Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.787
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 582(7813): 550-556, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32581380

RESUMEN

Parkinson's disease is characterized by loss of dopamine neurons in the substantia nigra1. Similar to other major neurodegenerative disorders, there are no disease-modifying treatments for Parkinson's disease. While most treatment strategies aim to prevent neuronal loss or protect vulnerable neuronal circuits, a potential alternative is to replace lost neurons to reconstruct disrupted circuits2. Here we report an efficient one-step conversion of isolated mouse and human astrocytes to functional neurons by depleting the RNA-binding protein PTB (also known as PTBP1). Applying this approach to the mouse brain, we demonstrate progressive conversion of astrocytes to new neurons that innervate into and repopulate endogenous neural circuits. Astrocytes from different brain regions are converted to different neuronal subtypes. Using a chemically induced model of Parkinson's disease in mouse, we show conversion of midbrain astrocytes to dopaminergic neurons, which provide axons to reconstruct the nigrostriatal circuit. Notably, re-innervation of striatum is accompanied by restoration of dopamine levels and rescue of motor deficits. A similar reversal of disease phenotype is also accomplished by converting astrocytes to neurons using antisense oligonucleotides to transiently suppress PTB. These findings identify a potentially powerful and clinically feasible approach to treating neurodegeneration by replacing lost neurons.


Asunto(s)
Astrocitos/citología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/citología , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/terapia , Sustancia Negra/citología , Sustancia Negra/fisiología , Animales , Axones/fisiología , Dopamina/biosíntesis , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Femenino , Ribonucleoproteínas Nucleares Heterogéneas/deficiencia , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Humanos , Técnicas In Vitro , Masculino , Ratones , Neostriado/citología , Neostriado/fisiología , Vías Nerviosas , Neurogénesis , Enfermedad de Parkinson/metabolismo , Fenotipo , Proteína de Unión al Tracto de Polipirimidina/deficiencia , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Sustancia Negra/metabolismo
2.
PLoS Genet ; 16(4): e1008771, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32348314

RESUMEN

Some long noncoding RNAs (lncRNAs) are specifically expressed in brain cells, implying their neural and behavioural functions. However, how lncRNAs contribute to neural regulatory networks governing the precise behaviour of animals is less explored. Here, we report the regulatory mechanism of the nuclear-enriched lncRNA PAHAL for dopamine biosynthesis and behavioural adjustment in migratory locusts (Locusta migratoria), a species with extreme behavioral plasticity. PAHAL is transcribed from the sense (coding) strand of the gene encoding phenylalanine hydroxylase (PAH), which is responsible for the synthesis of dopamine from phenylalanine. PAHAL positively regulates PAH expression resulting in dopamine production in the brain. In addition, PAHAL modulates locust behavioral aggregation in a population density-dependent manner. Mechanistically, PAHAL mediates PAH transcriptional activation by recruiting serine/arginine-rich splicing factor 2 (SRSF2), a transcription/splicing factor, to the PAH proximal promoter. The co-activation effect of PAHAL requires the interaction of the PAHAL/SRSF2 complex with the promoter-associated nascent RNA of PAH. Thus, the data support a model of feedback modulation of animal behavioural plasticity by an lncRNA. In this model, the lncRNA mediates neurotransmitter metabolism through orchestrating a local transcriptional loop.


Asunto(s)
Conducta Animal , Dopamina/biosíntesis , Retroalimentación Fisiológica , ARN Largo no Codificante/metabolismo , Animales , Encéfalo/metabolismo , Dopamina/genética , Saltamontes , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Fenilalanina Hidroxilasa/genética , Fenilalanina Hidroxilasa/metabolismo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/metabolismo , Activación Transcripcional
3.
J Biol Chem ; 296: 100544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33737022

RESUMEN

Dopamine (DA) exerts well-known functions in the brain as a neurotransmitter. In addition, it plays important physiological roles in peripheral organs, but it is largely unknown how and where peripheral DA is synthesized and regulated. Catecholamines in peripheral tissues are either produced within the tissue itself and/or derived from sympathetic neurons, which release neurotransmitters for uptake by peripheral tissues. To evaluate DA-producing ability of each peripheral tissue, we generated conditional KO mice (cKO mice) in which the tyrosine hydroxylase (TH) gene is ablated in the sympathoadrenal system, thus eliminating sympathetic neurons as a DA source. We then examined the alterations in the noradrenaline (NA), DA, and 3,4-dihydroxyphenylalanine (DOPA) contents in peripheral organs and performed immunohistochemical analyses of TH-expressing cells. In the heart and pancreas of cKO mice, both the TH protein and NA levels were significantly decreased, and the DA contents were decreased in parallel with NA contents, indicating that the DA supply originated from sympathetic neurons. We found TH-immunoreactive cells in the stomach and lung, where the TH protein showed a decreasing trend, but the DA levels were not decreased in cKO mice. Moreover, we found a significant correlation between the DA content in the kidney and the plasma DOPA concentration, suggesting that the kidney takes up DOPA from blood to make DA. The aforementioned data unravel differences in the DA biosynthetic pathway among tissues and support the role of sympathetic neurons as a DA supplier.


Asunto(s)
Glándulas Suprarrenales/metabolismo , Vías Biosintéticas , Catecolaminas/metabolismo , Dopamina/biosíntesis , Neuronas/metabolismo , Sistema Nervioso Simpático/metabolismo , Tirosina 3-Monooxigenasa/fisiología , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Especificidad de Órganos
4.
J Appl Microbiol ; 133(3): 1697-1708, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35737746

RESUMEN

AIMS: The gut microbiota modulates dopamine levels in vivo, but the bacteria and biochemical processes responsible remain incompletely characterized. A potential precursor of bacterial dopamine production is 3-methoxytyramine (3MT); 3MT is produced when dopamine is O-methylated by host catechol O-methyltransferase (COMT), thereby attenuating dopamine levels. This study aimed to identify whether gut bacteria are capable of reverting 3MT to dopamine. METHODS AND RESULTS: Human faecal bacterial communities O-demethylated 3MT and yielded dopamine. Gut bacteria that mediate this transformation were identified as acetogens Eubacterium limosum and Blautia producta. Upon exposing these acetogens to propyl iodide, a known inhibitor of cobalamin-dependent O-demethylases, 3MT O-demethylation was inhibited. Culturing E. limosum and B. producta with 3MT afforded increased acetate levels as compared with vehicle controls. CONCLUSIONS: Gut bacterial acetogens E. limosum and B. producta synthesized dopamine from 3MT. This O-demethylation of 3MT was likely performed by cobalamin-dependent O-demethylases implicated in reductive acetogenesis. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report that gut bacteria can synthesize dopamine by O-demethylation of 3MT. Owing to 3MT being the product of host COMT attenuating dopamine levels, gut bacteria that reverse this transformation-converting 3MT to dopamine-may act as a counterbalance for dopamine regulation by COMT.


Asunto(s)
Catecol O-Metiltransferasa , Dopamina , Microbioma Gastrointestinal , Catecol O-Metiltransferasa/genética , Catecol O-Metiltransferasa/metabolismo , Dopamina/análogos & derivados , Dopamina/biosíntesis , Humanos , Oxidorreductasas O-Demetilantes , Vitamina B 12
5.
Neuroimage ; 226: 117543, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33186713

RESUMEN

BACKGROUND: The dopamine (DA) neurotransmission has been implicated in fundamental brain functions, exemplified by movement controls, reward-seeking, motivation, and cognition. Although dysregulation of DA neurotransmission in the striatum is known to be involved in diverse neuropsychiatric disorders, it is yet to be clarified whether components of the DA transmission, such as synthesis, receptors, and reuptake are coupled with each other to homeostatically maintain the DA neurotransmission. The purpose of this study was to investigate associations of the DA synthesis capacity with the availabilities of DA transporters and D2 receptors in the striatum of healthy subjects. METHODS: First, we examined correlations between the DA synthesis capacity and DA transporter availability in the caudate and putamen using PET data with L-[ß-11C]DOPA and [18F]FE-PE2I, respectively, acquired from our past dual-tracer studies. Next, we investigated relationships between the DA synthesis capacity and D2 receptor availability employing PET data with L-[ß-11C]DOPA and [11C]raclopride, respectively, obtained from other previous dual-tracer assays. RESULTS: We found a significant positive correlation between the DA synthesis capacity and DA transporter availability in the putamen, while no significant correlations between the DA synthesis capacity and D2 receptor availability in the striatum. CONCLUSION: The intimate association of the DA synthesis rate with the presynaptic reuptake of DA indicates homeostatic maintenance of the baseline synaptic DA concentration. In contrast, the total abundance of D2 receptors, which consist of presynaptic autoreceptors and postsynaptic modulatory receptors, may not have an immediate relationship to this regulatory mechanism.


Asunto(s)
Encéfalo/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/biosíntesis , Receptores de Dopamina D2/metabolismo , Adulto , Encéfalo/diagnóstico por imagen , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Humanos , Masculino , Tomografía de Emisión de Positrones , Putamen/diagnóstico por imagen , Putamen/metabolismo , Transmisión Sináptica/fisiología , Adulto Joven
6.
Ann Neurol ; 87(4): 652-657, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32030791

RESUMEN

Mutations in GBA1, the gene mutated in Gaucher disease, are a common genetic risk factor for Parkinson disease, although the penetrance is low. We performed [18 F]-fluorodopa positron emission tomography studies of 57 homozygous and heterozygous GBA1 mutation carriers (15 with parkinsonism) and 98 controls looking for early indications of dopamine loss using voxelwise analyses to identify group differences in striatal [18 F]-fluorodopa uptake (Ki ). Forty-eight subjects were followed longitudinally. Cross-sectional and longitudinal comparisons of Ki and Ki change found significant effects of Parkinson disease. However, at baseline and over time, striatal [18 F]-fluorodopa uptake in mutation carriers without parkinsonism did not significantly differ from controls. ANN NEUROL 2020;87:652-657.


Asunto(s)
Dopamina/biosíntesis , Enfermedad de Gaucher/diagnóstico por imagen , Neostriado/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Adulto , Anciano , Estudios de Casos y Controles , Dihidroxifenilalanina/análogos & derivados , Femenino , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/metabolismo , Predisposición Genética a la Enfermedad , Glucosilceramidasa/genética , Heterocigoto , Homocigoto , Humanos , Estudios Longitudinales , Masculino , Persona de Mediana Edad , Mutación , Neostriado/metabolismo , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Tomografía de Emisión de Positrones
7.
J Neurosci ; 39(11): 1982-1993, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30651332

RESUMEN

Glioblastoma (GBM) is one of the most aggressive and lethal tumor types. Evidence continues to accrue indicating that the complex relationship between GBM and the brain microenvironment contributes to this malignant phenotype. However, the interaction between GBM and neurotransmitters, signaling molecules involved in neuronal communication, remains incompletely understood. Here we examined, using human patient-derived xenograft lines, how the monoamine dopamine influences GBM cells. We demonstrate that GBM cells express dopamine receptor 2 (DRD2), with elevated expression in the glioma-initiating cell (GIC) population. Stimulation of DRD2 caused a neuron-like hyperpolarization exclusively in GICs. In addition, long-term activation of DRD2 heightened the sphere-forming capacity of GBM cells, as well as tumor engraftment efficiency in both male and female mice. Mechanistic investigation revealed that DRD2 signaling activates the hypoxia response and functionally alters metabolism. Finally, we found that GBM cells synthesize and secrete dopamine themselves, suggesting a potential autocrine mechanism. These results identify dopamine signaling as a potential therapeutic target in GBM and further highlight neurotransmitters as a key feature of the pro-tumor microenvironment.SIGNIFICANCE STATEMENT This work offers critical insight into the role of the neurotransmitter dopamine in the progression of GBM. We show that dopamine induces specific changes in the state of tumor cells, augmenting their growth and shifting them to a more stem-cell like state. Further, our data illustrate that dopamine can alter the metabolic behavior of GBM cells, increasing glycolysis. Finally, this work demonstrates that GBM cells, including tumor samples from patients, can synthesize and secrete dopamine, suggesting an autocrine signaling process underlying these results. These results describe a novel connection between neurotransmitters and brain cancer, further highlighting the critical influence of the brain milieu on GBM.


Asunto(s)
Glioblastoma/metabolismo , Receptores de Dopamina D2/metabolismo , Transcriptoma , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Línea Celular Tumoral , Dopamina/biosíntesis , Epigénesis Genética , Femenino , Xenoinjertos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Masculino , Ratones , Transducción de Señal
8.
Hum Mol Genet ; 27(20): 3498-3506, 2018 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29945223

RESUMEN

Whilst the role of the Disrupted-in-Schizophrenia 1 (DISC1) gene in the aetiology of major mental illnesses is debated, the characterization of its function lends it credibility as a candidate. A key aspect of this functional characterization is the determination of the role of common non-synonymous polymorphisms on normal variation within these functions. The common allele (A) of the DISC1 single-nucleotide polymorphism (SNP) rs821616 encodes a serine (ser) at the Ser704Cys polymorphism, and has been shown to increase the phosphorylation of extracellular signal-regulated protein Kinases 1 and 2 (ERK1/2) that stimulate the phosphorylation of tyrosine hydroxylase, the rate-limiting enzyme for dopamine biosynthesis. We therefore set out to test the hypothesis that human ser (A) homozygotes would show elevated dopamine synthesis capacity compared with cysteine (cys) homozygotes and heterozygotes (TT and AT) for rs821616. [18F]-DOPA positron emission tomography (PET) was used to index striatal dopamine synthesis capacity as the influx rate constant Kicer in healthy volunteers DISC1 rs821616 ser homozygotes (N = 46) and healthy volunteers DISC1 rs821616 cys homozygotes and heterozygotes (N = 56), matched for age, gender, ethnicity and using three scanners. We found DISC1 rs821616 ser homozygotes exhibited a significantly higher striatal Kicer compared with cys homozygotes and heterozygotes (P = 0.012) explaining 6.4% of the variance (partial η2 = 0.064). Our finding is consistent with its previous association with heightened activation of ERK1/2, which stimulates tyrosine hydroxylase activity for dopamine synthesis. This could be a potential mechanism mediating risk for psychosis, lending further credibility to the fact that DISC1 is of functional interest in the aetiology of major mental illness.


Asunto(s)
Cuerpo Estriado/metabolismo , Dopamina/biosíntesis , Predisposición Genética a la Enfermedad , Proteínas del Tejido Nervioso/genética , Polimorfismo de Nucleótido Simple , Esquizofrenia/genética , Adulto , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina/análogos & derivados , Femenino , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Proteínas del Tejido Nervioso/metabolismo , Tomografía de Emisión de Positrones , Trastornos Psicóticos/genética , Trastornos Psicóticos/metabolismo , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/metabolismo , Adulto Joven
9.
J Pharmacol Exp Ther ; 374(1): 126-133, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32358047

RESUMEN

The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. Here, we used naïve mice to investigate the effects of acute systemic administration of IRL790 on protein levels and phosphorylation states of proteins relevant for synaptic plasticity and transmission. IRL790 increased pro-brain-derived neurotrophic factor protein levels and phosphorylation at Ser1303 of the N-methyl-D-aspartate (NMDA) subtype 2B glutamate receptor (NR2B) in prefrontal cortex. IRL790 also increased the phosphorylation states at Ser19, Ser31, and Ser40, respectively, of tyrosine hydroxylase in striatum. IRL790 reduced protein levels of the NR2B receptor in striatum but not in prefrontal cortex. Taken together, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission. SIGNIFICANCE STATEMENT: The novel small-molecule psychomotor stabilizer, IRL790, is currently in clinical trial for treatment of levodopa-induced dyskinesia and psychosis in patients with Parkinson disease. In this study, we report that systemically administered IRL790 rapidly elicits changes in protein level and phosphorylation state of proteins associated with a beneficial effect on synaptic markers and neurotransmission.


Asunto(s)
Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Transmisión Sináptica/efectos de los fármacos , Animales , Biomarcadores/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Dopamina/biosíntesis , Relación Dosis-Respuesta a Droga , Ácido Glutámico/metabolismo , Espacio Intracelular/efectos de los fármacos , Espacio Intracelular/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Fosforilación/efectos de los fármacos , Corteza Prefrontal/citología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
10.
BMC Med Genet ; 21(1): 157, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32736537

RESUMEN

BACKGROUND: Heroin dependence is a complex disease with multiple phenotypes. Classification of heroin users into more homogeneous subgroups on the basis of these phenotypes could help to identify the involved genetic factors and precise treatments. This study aimed to identify the association between genetic polymorphisms of DA synthesis and metabolism genes, including tyrosine hydroxylase (TH), DOPA decarboxylase (DDC), solute carrier family 6 member 3 (SLC6A3) and DA beta-hydroxylase (DBH), with six important phenotypes of heroin dependence. METHODS: A total of 801 heroin dependent patients were recruited and fourteen potential functional single nucleotide polymorphisms (SNPs) were genotyped by SNaPshot. Associations between SNPs with six phenotypes were mainly assessed by binary logistic regression. Generalized multifactor dimensionality reduction was used to analyze the gene-by-gene and gene-by-environment interactions. RESULTS: We found that DBH rs1611114 TT genotype had a protective effect on memory impairment after heroin dependence (P = 0.002, OR = 0.610). We also found that the income-rs12666409-rs129915-rs1611114 interaction yielded the highest testing balance accuracy and cross-validation consistency for memory change after heroin dependence. CONCLUSIONS: Our results suggest that the memory change after heroin dependence was a result of a combination of genetics and environment. This finding could lead to a better understanding of heroin dependence and further improve personalized treatment.


Asunto(s)
Dopamina/biosíntesis , Dopamina/metabolismo , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Dependencia de Heroína/genética , Adulto , Euforia , Femenino , Interacción Gen-Ambiente , Heroína/efectos adversos , Dependencia de Heroína/fisiopatología , Humanos , Masculino , Memoria , Metadona/efectos adversos , Fenotipo , Polimorfismo de Nucleótido Simple/genética
11.
Mol Psychiatry ; 24(10): 1502-1512, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-29679071

RESUMEN

Psychotic illnesses show variable responses to treatment. Determining the neurobiology underlying this is important for precision medicine and the development of better treatments. It has been proposed that dopaminergic differences underlie variation in response, with striatal dopamine synthesis capacity (DSC) elevated in responders and unaltered in non-responders. We therefore aimed to test this in a prospective cohort, with a nested case-control comparison. 40 volunteers (26 patients with first-episode psychosis and 14 controls) received an 18F-DOPA Positron Emission Tomography scan to measure DSC (Kicer) prior to antipsychotic treatment. Clinical assessments (Positive and Negative Syndrome Scale, PANSS, and Global Assessment of Functioning, GAF) occurred at baseline and following antipsychotic treatment for a minimum of 4 weeks. Response was defined using improvement in PANSS Total score of >50%. Patients were followed up for at least 6 months, and remission criteria applied. There was a significant effect of group on Kicer in associative striatum (F(2, 37) = 7.9, p = 0.001). Kicer was significantly higher in responders compared with non-responders (Cohen's d = 1.55, p = 0.01) and controls (Cohen's d = 1.31, p = 0.02). Kicer showed significant positive correlations with improvements in PANSS-positive (r = 0.64, p < 0.01), PANSS negative (rho = 0.51, p = 0.01), and PANSS total (rho = 0.63, p < 0.01) ratings and a negative relationship with change in GAF (r = -0.55, p < 0.01). Clinical response is related to baseline striatal dopaminergic function. Differences in dopaminergic function between responders and non-responders are present at first episode of psychosis, consistent with dopaminergic and non-dopaminergic sub-types in psychosis, and potentially indicating a neurochemical basis to stratify psychosis.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/metabolismo , Trastornos Psicóticos/tratamiento farmacológico , Adulto , Antipsicóticos/uso terapéutico , Estudios de Casos y Controles , Estudios de Cohortes , Cuerpo Estriado/diagnóstico por imagen , Dihidroxifenilalanina/análogos & derivados , Dopamina/biosíntesis , Femenino , Humanos , Masculino , Tomografía de Emisión de Positrones/métodos , Estudios Prospectivos , Escalas de Valoración Psiquiátrica , Resultado del Tratamiento
12.
Brain ; 142(6): 1813-1826, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-31135051

RESUMEN

While there is consistent evidence for increased presynaptic dopamine synthesis capacity in the striatum of patients with schizophrenia during psychosis, it is unclear whether this also holds for patients during psychotic remission. This study investigates whether striatal dopamine synthesis capacity is altered in patients with schizophrenia during symptomatic remission of positive symptoms, and whether potential alterations relate to symptoms other than positive, such as cognitive difficulties. Twenty-three patients with schizophrenia in symptomatic remission of positive symptoms according to Andreasen, and 24 healthy controls underwent 18F-DOPA-PET and behavioural-cognitive assessment. Imaging data were analysed with voxel-wise Patlak modelling with cerebellum as reference region, resulting in the influx constant kicer reflecting dopamine synthesis capacity. For the whole striatum and its subdivisions (i.e. limbic, associative, and sensorimotor), averaged regional kicer values were calculated, compared across groups, and correlated with behavioural-cognitive scores, including a mediation analysis. Patients had negative symptoms (Positive and Negative Syndrome Scale-negative 14.13 ± 5.91) and cognitive difficulties, i.e. they performed worse than controls in Trail-Making-Test-B (TMT-B; P = 0.01). Furthermore, kicer was reduced in patients for whole striatum (P = 0.004) and associative (P = 0.002) and sensorimotor subdivisions (P = 0.007). In patients, whole striatum kicer was negatively correlated with TMT-B (rho = -0.42, P = 0.04; i.e. the lower striatal kicer, the worse the cognitive performance). Mediation analysis showed that striatal kicer mediated the group difference in TMT-B. Results demonstrate that patients with schizophrenia in symptomatic remission of positive symptoms have decreased striatal dopamine synthesis capacity, which mediates the disorder's impact on cognitive difficulties. Data suggest that striatal dopamine dysfunction contributes to cognitive difficulties in schizophrenia.


Asunto(s)
Cuerpo Estriado/fisiopatología , Dopamina/biosíntesis , Trastornos Psicóticos/fisiopatología , Esquizofrenia/fisiopatología , Adulto , Anciano , Cuerpo Estriado/metabolismo , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neostriado/metabolismo , Neostriado/fisiopatología , Tomografía de Emisión de Positrones/métodos , Escalas de Valoración Psiquiátrica , Trastornos Psicóticos/metabolismo , Esquizofrenia/metabolismo
13.
Metab Brain Dis ; 35(3): 539-548, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32016817

RESUMEN

Loss of dopaminergic neurons following Parkinson's disease (PD) diminishes quality of life in patients. The present study was carried out to investigate the protective effects of simultaneous inhibition of dipeptidyl peptidase-4 (DPP-4) and P2X7 purinoceptors in a PD model and explore possible mechanisms. The 6-hydroxydopamine (6-OHDA) was used as a tool to establish PD model in male Wister rats. The expressions of SIRT1, SIRT3, mTOR, PGC-1α, PTEN, P53 and DNA fragmentation were evaluated by ELISA assay. Behavioral impairments were determined using apomorphine-induced rotational and narrow beam tests. Dopamine synthesis and TH-positive neurons were detected by tyrosine hydroxylase (TH) immunohistochemistry. Neuronal density was determined by Nissl staining. OHDA-lesioned rats exhibited behavioral impairments that reversed by BBG, lin and lin + BBG. We found significant reduced levels of SIRT1, SIRT3, PGC-1α and mTOR in both mid brain and striatum from OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Likewise, significant increased levels of PTEN and P53 were found in both mid brain and striatum from OHDA-lesioned rats that was reversed by BBG, lin and lin + BBG. TH-positive neurons and neuronal density were markedly reduced OHDA-lesioned rats that reversed by BBG, lin and lin + BBG. Collectively, our results showed protective effects of simultaneous inhibition of DPP-4 and P2X7 purinoceptors in a rat model of PD can be linked to targeting SIRT1/SIRT3, PTEN-mTOR pathways. Moreover, our findings demonstrated that simultaneous inhibition of DPP-4 and P2X7 purinoceptors might have stronger effect on mitochondrial biogenesis compared to only one.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Dopamina/biosíntesis , Neuronas Dopaminérgicas/efectos de los fármacos , Enfermedad de Parkinson Secundaria/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Animales , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , Fragmentación del ADN/efectos de los fármacos , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas/metabolismo , Quimioterapia Combinada , Actividad Motora/efectos de los fármacos , Oxidopamina , Fosfohidrolasa PTEN/metabolismo , Enfermedad de Parkinson Secundaria/inducido químicamente , Enfermedad de Parkinson Secundaria/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Antagonistas del Receptor Purinérgico P2X/farmacología , Ratas , Ratas Wistar , Sirtuina 1/metabolismo , Sirtuina 3/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Tirosina 3-Monooxigenasa/metabolismo
14.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32917038

RESUMEN

Daily agonistic interactions of mice are an effective experimental approach to elucidate the molecular mechanisms underlying the excitation of the brain neurons and the formation of alternative social behavior patterns. An RNA-Seq analysis was used to compare the ventral tegmental area (VTA) transcriptome profiles for three groups of male C57BL/6J mice: winners, a group of chronically winning mice, losers, a group of chronically defeated mice, and controls. The data obtained show that both winners and defeated mice experience stress, which however, has a more drastic effect on defeated animals causing more significant changes in the levels of gene transcription. Four genes (Nrgn, Ercc2, Otx2, and Six3) changed their VTA expression profiles in opposite directions in winners and defeated mice. It was first shown that Nrgn (neurogranin) expression was highly correlated with the expression of the genes involved in dopamine synthesis and transport (Th, Ddc, Slc6a3, and Drd2) in the VTA of defeated mice but not in winners. The obtained network of 31 coregulated genes, encoding proteins associated with nervous system development (including 24 genes associated with the generation of neurons), may be potentially useful for studying their role in the VTA dopaminergic neurons maturation under the influence of social stress.


Asunto(s)
Conducta Agonística/fisiología , Predominio Social , Área Tegmental Ventral/metabolismo , Animales , Estudios de Casos y Controles , Análisis por Conglomerados , Dopamina/biosíntesis , Perfilación de la Expresión Génica , Masculino , Ratones Endogámicos C57BL
15.
Am J Physiol Renal Physiol ; 317(4): F949-F956, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31411069

RESUMEN

The role of dopamine D1-like receptors (DR) in the regulation of renal Na+ transporters, natriuresis, and blood pressure is well established. However, the involvement of the angiotensin 1-7 (ANG 1-7)-Mas receptor in the regulation of Na+ balance and blood pressure is not clear. The present study aimed to investigate the hypothesis that ANG 1-7 can regulate Na+ homeostasis by modulating the renal dopamine system. Sprague-Dawley rats were infused with saline alone (vehicle) or saline with ANG 1-7, ANG 1-7 antagonist A-779, DR agonist SKF38393, and antagonist SCH23390. Infusion of ANG 1-7 caused significant natriuresis and diuresis compared with saline alone. Both natriuresis and diuresis were blocked by A-779 and SCH23390. SKF38393 caused a significant, SCH23390-sensitive natriuresis and diuresis, and A-779 had no effect on the SKF38393 response. Concomitant infusion of ANG 1-7 and SKF38393 did not show a cumulative effect compared with either agonist alone. Treatment of renal proximal tubules with ANG 1-7 or SKF38393 caused a significant decrease in Na+-K+-ATPase and Na+/H+ exchanger isoform 3 activity. While SCH23390 blocked both ANG 1-7- and SKF38393-induced inhibition, the DR response was not sensitive to A-779. Additionally, ANG 1-7 activated PKG, enhanced tyrosine hydroxylase activity via Ser40 phosphorylation, and increased renal dopamine production. These data suggest that ANG 1-7, via PKG, enhances tyrosine hydroxylase activity, which increases renal dopamine production and activation of DR and subsequent natriuresis. This study provides evidence for a unidirectional functional interaction between two G protein-coupled receptors to regulate renal Na+ transporters and induce natriuresis.


Asunto(s)
Angiotensina I/farmacología , Riñón/metabolismo , Fragmentos de Péptidos/farmacología , Receptores de Dopamina D1/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sodio/metabolismo , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina/farmacología , Angiotensina I/antagonistas & inhibidores , Animales , Benzazepinas/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Diuresis/efectos de los fármacos , Dopamina/biosíntesis , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Natriuresis/efectos de los fármacos , Fragmentos de Péptidos/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Receptores Acoplados a Proteínas G/efectos de los fármacos , Intercambiadores de Sodio-Hidrógeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
16.
Neurobiol Dis ; 125: 115-122, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30707939

RESUMEN

Trihexyphenidyl, a nonselective muscarinic receptor antagonist, is the small molecule drug of choice for the treatment of DYT1 dystonia, but it is poorly tolerated due to significant side effects. A better understanding of the mechanism of action of trihexyphenidyl is needed for the development of improved treatments. Because DTY1 dystonia is associated with both abnormal cholinergic neurotransmission and abnormal dopamine regulation, we tested the hypothesis that trihexyphenidyl normalizes striatal dopamine release in a mouse model of DYT1 dystonia using ex vivo fast scan cyclic voltammetry and in vivo microdialysis. Trihexyphenidyl increased striatal dopamine release and efflux as assessed by ex vivo voltammetry and in vivo microdialysis respectively. In contrast, ʟ-DOPA, which is not usually effective for the treatment of DYT1 dystonia, did not increase dopamine release in either Dyt1 or control mice. Trihexyphenidyl was less effective at enhancing dopamine release in Dyt1 mice relative to controls ex vivo (mean increase WT: 65% vs Dyt1: 35%). Trihexyphenidyl required nicotinic receptors but not glutamate receptors to increase dopamine release. Dyt1 mice were more sensitive to the dopamine release decreasing effects of nicotinic acetylcholine receptor antagonism (IC50: WT = 29.46 nM, Dyt1 = 12.26 nM) and less sensitive to acetylcholinesterase inhibitors suggesting that nicotinic acetylcholine receptor neurotransmission is altered in Dyt1 mice, that nicotinic receptors indirectly mediate the differential effects of trihexyphenidyl in Dyt1 mice, and that nicotinic receptors may be suitable therapeutic targets for DYT1 dystonia.


Asunto(s)
Cuerpo Estriado/efectos de los fármacos , Dopamina/biosíntesis , Distonía Muscular Deformante , Transmisión Sináptica/efectos de los fármacos , Trihexifenidilo/farmacología , Animales , Modelos Animales de Enfermedad , Distonía Muscular Deformante/metabolismo , Distonía Muscular Deformante/fisiopatología , Técnicas de Sustitución del Gen , Ratones , Chaperonas Moleculares/genética , Antagonistas Muscarínicos/farmacología , Receptores Nicotínicos/metabolismo
17.
Psychol Med ; 49(15): 2533-2542, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30460891

RESUMEN

BACKGROUND: Given that only a subgroup of patients with schizophrenia responds to first-line antipsychotic drugs, a key clinical question is what underlies treatment response. Observations that prefrontal activity correlates with striatal dopaminergic function, have led to the hypothesis that disrupted frontostriatal functional connectivity (FC) could be associated with altered dopaminergic function. Thus, the aim of this study was to investigate the relationship between frontostriatal FC and striatal dopamine synthesis capacity in patients with schizophrenia who had responded to first-line antipsychotic drug compared with those who had failed but responded to clozapine. METHODS: Twenty-four symptomatically stable patients with schizophrenia were recruited from Seoul National University Hospital, 12 of which responded to first-line antipsychotic drugs (first-line AP group) and 12 under clozapine (clozapine group), along with 12 matched healthy controls. All participants underwent resting-state functional magnetic resonance imaging and [18F]DOPA PET scans. RESULTS: No significant difference was found in the total PANSS score between the patient groups. Voxel-based analysis showed a significant correlation between frontal FC to the associative striatum and the influx rate constant of [18F]DOPA in the corresponding region in the first-line AP group. Region-of-interest analysis confirmed the result (control group: R2 = 0.019, p = 0.665; first-line AP group: R2 = 0.675, p < 0.001; clozapine group: R2 = 0.324, p = 0.054) and the correlation coefficients were significantly different between the groups. CONCLUSIONS: The relationship between striatal dopamine synthesis capacity and frontostriatal FC is different between responders to first-line treatment and clozapine treatment in schizophrenia, indicating that a different pathophysiology could underlie schizophrenia in patients who respond to first-line treatments relative to those who do not.


Asunto(s)
Antipsicóticos/uso terapéutico , Clozapina/uso terapéutico , Cuerpo Estriado/fisiología , Dopamina/biosíntesis , Esquizofrenia/fisiopatología , Adulto , Biomarcadores , Estudios de Casos y Controles , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/fisiología , Tomografía de Emisión de Positrones , Análisis de Regresión , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Seúl , Adulto Joven
18.
Cell Mol Neurobiol ; 39(1): 31-59, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30446950

RESUMEN

The dopaminergic system plays important roles in neuromodulation, such as motor control, motivation, reward, cognitive function, maternal, and reproductive behaviors. Dopamine is a neurotransmitter, synthesized in both central nervous system and the periphery, that exerts its actions upon binding to G protein-coupled receptors. Dopamine receptors are widely expressed in the body and function in both the peripheral and the central nervous systems. Dopaminergic signaling pathways are crucial to the maintenance of physiological processes and an unbalanced activity may lead to dysfunctions that are related to neurodegenerative diseases. Unveiling the neurobiology and the molecular mechanisms that underlie these illnesses may contribute to the development of new therapies that could promote a better quality of life for patients worldwide. In this review, we summarize the aspects of dopamine as a catecholaminergic neurotransmitter and discuss dopamine signaling pathways elicited through dopamine receptor activation in normal brain function. Furthermore, we describe the potential involvement of these signaling pathways in evoking the onset and progression of some diseases in the nervous system, such as Parkinson's, Schizophrenia, Huntington's, Attention Deficit and Hyperactivity Disorder, and Addiction. A brief description of new dopaminergic drugs recently approved and under development treatments for these ailments is also provided.


Asunto(s)
Dopamina/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Transducción de Señal , Animales , Encéfalo/metabolismo , Encéfalo/patología , Dopamina/biosíntesis , Humanos , Modelos Biológicos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/terapia
19.
Kidney Blood Press Res ; 44(1): 1-11, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30808844

RESUMEN

BACKGROUND/AIMS: Dopamine (DA) is a natriuretic hormone that inhibits renal sodium reabsorption, being Angiotensin II (Ang II) its powerful counterpart. These two systems work together to maintain sodium homeostasis and consequently, the blood pressure (BP) within normal limits. We hypothesized that L-tyrosine (L-tyr) or L-dihydroxyphenylalanine (L-dopa) could inhibit the Na+/K+-ATPase activity. We also evaluated whether L-tyr treatment modulates Tyrosine Hydroxylase (TH). METHODS: Experiments involved cultured LLCPK1 cells treated with L-tyr or L-dopa for 30 minutes a 37°C. In experiments on the effect of Dopa Descarboxylase (DDC) inhibition, cells were pre incubated for 15 minutes with 3-Hydroxybenzylhydrazine dihydrochloride (HBH), and them L-dopa was added for 30 minutes. Na+/K+-ATPase activity was quantified colorimetrically. We used immunoblotting and immunocytochemistry to identify the enzymes TH, DDC and the dopamine receptor D1R in LLCPK1 cells. TH activity was accessed by immunoblotting (increase in the phosphorylation). TH and DDC activities were also evaluated by the modulation of the Na+/K+-ATPase activity, which can be ascribed to the synthesis of dopamine. RESULTS: LLCPK1 cells express the required machinery for DA synthesis: the enzymes TH, and (DDC) as well as its receptor D1R, were detected in control steady state cells. Cells treated with L-tyr or L-dopa showed an inhibition of the basolateral Na+/K+-ATPase activity. We can assume that DA formed in the cytoplasm from L-tyr or L-dopa led to inhibition of the Na+/K+-ATPase activity compared to control. L-tyr treatment increases TH phosphorylation at Ser40 by 100%. HBH, a specific DDC inhibitor; BCH, a LAT2 inhibitor; and Sch 23397, a specific D1R antagonist, totally suppressed the inhibition of Na+/K+-ATPase activity due to L-dopa or L-tyr administration, as indicated in the figures. CONCLUSION: The results indicate that DA formed mainly from luminal L-tyr or L-dopa uptake by LAT2, can inhibit the Na+/K+-ATPase. In addition, our results showed for the very first time that TH activity is also significantly increased when the cells were exposed to L-tyr.


Asunto(s)
Dopamina/biosíntesis , Riñón/citología , Serina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Tirosina/farmacología , Animales , Línea Celular , Dopa-Decarboxilasa , Riñón/metabolismo , Fosforilación/efectos de los fármacos , Receptores de Dopamina D1 , ATPasa Intercambiadora de Sodio-Potasio/antagonistas & inhibidores , Porcinos , Tirosina 3-Monooxigenasa/efectos de los fármacos
20.
Arch Insect Biochem Physiol ; 102(4): e21608, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31385627

RESUMEN

Drosophila melanogaster produces fatty acid amides, and thus, provides a model to unravel the pathways for their biosynthesis. We previously demonstrated that arylalkylamine N-acetyltransferase-like 2 (AANATL2) from D. melanogaster will catalyze the formation of long-chain N-acylserotonins and N-acyldopamines in vitro. Generating silencing RNA via the UAS/GAL4 bipartite approach for targeted gene expression effectively decreased the endogenous levels of the AANATL2 transcripts in D. melanogaster, as shown by reverse transcription quantitative polymerase chain reaction. Consistent with these data, western blot analysis of the offspring of the AANATL2 knockdown flies using an anti-AANATL2 antibody revealed a significant reduction in the expression of the AANATL2 protein. Reduced expression of AANATL2 decreased the cellular levels of N-palmitoyldopamine (PALDA), providing strong evidence that AANATL2 is responsible for the biosynthesis of PALDA in vivo. This is the first time that the expression of an AANAT has been reduced in D. melanogaster to link one of these enzymes to the in vivo production of an N-acylarylalkylamide.


Asunto(s)
Aciltransferasas/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Aciltransferasas/genética , Animales , Dopamina/análogos & derivados , Dopamina/biosíntesis , Proteínas de Drosophila/genética , Drosophila melanogaster/enzimología , Drosophila melanogaster/metabolismo , Silenciador del Gen
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA