RESUMEN
The human alkylation B (AlkB) homologs, ALKBH2 and ALKBH3, respond to methylation damage to maintain genomic integrity and cellular viability. Both ALKBH2 and ALKBH3 are direct reversal repair enzymes that remove 1-methyladenine (1meA) and 3-methylcytosine (3meC) lesions commonly generated by alkylating chemotherapeutic agents. Thus, the existence of deficiencies in ALKBH proteins can be exploited in synergy with chemotherapy. In this study, we investigated possible interactions between ALKBH2 and ALKBH3 with other proteins that could alter damage response and discovered an interaction with the mismatch repair (MMR) system. To test whether the lack of active MMR impacts ALKBH2 and/or ALKBH3 response to methylating agents, we generated cells deficient in ALKBH2, ALKBH3, or both in addition to Mlh homolog 1 (MLH1), another MMR protein. We found that MLH1koALKBH3ko cells showed enhanced resistance toward SN1- and SN2-type methylating agents, whereas MLH1koALKBH2ko cells were only resistant to SN1-type methylating agents. Concomitant loss of ALKBH2 and ALKBH3 (ALKBH2ko3ko) rendered cells sensitive to SN1- and SN2-agents, but the additional loss of MLH1 enhanced resistance to both types of damage. We also showed that ALKBH2ko3ko cells have an ATR-dependent arrest at the G2/M checkpoint, increased apoptotic signaling, and replication fork stress in response to methylation. However, these responses were not observed with the loss of functional MLH1 in MLH1koALKBH2ko3ko cells. Finally, in MLH1koALKBH2ko3ko cells, we observed elevated mutant frequency in untreated and temozolomide treated cells. These results suggest that obtaining a more accurate prognosis of chemotherapeutic outcome requires information on the functionality of ALKBH2, ALKBH3, and MLH1.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Reparación de la Incompatibilidad de ADN , Homólogo 1 de la Proteína MutL , Humanos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Homólogo 1 de la Proteína MutL/metabolismo , Homólogo 1 de la Proteína MutL/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , DesmetilaciónRESUMEN
DNA cross-links severely challenge replication and transcription in cells, promoting senescence and cell death. In this paper, we report a novel type of DNA interstrand cross-link (ICL) produced as a side product during the attempted repair of 1,N6-ethenoadenine (εA) by human α-ketoglutarate/Fe(II)-dependent enzyme ALKBH2. This stable/nonreversible ICL was characterized by denaturing polyacrylamide gel electrophoresis analysis and quantified by high-resolution LC-MS in well-matched and mismatched DNA duplexes, yielding 5.7% as the highest level for cross-link formation. The binary lesion is proposed to be generated through covalent bond formation between the epoxide intermediate of εA repair and the exocyclic N6-amino group of adenine or the N4-amino group of cytosine residues in the complementary strand under physiological conditions. The cross-links occur in diverse sequence contexts, and molecular dynamics simulations rationalize the context specificity of cross-link formation. In addition, the cross-link generated from attempted εA repair was detected in cells by highly sensitive LC-MS techniques, giving biological relevance to the cross-link adducts. Overall, a combination of biochemical, computational, and mass spectrometric methods was used to discover and characterize this new type of stable cross-link both in vitro and in human cells, thereby uniquely demonstrating the existence of a potentially harmful ICL during DNA repair by human ALKBH2.
Asunto(s)
Adenina/análogos & derivados , Dioxigenasas , Ácidos Cetoglutáricos , Humanos , Dioxigenasas/metabolismo , ADN/química , Reparación del ADN , Compuestos Ferrosos , Aductos de ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismoRESUMEN
The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA. Overexpression of ALKBH2 has been implicated in both tumorigenesis and chemotherapy resistance in some cancers, including glioblastoma and renal cancer rendering it a potential therapeutic target and a diagnostic marker. However, no inhibitor is available against these important DNA repair proteins. Intending to repurpose a drug as an inhibitor of ALKBH2, we performed in silico evaluation of HIV protease inhibitors and identified Ritonavir as an ALKBH2-interacting molecule. Using molecular dynamics simulation, we elucidated the molecular details of Ritonavir-ALKBH2 interaction. The present work highlights that Ritonavir might be used to target the ALKBH2-mediated DNA alkylation repair.
Asunto(s)
Inhibidores de la Proteasa del VIH , Ritonavir , Humanos , Ritonavir/farmacología , Inhibidores de la Proteasa del VIH/farmacología , Simulación de Dinámica Molecular , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismoRESUMEN
Elucidation of physicochemical mechanisms of enzymatic processes is one of the main tasks of modern biology. High efficiency and selectivity of enzymatic catalysis are mostly ensured by conformational dynamics of enzymes and substrates. Here, we applied a stopped-flow kinetic analysis based on fluorescent spectroscopy to investigate mechanisms of conformational transformations during the removal of alkylated bases from DNA by ALKBH2, a human homolog of Escherichia coli AlkB dioxygenase. This enzyme protects genomic DNA against various alkyl lesions through a sophisticated catalytic mechanism supported by a cofactor (Fe(II)), a cosubstrate (2-oxoglutarate), and O2. We present here a comparative study of conformational dynamics in complexes of the ALKBH2 protein with double-stranded DNA substrates containing N1-methyladenine, N3-methylcytosine, or 1,N6-ethenoadenine. By means of fluorescent labels of different types, simultaneous detection of conformational transitions in the protein globule and DNA substrate molecule was performed. Fitting of the kinetic curves by a nonlinear-regression method yielded a molecular mechanism and rate constants of its individual steps. The results shed light on overall conformational dynamics of ALKBH2 and damaged DNA during the catalytic cycle.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Reparación del ADN , Proteínas de Escherichia coli , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , ADN/química , Reparación del ADN/fisiología , Dioxigenasas/genética , Dioxigenasas/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Humanos , Cinética , Conformación Proteica , Espectrometría de FluorescenciaRESUMEN
AlkB is a bacterial Fe(II)- and 2-oxoglutarate-dependent dioxygenase that repairs a wide range of alkylated nucleobases in DNA and RNA as part of the adaptive response to exogenous nucleic acid-alkylating agents. Although there has been longstanding interest in the structure and specificity of Escherichia coli AlkB and its homologs, difficulties in assaying their repair activities have limited our understanding of their substrate specificities and kinetic mechanisms. Here, we used quantitative kinetic approaches to determine the transient kinetics of recognition and repair of alkylated DNA by AlkB. These experiments revealed that AlkB is a much faster alkylation repair enzyme than previously reported and that it is significantly faster than DNA repair glycosylases that recognize and excise some of the same base lesions. We observed that whereas 1,N6-ethenoadenine can be repaired by AlkB with similar efficiencies in both single- and double-stranded DNA, 1-methyladenine is preferentially repaired in single-stranded DNA. Our results lay the groundwork for future studies of AlkB and its human homologs ALKBH2 and ALKBH3.
Asunto(s)
Enzimas AlkB/química , Reparación del ADN , ADN Bacteriano/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Enzimas AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , ADN/química , ADN/genética , ADN Bacteriano/genética , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , HumanosRESUMEN
5-Methylcytosine (5mC) in DNA CpG islands is an important epigenetic biomarker for mammalian gene regulation. It is oxidized to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) by the ten-eleven translocation (TET) family enzymes, which are α-ketoglutarate (α-KG)/Fe(II)-dependent dioxygenases. In this work, we demonstrate that the epigenetic marker 5mC is modified to 5hmC, 5fC, and 5caC in vitro by another class of α-KG/Fe(II)-dependent proteins-the DNA repair enzymes in the AlkB family, which include ALKBH2, ALKBH3 in huamn and AlkB in Escherichia coli. Theoretical calculations indicate that these enzymes may bind 5mC in the syn-conformation, placing the methyl group comparable to 3-methylcytosine, the prototypic substrate of AlkB. This is the first demonstration of the AlkB proteins to oxidize a methyl group attached to carbon, instead of nitrogen, on a DNA base. These observations suggest a broader role in epigenetics for these DNA repair proteins.
Asunto(s)
5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Enzimas AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Citosina/análogos & derivados , Enzimas AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Animales , Biología Computacional , Islas de CpG , Citosina/metabolismo , ADN/genética , Metilación de ADN , Epigénesis Genética , Humanos , Estructura Molecular , Oxidación-ReducciónRESUMEN
1,N6-ethenoadenine (εA) is a mutagenic lesion and biomarker observed in numerous cancerous tissues. Two pathways are responsible for its repair: base excision repair (BER) and direct reversal repair (DRR). Alkyladenine DNA glycosylase (AAG) is the primary enzyme that excises εA in BER, generating stable intermediates that are processed by downstream enzymes. For DRR, the Fe(II)/α-ketoglutarate-dependent ALKBH2 enzyme repairs εA by direct conversion of εA to A. While the molecular mechanism of each enzyme is well understood on unpackaged duplex DNA, less is known about their actions on packaged DNA. The nucleosome core particle (NCP) forms the minimal packaging unit of DNA in eukaryotic organisms and is composed of 145-147 base pairs wrapped around a core of eight histone proteins. In this work, we investigated the activity of AAG and ALKBH2 on εA lesions globally distributed at positions throughout a strongly positioned NCP. Overall, we examined the repair of εA at 23 unique locations in packaged DNA. We observed a strong correlation between rotational positioning of εA and AAG activity but not ALKBH2 activity. ALKBH2 was more effective than AAG at repairing occluded εA lesions, but only AAG was capable of full repair of any εA in the NCP. However, notable exceptions to these trends were observed, highlighting the complexity of the NCP as a substrate for DNA repair. Modeling of binding of the repair enzymes to NCPs revealed that some of these observations can be explained by steric interference caused by DNA packaging. Specifically, interactions between ALKBH2 and the histone proteins obstruct binding to DNA, which leads to diminished activity. Taken together, these results support in vivo observations of alkylation damage profiles and contribute to our understanding of mutational hotspots.
Asunto(s)
Adenina/análogos & derivados , Reparación del ADN , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/química , ADN/química , ADN Glicosilasas/química , Modelos Moleculares , NucleosomasRESUMEN
BACKGROUND: The alkB homolog 2, alpha-ketoglutarate-dependent dioxygenase (ALKBH2) gene is involved in DNA repair and is expressed in different types of malignancies. However, the role of ALKBH2 in colorectal carcinoma (CRC) remains unclear. This study aimed to explore the potential mechanism of ALKBH2 and its function in CRC. METHODS: The expression levels of ALKBH2 in CRC tissues and cells were determined by qRT-PCR. Following that, the role of ALKBH2 in cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) in CRC cells (Caco-2 and LOVO) were assessed by Cell Counting Kit-8 (CCK-8), transwell assays, and Western blotting, respectively. The effect of ALKBH2 on B cell-specific Moloney murine leukemia virus integration site 1 (BMI1) and downstream NF-κB pathway was determined by Western blotting and luciferase reporter assay. RESULTS: The expression of ALKBH2 was significantly upregulated both in CRC tissues and cells. Further experiments demonstrated that reduction of ALKBH2 suppressed Caco-2 and LOVO cell proliferation and invasion. Moreover, ALKBH2 knockdown also suppressed EMT, which increased E-cadherin expression and reduced N-cadherin expression. Besides, ALKBH2 silencing inhibited BMI1 expression and reduced nuclear accumulation of the NF-κB p65 protein, as well as the luciferase activity of NF-κB p65. Upregulation of BMI1 reversed the effect of ALKBH2 knockdown on the proliferation and invasion in CRC cells. CONCLUSIONS: Our findings suggest that suppression of ALKBH2 alleviates malignancy in CRC by regulating BMI1-mediated activation of NF-κB pathway. ALKBH2 may serve as a potential treatment target for human CRC.
Asunto(s)
Neoplasias Colorrectales , FN-kappa B , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Células CACO-2 , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/genética , Transición Epitelial-Mesenquimal , Regulación Neoplásica de la Expresión Génica , Humanos , FN-kappa B/genética , FN-kappa B/metabolismo , Complejo Represivo Polycomb 1/genética , Pronóstico , Proteínas Proto-Oncogénicas/genéticaRESUMEN
Repair of DNA alkylation damage is critical for genomic stability and involves multiple conserved enzymatic pathways. Alkylation damage resistance, which is critical in cancer chemotherapy, depends on the overexpression of alkylation repair proteins. However, the mechanisms responsible for this upregulation are unknown. Here, we show that an OTU domain deubiquitinase, OTUD4, is a positive regulator of ALKBH2 and ALKBH3, two DNA demethylases critical for alkylation repair. Remarkably, we find that OTUD4 catalytic activity is completely dispensable for this function. Rather, OTUD4 is a scaffold for USP7 and USP9X, two deubiquitinases that act directly on the AlkB proteins. Moreover, we show that loss of OTUD4, USP7, or USP9X in tumor cells makes them significantly more sensitive to alkylating agents. Taken together, this work reveals a novel, noncanonical mechanism by which an OTU family deubiquitinase regulates its substrates, and provides multiple new targets for alkylation chemotherapy sensitization of tumors.
Asunto(s)
Alquilación/fisiología , Daño del ADN/fisiología , Enzimas Reparadoras del ADN/metabolismo , Reparación del ADN/fisiología , Dioxigenasas/metabolismo , Regulación de la Expresión Génica/fisiología , Proteasas Ubiquitina-Específicas/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Alquilación/genética , Western Blotting , Daño del ADN/genética , Reparación del ADN/genética , Células HEK293 , Humanos , Inmunoprecipitación , Microscopía Fluorescente , Modelos Biológicos , Espectrometría de Masas en TándemRESUMEN
Hydrolyzable tannins are a class of polyphenolic compounds commonly found in natural products. In this work, we studied the in vitro inhibitory mechanism of six molecules in this class on ALKBH2, an Fe(II)/α-ketoglutarate-dependent DNA repair enzyme in the AlkB family. We determined the IC50 values of these compounds on the repair of 3-methylcytosine and 1-methyladenine, the prototypical substrates of ALKBH2. A structure-activity relationship was also observed between the strength of inhibition and the number of galloyl moieties in a molecule. In addition, we found that the inhibition by this class of polyphenolic compounds on ALKBH2 is through an iron-chelating mechanism.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/antagonistas & inhibidores , Reparación del ADN , Inhibidores Enzimáticos/farmacología , Taninos Hidrolizables/farmacología , Quelantes del Hierro/farmacología , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/química , Humanos , Taninos Hidrolizables/química , Quelantes del Hierro/química , Estructura Molecular , Relación Estructura-ActividadRESUMEN
The DNA repair enzyme ALKBH2 is implicated in both tumorigenesis as well as resistance to chemotherapy in certain cancers. It is currently under study as a potential diagnostic marker and has been proposed as a therapeutic target. To date, however, there exist no direct methods for measuring the repair activity of ALKBH2 inâ vitro or in biological samples. Herein, we report a highly specific, fluorogenic probe design based on an oligonucleotide scaffold that reports directly on ALKBH2 activity both inâ vitro and in cell lysates. Importantly, the probe enables the monitoring of cellular regulation of ALKBH2 activity in response to treatment with the chemotherapy drug temozolomide through a simple fluorescence assay, which has only previously been observed through indirect means such as qPCR and western blots. Furthermore, the probe provides a viable high-throughput assay for drug discovery.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/química , Reparación del ADN , Resistencia a Antineoplásicos , Colorantes Fluorescentes/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Alquilación , Antineoplásicos Alquilantes/uso terapéutico , Colorantes Fluorescentes/metabolismo , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Cinética , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Espectrometría de Fluorescencia , Temozolomida/uso terapéuticoRESUMEN
The AlkB repair enzymes, including Escherichia coli AlkB and two human homologues, ALKBH2 and ALKBH3, are iron(II)- and 2-oxoglutarate-dependent dioxygenases that efficiently repair N(1)-methyladenine and N(3)-methylcytosine methylated DNA damages. The development of small molecule inhibitors of these enzymes has seen less success. Here we have characterized a previously discovered natural product rhein and tested its ability to inhibit AlkB repair enzymes in vitro and to sensitize cells to methyl methane sulfonate that mainly produces N(1)-methyladenine and N(3)-methylcytosine lesions. Our investigation of the mechanism of rhein inhibition reveals that rhein binds to AlkB repair enzymes in vitro and promotes thermal stability in vivo In addition, we have determined a new structural complex of rhein bound to AlkB, which shows that rhein binds to a different part of the active site in AlkB than it binds to in fat mass and obesity-associated protein (FTO). With the support of these observations, we put forth the hypothesis that AlkB repair enzymes would be effective pharmacological targets for cancer treatment.
Asunto(s)
Antraquinonas/farmacología , Enzimas Reparadoras del ADN/antagonistas & inhibidores , Inhibidores Enzimáticos/farmacología , Proteínas de Escherichia coli/antagonistas & inhibidores , Oxigenasas de Función Mixta/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Antraquinonas/química , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Daño del ADN , Metilación de ADN , Enzimas Reparadoras del ADN/genética , Enzimas Reparadoras del ADN/metabolismo , Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Humanos , Metilmetanosulfonato/farmacología , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismo , Modelos Moleculares , Interferencia de ARN , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismoRESUMEN
Cancer-associated mutations often lead to perturbed cellular energy metabolism and accumulation of potentially harmful oncometabolites. One example is the chiral molecule 2-hydroxyglutarate (2HG); its two stereoisomers (d- and l-2HG) have been found at abnormally high concentrations in tumors featuring anomalous metabolic pathways. 2HG has been demonstrated to competitively inhibit several α-ketoglutarate (αKG)- and non-heme iron-dependent dioxygenases, including some of the AlkB family DNA repair enzymes, such as ALKBH2 and ALKBH3. However, previous studies have only provided the IC50 values of d-2HG on the enzymes, and the results have not been correlated to physiologically relevant concentrations of 2HG and αKG in cancer cells. In this work, we performed detailed kinetic analyses of DNA repair reactions catalyzed by ALKBH2, ALKBH3, and the bacterial AlkB in the presence of d- and l-2HG in both double- and single-stranded DNA contexts. We determined the kinetic parameters of inhibition, including kcat, KM, and Ki. We also correlated the relative concentrations of 2HG and αKG previously measured in tumor cells with the inhibitory effect of 2HG on the AlkB family enzymes. Both d- and l-2HG significantly inhibited the human DNA repair enzymes ALKBH2 and ALKBH3 at pathologically relevant concentrations (73-88% for d-2HG and 31-58% for l-2HG inhibition). This work provides a new perspective that the elevation of the d- or l-2HG concentration in cancer cells may contribute to an increased mutation rate by inhibiting the DNA repair performed by the AlkB family enzymes and thus exacerbate the genesis and progression of tumors.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Glutaratos/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/genética , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/antagonistas & inhibidores , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/genética , Secuencia de Bases , Cromatografía Líquida de Alta Presión , Reparación del ADN , Pruebas de Enzimas , Glutaratos/análisis , Glutaratos/química , Humanos , Concentración 50 Inhibidora , Ácidos Cetoglutáricos/análisis , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Cinética , Unión Proteica , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , EstereoisomerismoRESUMEN
The AlkB protein is a repair enzyme that uses an α-ketoglutarate/Fe(II)-dependent mechanism to repair alkyl DNA adducts. AlkB has been reported to repair highly susceptible substrates, such as 1-methyladenine and 3-methylcytosine, more efficiently in ss-DNA than in ds-DNA. Here, we tested the repair of weaker AlkB substrates 1-methylguanine and 3-methylthymine and found that AlkB prefers to repair them in ds-DNA. We also discovered that AlkB and its human homologues, ABH2 and ABH3, are able to repair the aforementioned adducts when the adduct is present in a mismatched base pair. These observations demonstrate the strong adaptability of AlkB toward repairing various adducts in different environments.
Asunto(s)
Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Aductos de ADN/metabolismo , ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Guanina/análogos & derivados , Oxigenasas de Función Mixta/metabolismo , Timina/análogos & derivados , ADN/química , Aductos de ADN/química , Reparación del ADN , Escherichia coli/química , Guanina/química , Guanina/metabolismo , Humanos , Especificidad por Sustrato , Timina/química , Timina/metabolismoRESUMEN
Mononuclear iron-containing oxygenases conduct a diverse variety of oxidation functions in biology, including the oxidative demethylation of methylated nucleic acids and histones. Escherichia coli AlkB is the first such enzyme that was discovered to repair methylated nucleic acids, which are otherwise cytotoxic and/or mutagenic. AlkB human homologues are known to play pivotal roles in various processes. Here we present structural characterization of oxidation intermediates for these demethylases. Using a chemical cross-linking strategy, complexes of AlkB-double stranded DNA (dsDNA) containing 1,N(6)-etheno adenine (εA), N(3)-methyl thymine (3-meT) and N(3)-methyl cytosine (3-meC) are stabilized and crystallized, respectively. Exposing these crystals, grown under anaerobic conditions containing iron(II) and α-ketoglutarate (αKG), to dioxygen initiates oxidation in crystallo. Glycol (from εA) and hemiaminal (from 3-meT) intermediates are captured; a zwitterionic intermediate (from 3-meC) is also proposed, based on crystallographic observations and computational analysis. The observation of these unprecedented intermediates provides direct support for the oxidative demethylation mechanism for these demethylases. This study also depicts a general mechanistic view of how a methyl group is oxidatively removed from different biological substrates.
Asunto(s)
Reparación del ADN , Dioxigenasas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hierro/metabolismo , Oxigenasas de Función Mixta/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB , Catálisis , Reactivos de Enlaces Cruzados/química , Cristalización , Cristalografía por Rayos X , ADN/química , ADN/metabolismo , Enzimas Reparadoras del ADN/metabolismo , Dioxigenasas/química , Proteínas de Escherichia coli/química , Humanos , Ácidos Cetoglutáricos/metabolismo , Metilación , Oxigenasas de Función Mixta/química , Modelos Moleculares , Oxidación-Reducción , Electricidad Estática , Especificidad por SustratoRESUMEN
Nonequilibrium capillary electrophoresis of equilibrium mixtures (NECEEM), a homogeneous approach to select DNA aptamers, is among the most efficient partitioning techniques. In contrast with surface-based systematic evolution of ligands by exponential enrichment (SELEX) approaches, the ability of NECEEM to select aptamers to unmodified proteins in solution is preferable for identifying aptamers for eventual in vivo use. The high stringency and low sample volumes of NECEEM, although generally beneficial, can result in binding of very few aptamers, requiring highly efficient amplification to propagate them. When amplified with standard PCR, detectable library enrichment can fail due to the fast conversion of the aptamers into byproducts and preferential amplification of nonbinders. As an alternative, we proposed the use of emulsion PCR (ePCR), which is known to reduce byproduct formation, as a PCR mode for coupling with NECEEM partitioning. For the first time, we tested the advantages of ePCR in NECEEM-based aptamer selection to a medically relevant DNA repair enzyme, ABH2. We report that the combination of ePCR with NECEEM allowed for the selection of aptamers in the first three rounds of SELEX, while SELEX with conventional PCR failed in a number of attempts. Selected aptamers to an unmodified ABH2 protein have potential use in diagnostics and as leads for anticancer cotherapies, used as enhancements of alkylating agents in chemotherapy.
Asunto(s)
Aptámeros de Nucleótidos/química , Enzimas Reparadoras del ADN/química , Dioxigenasas/química , Electroforesis Capilar/métodos , Emulsiones/química , Reacción en Cadena de la Polimerasa/métodos , Técnica SELEX de Producción de Aptámeros/métodos , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Aptámeros de Nucleótidos/genética , Secuencia de Bases , Enzimas Reparadoras del ADN/genética , Dioxigenasas/genética , Biblioteca de Genes , HumanosRESUMEN
Escherichia coli AlkB and its human homologues ABH2 and ABH3 repair DNA/RNA base lesions by using a direct oxidative dealkylation mechanism. ABH2 has the primary role of guarding mammalian genomes against 1-meA damage by repairing this lesion in double-stranded DNA (dsDNA), whereas AlkB and ABH3 preferentially repair single-stranded DNA (ssDNA) lesions and can repair damaged bases in RNA. Here we show the first crystal structures of AlkB-dsDNA and ABH2-dsDNA complexes, stabilized by a chemical cross-linking strategy. This study reveals that AlkB uses an unprecedented base-flipping mechanism to access the damaged base: it squeezes together the two bases flanking the flipped-out one to maintain the base stack, explaining the preference of AlkB for repairing ssDNA lesions over dsDNA ones. In addition, the first crystal structure of ABH2, presented here, provides a structural basis for designing inhibitors of this human DNA repair protein.
Asunto(s)
Enzimas Reparadoras del ADN/química , ADN/metabolismo , Dioxigenasas/química , Dioxigenasas/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/metabolismo , ARN/metabolismo , Adenina/análogos & derivados , Adenina/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , ADN/química , Daño del ADN , Reparación del ADN , Enzimas Reparadoras del ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Humanos , Modelos Moleculares , Unión ProteicaRESUMEN
The Escherichia coli AlkB protein (EcAlkB) is a DNA repair enzyme which reverses methylation damage such as 1-methyladenine (1-meA) and 3-methylcytosine (3-meC). The mammalian AlkB homologues ALKBH2 and ALKBH3 display EcAlkB-like repair activity in vitro, but their substrate specificities are different, and ALKBH2 is the main DNA repair enzyme for 1-meA in vivo. The genome of the model plant Arabidopsis thaliana encodes several AlkB homologues, including the yet uncharacterized protein AT2G22260, which displays sequence similarity to both ALKBH2 and ALKBH3. We have here characterized protein AT2G22260, by us denoted ALKBH2, as both our functional studies and bioinformatics analysis suggest it to be an orthologue of mammalian ALKBH2. The Arabidopsis ALKBH2 protein displayed in vitro repair activities towards methyl and etheno adducts in DNA, and was able to complement corresponding repair deficiencies of the E. coli alkB mutant. Interestingly, alkbh2 knock-out plants were sensitive to the methylating agent methylmethanesulphonate (MMS), and seedlings from these plants developed abnormally when grown in the presence of MMS. The present study establishes ALKBH2 as an important enzyme for protecting Arabidopsis against methylation damage in DNA, and suggests its homologues in other plants to have a similar function.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Reparación del ADN , Dioxigenasas/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Alquilantes/farmacología , Secuencia de Aminoácidos , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Daño del ADN , Metilación de ADN , Dioxigenasas/genética , Proteínas de Escherichia coli/genética , Genoma de Planta , Metilmetanosulfonato/farmacología , Oxigenasas de Función Mixta/genética , Datos de Secuencia Molecular , Alineación de SecuenciaRESUMEN
The AlkB family demethylases AlkB, FTO, and ALKBH5 recognize differentially methylated RNA/DNA substrates, which results in their distinct biological roles. Here we identify key active-site residues that contribute to their substrate specificity. Swapping such active-site residues between the demethylases leads to partially switched demethylation activities. Combined evidence from X-ray structures and enzyme kinetics suggests a role of the active-site residues in substrate recognition. Such a divergent active-site sequence may aid the design of selective inhibitors that can discriminate these homologue RNA/DNA demethylases.
Asunto(s)
Enzimas Reparadoras del ADN/genética , ADN/química , Dioxigenasas/genética , ARN/química , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 2 de AlkB , Secuencia de Aminoácidos , Metilación de ADN , Enzimas Reparadoras del ADN/metabolismo , Dioxigenasas/metabolismo , Humanos , Datos de Secuencia Molecular , Estructura Molecular , Especificidad por SustratoRESUMEN
The human DNA repair enzyme AlkB homologue-2 (ALKBH2) repairs methyl adducts from genomic DNA and is overexpressed in several cancers. However, there are no known inhibitors available for this crucial DNA repair enzyme. The aim of this study was to examine whether the first-generation HIV protease inhibitors having strong anti-cancer activity can be repurposed as inhibitors of ALKBH2. We selected four such inhibitors and performed in vitro binding analysis against ALKBH2 based on alterations of its intrinsic tryptophan fluorescence and differential scanning fluorimetry. The effect of these HIV protease inhibitors on the DNA repair activity of ALKBH2 was also evaluated. Interestingly, we observed that one of the inhibitors, ritonavir, could inhibit ALKBH2-mediated DNA repair significantly via competitive inhibition and sensitized cancer cells to alkylating agent methylmethane sulfonate (MMS). This work may provide new insights into the possibilities of utilizing HIV protease inhibitor ritonavir as a DNA repair antagonist.