotaxic injections. Dexamethasone, mifepristone, and spironolactone were administered either alone (basal conditions) or in combination with LPS (neuroinflammatory conditions). Changes in expression levels of neuroinflammation-related genes and morphology of microglia 3 days after intrahippocampal administration of above substances were assessed. Dexamethasone alone induced a weak proinflammatory response in the hippocampal tissue, while neither mifepristone nor spironolactone showed significant effects. During LPS-induced neuroinflammation, GR activation suppressed expression of selected inflammatory genes, though it did not prevent appearance of activated forms of microglia. In contrast to GR activation, GR or MR inhibition had virtually no influence on LPS-induced inflammatory response. The results suggest glucocorticosteroids ambiguously modulate specific aspects of neuroinflammatory response in the hippocampus of rats at molecular and cellular levels.


Asunto(s)
Mifepristona , Espironolactona , Ratas , Masculino , Animales , Espironolactona/farmacología , Mifepristona/farmacología , Ratas Wistar , Enfermedades Neuroinflamatorias , Lipopolisacáridos/farmacología , Receptores de Glucocorticoides/metabolismo , Receptores de Mineralocorticoides/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo , Hipocampo/metabolismo
20.
Int J Mol Sci ; 24(23)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38069418

RESUMEN

Because equine tendinopathies are slow to heal and often recur, therapeutic strategies are being considered that aid tendon repair. Given the success of utilizing vitamin C to promote tenogenesis in other species, we hypothesized that vitamin C supplementation would produce dose-dependent improvements in the tenogenic properties of tendon proper (TP) and peritenon (PERI) cells of the equine superficial digital flexor tendon (SDFT). Equine TP- and PERI-progenitor-cell-seeded fibrin three-dimensional constructs were supplemented with four concentrations of vitamin C. The gene expression profiles of the constructs were assessed with 3'-Tag-Seq and real-time quantitative polymerase chain reaction (RT-qPCR); collagen content and fibril ultrastructure were also analyzed. Moreover, cells were challenged with dexamethasone to determine the levels of cytoprotection afforded by vitamin C. Expression profiling demonstrated that vitamin C had an anti-inflammatory effect on TP and PERI cell constructs. Moreover, vitamin C supplementation mitigated the degenerative pathways seen in tendinopathy and increased collagen content in tendon constructs. When challenged with dexamethasone in two-dimensional culture, vitamin C had a cytoprotective effect for TP cells but not necessarily for PERI cells. Future studies will explore the effects of vitamin C on these cells during inflammation and within the tendon niche in vivo.


Asunto(s)
Tendinopatía , Tendones , Animales , Caballos , Tendones/metabolismo , Colágeno/metabolismo , Ingeniería de Tejidos/métodos , Tendinopatía/tratamiento farmacológico , Tendinopatía/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Dexametasona/farmacología , Dexametasona/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA