Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 180
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 539(7630): 593-597, 2016 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-27851736

RESUMEN

The universal Per-ARNT-Sim (PAS) domain functions as a signal transduction module involved in sensing diverse stimuli such as small molecules, light, redox state and gases. The highly evolvable PAS scaffold can bind a broad range of ligands, including haem, flavins and metal ions. However, although these ligands can support catalytic activity, to our knowledge no enzymatic PAS domain has been found. Here we report characterization of the first PAS enzyme: a haem-dependent oxidative N-demethylase. Unrelated to other amine oxidases, this enzyme contains haem, flavin mononucleotide, 2Fe-2S and tetrahydrofolic acid cofactors, and specifically catalyses the NADPH-dependent oxidation of dimethylamine. The structure of the α subunit reveals that it is a haem-binding PAS domain, similar in structure to PAS gas sensors. The dimethylamine substrate forms part of a highly polarized oxygen-binding site, and directly assists oxygen activation by acting as both an electron and proton donor. Our data reveal that the ubiquitous PAS domain can make the transition from sensor to enzyme, suggesting that the PAS scaffold can support the development of artificial enzymes.


Asunto(s)
Oxidorreductasas N-Desmetilantes/química , Oxidorreductasas N-Desmetilantes/metabolismo , Pseudomonas mendocina/enzimología , Sitios de Unión , Coenzimas/metabolismo , Cristalografía por Rayos X , Dimetilaminas/metabolismo , Mononucleótido de Flavina/metabolismo , Hemo/metabolismo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/metabolismo , Modelos Moleculares , NADP/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Dominios Proteicos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Tetrahidrofolatos/metabolismo
2.
Photosynth Res ; 145(2): 145-157, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32632533

RESUMEN

Bacterial reaction centers (BRC) from Rhodobacter sphaeroides were found to accelerate, about 100-fold, the reaction between tetryl (2,4,6-trinitrophenylmethylnitramine) explosive and n-lauryl-N-N-dimethylamine-N-oxide (LDAO) that results in the formation of picric acid-like product with characteristic UV-VIS absorption spectrum with peaks at 345 and 415 nm. Moreover, this product also affects the spectra of BRC cofactors in the NIR spectral region and stabilizes the conformational changes associated with slow charge recombination. The evolution of the NIR absorption changes correlated with the kinetics of the product formation. Comparison between the wild-type and the R26 carotenoid-less strain indicates that tetryl-LDAO reaction is roughly five times faster for R26, which allows for identifying the carotenoid binding site as the optimal reaction site. Another, less-defined reaction site is located in the BRC's hydrophobic cavity. These effects are highly selective for tetryl and not observed for several other widespread nitric explosives; slowed-down charge recombination allows for distinguishing between tetryl and QB-site herbicides. The current limit of detection is in the ppb range or ~ 100 nM. Details of the molecular mechanisms of the reactions and perspectives of using these effects in bioassays or biosensors for explosives detection are also discussed.


Asunto(s)
Compuestos de Anilina/metabolismo , Detergentes/metabolismo , Dimetilaminas/metabolismo , Sustancias Explosivas/metabolismo , Nitrobencenos/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Compuestos de Anilina/química , Carotenoides/metabolismo , Detergentes/química , Dimetilaminas/química , Transporte de Electrón , Sustancias Explosivas/química , Cinética , Límite de Detección , Nitrobencenos/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química
3.
Arch Biochem Biophys ; 676: 108136, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31604072

RESUMEN

The flavoprotein trimethylamine dehydrogenase is a member of a small class of flavoproteins that catalyze amine oxidation and transfer the electrons through an Fe/S center to an external oxidant. The mechanism of amine oxidation by this family of enzymes has not been established. Here, we describe the use of pH and kinetic isotope effects with the slow substrate dimethylamine to study the mechanism. The data are consistent with the neutral amine being the form of the substrate that binds productively at the pH optimum, since the pKa seen in the kcat/Kamine pH profile for a group that must be unprotonated matches the pKa of dimethylamine. The D(kcat/Kamine) value decreases to unity as the pH decreases. This suggests the presence of an alternative pathway at low pH, in which the protonated substrate binds and is then deprotonated by an active-site residue prior to oxidation. The kcat and Dkcat values both decrease to limiting values at low pH with similar pKa values. This is consistent with a step other than amine oxidation becoming rate-limiting for turnover.


Asunto(s)
Deuterio/química , Dimetilaminas/química , Dimetilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Biocatálisis , Concentración de Iones de Hidrógeno , Cinética , Methylophilus methylotrophus/enzimología , Unión Proteica , Especificidad por Sustrato
4.
PLoS Comput Biol ; 14(8): e1006295, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30071012

RESUMEN

Several channels, ranging from TRP receptors to Gap junctions, allow the exchange of small organic solute across cell membrane. However, very little is known about the molecular mechanism of their permeation. Cyclic Nucleotide Gated (CNG) channels, despite their homology with K+ channels and in contrast with them, allow the passage of larger methylated and ethylated ammonium ions like dimethylammonium (DMA) and ethylammonium (EA). We combined electrophysiology and molecular dynamics simulations to examine how DMA interacts with the pore and permeates through it. Due to the presence of hydrophobic groups, DMA enters easily in the channel and, unlike the alkali cations, does not need to cross any barrier. We also show that while the crystal structure is consistent with the presence of a single DMA ion at full occupancy, the channel is able to conduct a sizable current of DMA ions only when two ions are present inside the channel. Moreover, the second DMA ion dramatically changes the free energy landscape, destabilizing the crystallographic binding site and lowering by almost 25 kJ/mol the binding affinity between DMA and the channel. Based on the results of the simulation the experimental electron density maps can be re-interpreted with the presence of a second ion at lower occupancy. In this mechanism the flexibility of the channel plays a key role, extending the classical multi-ion permeation paradigm in which conductance is enhanced by the plain interaction between the ions.


Asunto(s)
Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Proteínas de Transporte de Catión Orgánico/fisiología , Animales , Fenómenos Biofísicos , Cationes/metabolismo , Simulación por Computador , Canales Catiónicos Regulados por Nucleótidos Cíclicos/fisiología , Dimetilaminas/metabolismo , Uniones Comunicantes/metabolismo , Potenciales de la Membrana/fisiología , Simulación de Dinámica Molecular , Oocitos/fisiología , Compuestos de Amonio Cuaternario/metabolismo , Sodio/metabolismo , Xenopus laevis
5.
J Biochem Mol Toxicol ; 32(9): e22196, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30015991

RESUMEN

Glutathione-S-transferases (GSTs) have a function in xenobiotic metabolism. They are a significant multifunctional family with a wide variety of catalytic activities. In the current study, we determined in vitro inhibition effects of 2,4-dichlorophenoxyacetic acid dimethylamine salt (2,4-D DMA), haloxyfop-P-methyl, glyphosate isopropylamine, dichlorvos, and λ-cyhalothrin on purified GST. For this purpose, GST were purified from Van Lake fish (Chalcalburnus tarichii Pallas) liver with 29.25 EU mg-1 specific activity and 10.76% yield using GSH-agarose affinity chromatographic method. The pesticides were tested at various concentrations on in vitro GST activity. Ki constants were calculated as 0.17 ± 0.01, 0.25 ± 0.05, 3.72 ± 0.32, 0.42 ± 0.06, and 0.025 ± 0.004 mM, for 2,4-D DMA, haloxyfop-P-methyl, glyphosate isopropylamine, dichlorvos, and λ-cyhalothrin, respectively. λ-Cyhalothrin showed a better inhibitory effect compared to the other pesticides. The inhibition mechanisms of λ-cyhalothrin were competitive, while the other pesticides were noncompetitive.


Asunto(s)
Cyprinidae , Inhibidores Enzimáticos/toxicidad , Proteínas de Peces/antagonistas & inhibidores , Glutatión Transferasa/antagonistas & inhibidores , Hígado/enzimología , Plaguicidas/farmacología , Contaminantes Químicos del Agua/farmacología , Ácido 2,4-Diclorofenoxiacético/metabolismo , Ácido 2,4-Diclorofenoxiacético/farmacología , Animales , Unión Competitiva , Cyprinidae/crecimiento & desarrollo , Diclorvos/metabolismo , Diclorvos/farmacología , Dimetilaminas/metabolismo , Dimetilaminas/farmacología , Inhibidores Enzimáticos/metabolismo , Proteínas de Peces/química , Proteínas de Peces/aislamiento & purificación , Proteínas de Peces/metabolismo , Fungicidas Industriales/metabolismo , Fungicidas Industriales/farmacología , Glutatión Transferasa/química , Glutatión Transferasa/aislamiento & purificación , Glutatión Transferasa/metabolismo , Glicina/análogos & derivados , Glicina/metabolismo , Glicina/farmacología , Cinética , Lagos , Hígado/crecimiento & desarrollo , Peso Molecular , Nitrilos/metabolismo , Nitrilos/farmacología , Plaguicidas/metabolismo , Piretrinas/metabolismo , Piretrinas/farmacología , Piridinas/metabolismo , Piridinas/farmacología , Aguas Salinas , Especificidad de la Especie , Turquía , Contaminantes Químicos del Agua/metabolismo
6.
Artículo en Inglés | MEDLINE | ID: mdl-29405834

RESUMEN

The objective of this study was to assess reactivity of Minocycline (MNC) towards ozone and determine the effects of ozone dose, pH value, and water matrix on MNC degradation as well as to characterize N-Nitrosodimethylamine (NDMA) formation from MNC ozonation. The MNC initial concentration of the solution was set in the range of 2-20 mg/L to investigate NDMA formation during MNC ozonation. Four ozone doses (22.5, 37.2, 58.0, and 74.4 mg/min) were tested to study the effect of ozone dose. For the evaluation of effects of pH value, pH was adjusted from 5 to 9 in the presence of phosphate buffer. MNC ozonation experiments were also conducted in natural water to assess the influence of water matirx. The influence of the typical component of natural water was also investigated with the addition of HA and NaHCO3 solution. Results indicated that ozone was effective in MNC removal. Consequently, NDMA and dimethylamine (DMA) were generated from MNC oxidation. Increasing pH value enhanced MNC removal but led to greater NDMA generation. Water matrices, such as HCO3- and humic acid, affected MNC degradation. Conversely, more NDMA accumulated due to the inhibition of NDMA oxidation by oxidant consumption. Though ⋅OH can enhance MNC degradation, ozone molecules were heavily involved in NDMA production. Seven transformation products were identified. However, only DMA and the unidentified tertiary amine containing DMA group contributed to NDMA formation.


Asunto(s)
Dimetilnitrosamina/metabolismo , Minociclina/aislamiento & purificación , Minociclina/farmacocinética , Ozono/metabolismo , Purificación del Agua/métodos , Biodegradación Ambiental , Dimetilaminas/metabolismo , Dimetilnitrosamina/química , Concentración de Iones de Hidrógeno , Oxidantes/metabolismo , Oxidación-Reducción , Ozono/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/farmacocinética
7.
Biochemistry ; 54(9): 1807-18, 2015 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-25654171

RESUMEN

HydE and HydG are radical S-adenosyl-l-methionine enzymes required for the maturation of [FeFe]-hydrogenase (HydA) and produce the nonprotein organic ligands characteristic of its unique catalytic cluster. The catalytic cluster of HydA (the H-cluster) is a typical [4Fe-4S] cubane bridged to a 2Fe-subcluster that contains two carbon monoxides, three cyanides, and a bridging dithiomethylamine as ligands. While recent studies have shed light on the nature of diatomic ligand biosynthesis by HydG, little information exists on the function of HydE. Herein, we present biochemical, spectroscopic, bioinformatic, and molecular modeling data that together map the active site and provide significant insight into the role of HydE in H-cluster biosynthesis. Electron paramagnetic resonance and UV-visible spectroscopic studies demonstrate that reconstituted HydE binds two [4Fe-4S] clusters and copurifies with S-adenosyl-l-methionine. Incorporation of deuterium from D2O into 5'-deoxyadenosine, the cleavage product of S-adenosyl-l-methionine, coupled with molecular docking experiments suggests that the HydE substrate contains a thiol functional group. This information, along with HydE sequence similarity and genome context networks, has allowed us to redefine the presumed mechanism for HydE away from BioB-like sulfur insertion chemistry; these data collectively suggest that the source of the sulfur atoms in the dithiomethylamine bridge of the H-cluster is likely derived from HydE's thiol containing substrate.


Asunto(s)
Clostridium acetobutylicum/enzimología , Dimetilaminas/metabolismo , Hidrogenasas/metabolismo , Proteínas Hierro-Azufre/metabolismo , Procesamiento Proteico-Postraduccional , Azufre/metabolismo , Catálisis , Dominio Catalítico , Desoxiadenosinas/química , Desoxiadenosinas/metabolismo , Deuterio/química , Espectroscopía de Resonancia por Spin del Electrón , Hidrogenasas/química , Hierro/metabolismo , Proteínas Hierro-Azufre/química , Simulación del Acoplamiento Molecular , Espectrofotometría Ultravioleta , Azufre/química
8.
Environ Microbiol ; 17(7): 2477-91, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25471524

RESUMEN

Systematic analyses of transcriptional and metabolic changes occurring when Escherichia coli K-12 switches from fermentative growth to anaerobic respiratory growth with trimethylamine-N-oxide (TMAO) as the terminal electron acceptor revealed: (i) the induction of torCAD, but not genes encoding alternative TMAO reductases; (ii) transient expression of frmRAB, encoding formaldehyde dehydrogenase; and (iii) downregulation of copper resistance genes. Simultaneous inference of 167 transcription factor (TF) activities implied that transcriptional re-programming was mediated by 20 TFs, including the transient inactivation of the two-component system ArcBA; a prediction validated by direct measurement of phosphorylated ArcA. Induction of frmRAB, detection of dimethylamine in culture medium and formaldehyde production when cell-free extracts were incubated with TMAO suggested the presence of TMAO demethylase activity. Accordingly, the viability of an frmRAB mutant was compromised upon exposure to TMAO. Downregulation of genes involved in copper resistance could be accounted for by TMAO inhibition of Cu(II) reduction. The simplest interpretation of the data is that during adaptation to the presence of environmental TMAO, anaerobic fermentative cultures of E. coli respond by activating the TorTSR regulatory system with consequent induction of TMAO reductase activity, resulting in net oxidation of menaquinone and inhibition of Cu(II) reduction, responses that are sensed by ArcBA and CusRS respectively.


Asunto(s)
Adaptación Fisiológica , Cobre/metabolismo , Escherichia coli K12/metabolismo , Metilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Dimetilaminas/metabolismo , Escherichia coli K12/genética , Proteínas de Escherichia coli/genética , Formaldehído/metabolismo , Oxidorreductasas N-Desmetilantes/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética/genética , Vitamina K 2/metabolismo
9.
Appl Environ Microbiol ; 80(1): 289-93, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162571

RESUMEN

Nine marine methanogenic Methanococcoides strains, including the type strains of Methanococcoides methylutens, M. burtonii, and M. alaskense, were tested for the utilization of N-methylated glycines. Three strains (NM1, PM2, and MKM1) used glycine betaine (N,N,N-trimethylglycine) as a substrate for methanogenesis, partially demethylating it to N,N-dimethylglycine, whereas none of the strains used N,N-dimethylglycine or sarcosine (N-methylglycine). Growth rates and growth yields per mole of substrate with glycine betaine (3.96 g [dry weight] per mol) were similar to those with trimethylamine (4.11 g [dry weight] per mol). However, as glycine betaine is only partially demethylated, the yield per methyl group was significantly higher than with trimethylamine. If glycine betaine and trimethylamine are provided together, trimethylamine is demethylated to dimethyl- and methylamine with limited glycine betaine utilization. After trimethylamine is depleted, dimethylamine and glycine betaine are consumed rapidly, before methylamine. Glycine betaine extends the range of substrates that can be directly utilized by some methanogens, allowing them to gain energy from the substrate without the need for syntrophic partners.


Asunto(s)
Betaína/metabolismo , Metano/metabolismo , Methanosarcinaceae/metabolismo , Organismos Acuáticos/crecimiento & desarrollo , Organismos Acuáticos/metabolismo , Dimetilaminas/metabolismo , Metabolismo Energético , Methanosarcinaceae/crecimiento & desarrollo , Metilaminas/metabolismo
10.
Xenobiotica ; 44(1): 36-47, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23786350

RESUMEN

1. Dimethylamine borane (DMAB) is used as a reducing agent in the manufacturing of a variety of products and in chemical synthesis. National Toxicology Program is evaluating the toxicity of DMAB in rodents following dermal application. The objective of this study was to evaluate the metabolism and disposition of DMAB in male Harlan Sprague Dawley (HSD) rats. 2. Disposition of radioactivity was similar between gavage and intravenous administration of 1.5 mg/kg [(14)C] DMAB, with nearly 84%-89% of the administered radioactivity recovered in urine 24 h post dosing. At 72 h, only 1% or less was recovered in feces, 0.3% as CO2, and 0.5%-1.4% as volatiles and 0.3%-0.4 % in tissues. 3. The absorption of [(14)C]DMAB following dermal application was moderate; percent dose absorbed increased with the dose, with 23%, 32% and 46% of dose absorbed at 0.15, 1.5 and 15 mg/kg, respectively. Urinary and fecal excretion ranged from 18%-37% and 2%-4% of dose, respectively, and 0.1%-0.2% as CO2, and 1%-3% as volatiles. Tissue retention of the radiolabel was low ∼1%, but was higher than following the gavage or intravenous administration. 4. Following co-adminsitration of DMAB and sodium nitrite by gavage, N-nitrosodimethylamine was not detected in blood or urine above the limit of quantitation of the analytical method of 10 ng/mL. 5. Absorption of DMAB in fresh human skin in vitro was ∼41% of the applied dose: the analysis of the receptor fluid shows that the intact DMAB complex can be absorbed through the skin.


Asunto(s)
Boranos/administración & dosificación , Boranos/metabolismo , Dimetilaminas/administración & dosificación , Dimetilaminas/metabolismo , Administración Cutánea , Administración Intravenosa , Animales , Boranos/farmacocinética , Radioisótopos de Carbono/administración & dosificación , Radioisótopos de Carbono/farmacocinética , Radioisótopos de Carbono/orina , Dimetilaminas/farmacocinética , Dimetilnitrosamina/sangre , Dimetilnitrosamina/orina , Heces/química , Humanos , Masculino , Ratas , Ratas Sprague-Dawley , Nitrito de Sodio/administración & dosificación
11.
PLoS Genet ; 7(9): e1002270, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21931564

RESUMEN

We have performed a metabolite quantitative trait locus (mQTL) study of the (1)H nuclear magnetic resonance spectroscopy ((1)H NMR) metabolome in humans, building on recent targeted knowledge of genetic drivers of metabolic regulation. Urine and plasma samples were collected from two cohorts of individuals of European descent, with one cohort comprised of female twins donating samples longitudinally. Sample metabolite concentrations were quantified by (1)H NMR and tested for association with genome-wide single-nucleotide polymorphisms (SNPs). Four metabolites' concentrations exhibited significant, replicable association with SNP variation (8.6×10(-11)

Asunto(s)
Estudio de Asociación del Genoma Completo , Redes y Vías Metabólicas/genética , Metaboloma/genética , Sitios de Carácter Cuantitativo/genética , Selección Genética , Acetiltransferasas/genética , Acetiltransferasas/metabolismo , Dimetilaminas/sangre , Dimetilaminas/metabolismo , Femenino , Haplotipos , Humanos , Isobutiratos/metabolismo , Isobutiratos/orina , Espectroscopía de Resonancia Magnética , Metilaminas/metabolismo , Metilaminas/orina , Polimorfismo de Nucleótido Simple
12.
J Environ Manage ; 141: 70-6, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-24768836

RESUMEN

Laboratory-scale experiments were conducted using poultry manure (PM) from a laying hen farm. Six strains of bacteria and one strain of yeast, selected on the base of the previous study, were investigated to evaluate their activity in the removal of odorous compounds from poultry manure: pure cultures of Bacillus subtilis subsp. spizizenii LOCK 0272, Bacillus megaterium LOCK 0963, Pseudomonas sp. LOCK 0961, Psychrobacter faecalis LOCK 0965, Leuconostoc mesenteroides LOCK 0964, Streptomyces violaceoruber LOCK 0967, and Candida inconspicua LOCK 0272 were suspended in water solution and applied for PM deodorization. The most active strains in the removal of volatile odorous compounds (ammonia, hydrogen sulfide, dimethylamine, trimethylamine, isobutyric acid) belonged to B. subtilis subsp. spizizenii, L. mesenteroides, C. inconspicua, and P. faecalis. In the next series of experiments, a mixed culture of all tested strains was immobilized on a mineral carrier being a mixture of perlite and bentonite (20:80 by weight). That mixed culture applied for PM deodorization was particularly active against ammonia and hydrogen sulfide, which were removed from the exhaust gas by 20.8% and 17.5%, respectively. The experiments also showed that during deodorization the microorganisms could reduce the concentrations of proteins and amino acids in PM. In particular, the mixed culture was active against cysteine and methionine, which were removed from PM by around 45% within 24 h of deodorization.


Asunto(s)
Estiércol , Odorantes , Aves de Corral , Administración de Residuos/métodos , Contaminantes Atmosféricos/metabolismo , Óxido de Aluminio , Aminoácidos/metabolismo , Amoníaco/metabolismo , Animales , Bacterias/metabolismo , Bentonita , Candida/metabolismo , Dimetilaminas/metabolismo , Sulfuro de Hidrógeno/metabolismo , Isobutiratos/metabolismo , Metilaminas/metabolismo , Proteínas/metabolismo , Dióxido de Silicio
13.
J Sci Food Agric ; 92(12): 2436-42, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22488511

RESUMEN

BACKGROUND: Trimethylamine oxide (TMAO) in squid is demethylated to dimethylamine (DMA) and formaldehyde (FA) during storage and processing. This study examined the effects of thermal processing and various chemical substances on FA and DMA formation in squid. RESULTS: The thermal conversion of TMAO was assessed by analysing four squid and four gadoid fish species, which revealed that FA, DMA and trimethylamine (TMA) were gradually produced in squid, whereas TMA increased and FA decreased in gadoid fish. A significant increase in both FA and DMA levels was observed in the supernatant of jumbo squid with increased heating temperature and extended heating time at pH 6-7. Ferrous chloride combined with cysteine and/or ascorbate had a significantly positive effect on FA formation in the heated supernatant of jumbo squid. No significant difference was observed in the levels of Cu and Fe in squid and gadoid fish. The capability of Fe(2+) to promote the formation of FA and DMA was not completely attributable to its reducing power in squid. CONCLUSION: Non-enzymatic decomposition of TMAO was a key pathway during the thermal processing of jumbo squid, and Fe(2+) was a crucial activator in the formation of FA and DMA.


Asunto(s)
Decapodiformes , Dimetilaminas/metabolismo , Manipulación de Alimentos/métodos , Formaldehído/metabolismo , Calor , Alimentos Marinos/análisis , Animales , Ácido Ascórbico , Cisteína , Compuestos Ferrosos , Peces , Humanos , Concentración de Iones de Hidrógeno , Hierro , Metilaminas/metabolismo
14.
Biophys J ; 99(8): 2398-407, 2010 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-20959079

RESUMEN

Green photosynthetic bacteria harvest light and perform photosynthesis in low-light environments, and contain specialized antenna complexes to adapt to this condition. We performed small-angle neutron scattering (SANS) studies to obtain structural information about the photosynthetic apparatus, including the peripheral light-harvesting chlorosome complex, the integral membrane light-harvesting B808-866 complex, and the reaction center (RC) in the thermophilic green phototrophic bacterium Chloroflexus aurantiacus. Using contrast variation in SANS measurements, we found that the B808-866 complex is wrapped around the RC in Cfx. aurantiacus, and the overall size and conformation of the B808-866 complex of Cfx. aurantiacus is roughly comparable to the LH1 antenna complex of the purple bacteria. A similar size of the isolated B808-866 complex was suggested by dynamic light scattering measurements, and a smaller size of the RC of Cfx. aurantiacus compared to the RC of the purple bacteria was observed. Further, our SANS measurements indicate that the chlorosome is a lipid body with a rod-like shape, and that the self-assembly of bacteriochlorophylls, the major component of the chlorosome, is lipid-like. Finally, two populations of chlorosome particles are suggested in our SANS measurements.


Asunto(s)
Chloroflexus/metabolismo , Difracción de Neutrones , Fotosíntesis , Dispersión del Ángulo Pequeño , Absorción , Chloroflexus/enzimología , Dimetilaminas/metabolismo , Transferencia de Energía , Glucósidos/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Lípidos/química , Rhodobacter sphaeroides/enzimología , Rhodobacter sphaeroides/metabolismo
15.
Arch Microbiol ; 192(6): 471-6, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20437165

RESUMEN

The present study examined the aerobic metabolism of trimethylamine in Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine. In both conditions, the trimethylamine was used as a nitrogen source and also accumulated in the cell, slowing the bacterial growth. Decreased bacterial growth was counteracted by the addition of AlCl(3). Cell-free extracts prepared from cells grown aerobically on tetradecyltrimethylammonium bromide exhibited trimethylamine monooxygenase activity that produced trimethylamine N-oxide and trimethylamine N-oxide demethylase activity that produced dimethylamine. Cell-free extracts from cells grown on trimethylamine exhibited trimethylamine dehydrogenase activity that produced dimethylamine, which was oxidized to methanal and methylamine by dimethylamine dehydrogenase. These results show that this bacterial strain uses two enzymes to initiate the oxidation of trimethylamine in aerobic conditions. The apparent K(m) for trimethylamine was 0.7 mM for trimethylamine monooxygenase and 4.0 mM for trimethylamine dehydrogenase, but both enzymes maintain similar catalytic efficiency (0.5 and 0.4, respectively). Trimethylamine dehydrogenase was inhibited by trimethylamine from 1 mM. Therefore, the accumulation of trimethylamine inside Pseudomonas putida A ATCC 12633 grown on tetradecyltrimethylammonium bromide or trimethylamine may be due to the low catalytic efficiency of trimethylamine monooxygenase and trimethylamine dehydrogenase.


Asunto(s)
Metilaminas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Oxigenasas/metabolismo , Pseudomonas putida/metabolismo , Aerobiosis , Dimetilaminas/metabolismo , Cinética , Oxidación-Reducción , Oxidorreductasas N-Desmetilantes/antagonistas & inhibidores , Pseudomonas putida/crecimiento & desarrollo , Compuestos de Trimetilamonio/metabolismo
16.
Bull Environ Contam Toxicol ; 85(2): 157-9, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20640399

RESUMEN

The environmental behavior of 720 g/L 2,4-D: -dimethylammonium AS under wheat field conditions was studied in detail. The dissipation behaviors of 2,4-D: -dimethylammonium in wheat and soil were fitted to first-order kinetic equation (C = C (0) e (-lambdat )). But different experimental points and years have different initial deposits and half-lives (T (1/2)). After applying 720 g/L 2,4-D: -dimethylammonium AS at recommended dosage and 1.5-fold recommended dosage during 3-4 leaf stage, the residues of 2,4-D: -dimethylammonium in wheat plant, wheat grain and soil were all lower than 0.02 mg/kg. The obtained results suggested that, it is safety for application at the recommended dosage during 3-4 leaf stage to control weeds in wheat field.


Asunto(s)
Ácido 2,4-Diclorofenoxiacético/análisis , Dimetilaminas/análisis , Herbicidas/análisis , Residuos de Plaguicidas/análisis , Contaminantes del Suelo/análisis , Suelo/análisis , Triticum/metabolismo , Ácido 2,4-Diclorofenoxiacético/química , Ácido 2,4-Diclorofenoxiacético/metabolismo , Agricultura/métodos , China , Ciudades , Dimetilaminas/química , Dimetilaminas/metabolismo , Monitoreo del Ambiente , Contaminación de Alimentos/análisis , Herbicidas/química , Herbicidas/metabolismo , Cinética , Residuos de Plaguicidas/química , Residuos de Plaguicidas/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/metabolismo , Triticum/química
17.
Science ; 197(4306): 917-8, 1977 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-887934

RESUMEN

A simple and highly sensitive procedure is described for the recovery and quantitative identification of nanogram quantities of preformed N-nitroso compounds in the whole mouse. This procedure has also been applied to the quantitation of N-nitroso compounds after they have been biosynthesized from trace amounts of precursors. The whole animal is frozen in liquid nitrogen and homogenized to a frozen powder; the powder is then extracted and analyzed by a thermal energy analyzer interfaced to a gas-liquid and a high-pressure liquid chromatograph.


Asunto(s)
Dimetilaminas/metabolismo , Dimetilnitrosamina/metabolismo , Nitritos/metabolismo , Nitrosaminas/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Dimetilnitrosamina/análisis , Congelación , Masculino , Ratones , Factores de Tiempo
18.
Environ Microbiol ; 10(12): 3225-36, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18681896

RESUMEN

Enrichment and elective culture for methylotrophs from sediment of the River Thames in central London yielded a diversity of pure cultures representing several genera of Gram-negative and Gram-positive bacteria, which were mainly of organisms not generally regarded as typically methylotrophic. Substrates leading to successful isolations included methanol, monomethylamine, dimethylamine, trimethylamine, methanesulfonate and dimethylsulfone. Several isolates were studied in detail and shown by their biochemical and morphological properties and 16S rRNA gene sequencing to be Sphingomonas melonis strain ET35, Mycobacterium fluoranthenivorans strain DSQ3, Rhodococcus erythropolis strain DSQ4, Brevibacterium casei strain MSQ5, Klebsiella oxytoca strains MMA/F and MMA/1, Pseudomonas mendocina strain TSQ4, and Flavobacterium sp. strains MSA/1 and MMA/2. The results show that facultative methylotrophy is present across a wide range of Bacteria, suggesting that turnover of diverse C(1)-compounds is of much greater microbiological and environmental significance than is generally thought. The origins of the genes encoding the enzymes of methylotrophy in diverse heterotrophs need further study, and could further our understanding of the phylogeny and antiquity of methylotrophic systems.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Biodiversidad , Sedimentos Geológicos/microbiología , Metano/análogos & derivados , Metano/metabolismo , Ríos/microbiología , Bacterias/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Ribosómico/química , ADN Ribosómico/genética , Dimetilaminas/metabolismo , Genes de ARNr , Londres , Mesilatos/metabolismo , Metanol/metabolismo , Metilmetanosulfonato/metabolismo , Metilaminas/metabolismo , Datos de Secuencia Molecular , Filogenia , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico
19.
FEMS Microbiol Ecol ; 64(2): 271-82, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18373685

RESUMEN

Members of a triple-species 3-(3,4-dichlorophenyl)-1-methoxy-1-methyl urea (linuron)-mineralizing consortium, i.e. the linuron- and 3,4-dichloroaniline-degrading Variovorax sp. WDL1, the 3,4-dichloroaniline-degrading Comamonas testosteroni WDL7 and the N,O-dimethylhydroxylamine-degrading Hyphomicrobium sulfonivorans WDL6, were cultivated as mono- or multi-species biofilms in flow cells irrigated with selective or nonselective media, and examined with confocal laser scanning microscopy. In contrast to mono-species biofilms of Variovorax sp. WDL1, the triple-species consortium biofilm degraded linuron completely through apparent synergistic interactions. The triple-species linuron-fed consortium biofilm displayed a heterogeneous structure with an irregular surface topography that most resembled the topography of linuron-fed mono-species WDL1 biofilms, indicating that WDL1 had a dominating influence on the triple-species biofilm architecture. This architecture was dependent on the carbon source supplied, as the biofilm architecture of WDL1 growing on alternative carbon sources was different from that observed under linuron-fed conditions. Linuron-fed triple-species consortium biofilms consisted of mounds composed of closely associated WDL1, WDL7 and WDL6 cells, while this association was lost when the consortium was grown on a nonselective carbon source. In addition, under linuron-fed conditions, microcolonies displaying associated growth developed rapidly after inoculation. These observations indicate that the spatial organization in the linuron-fed consortium biofilm reflected the metabolic interactions within the consortium.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Comamonadaceae/metabolismo , Comamonadaceae/fisiología , Hyphomicrobium/metabolismo , Hyphomicrobium/fisiología , Linurona/metabolismo , Compuestos de Anilina/metabolismo , Comamonadaceae/aislamiento & purificación , Dimetilaminas/metabolismo , Ecosistema , Herbicidas/metabolismo , Hyphomicrobium/aislamiento & purificación , Microscopía Confocal
20.
Chemosphere ; 72(2): 250-6, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18331754

RESUMEN

A biofilter using granular activated carbon with immobilized Paracoccus sp. CP2 was applied to the elimination of 10-250 ppm of trimethylamine (TMA), dimethylamine (DMA), and methylamine (MA). The results indicated that the system effectively treated MA (>93%), DMA (>90%), and TMA (>85%) under high loading conditions, and the maximum degradation rates were 1.4, 1.2, and 0.9g-Nkg(-1) GAC d(-1). Among the three different amines treated, TMA was the most difficult to degrade and resulted in ammonia accumulation. Further study on TMA removal showed that the optimal pH was near neutral (6.0-8.0). The supply of high glucose (>0.1%) inhibited TMA removal, maybe due to substrate competition. However, complete TMA degradation was achieved under the co-immobilization of Paracoccus sp. CP2 and Arthrobacter sp. CP1 ( approximately 96%). Metabolite analysis results demonstrated that the metabolite NH(4)(+) concentrations decreased by a relatively small 27% while the metabolite NO(2)(-) apparently increased by heterotrophic nitrification of Arthrobacter sp. CP1 in the co-immobilization biofilter.


Asunto(s)
Arthrobacter/metabolismo , Dimetilaminas/metabolismo , Metilaminas/metabolismo , Paracoccus/metabolismo , Contaminantes Atmosféricos/aislamiento & purificación , Contaminantes Atmosféricos/metabolismo , Contaminación del Aire/prevención & control , Células Inmovilizadas/metabolismo , Dimetilaminas/aislamiento & purificación , Filtración/métodos , Metilaminas/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA