Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

Intervalo de año de publicación
1.
BMC Genomics ; 25(1): 186, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365592

RESUMEN

BACKGROUND: Venom systems are ideal models to study genetic regulatory mechanisms that underpin evolutionary novelty. Snake venom glands are thought to share a common origin, but there are major distinctions between venom toxins from the medically significant snake families Elapidae and Viperidae, and toxin gene regulatory investigations in elapid snakes have been limited. Here, we used high-throughput RNA-sequencing to profile gene expression and microRNAs between active (milked) and resting (unmilked) venom glands in an elapid (Eastern Brown Snake, Pseudonaja textilis), in addition to comparative genomics, to identify cis- and trans-acting regulation of venom production in an elapid in comparison to viperids (Crotalus viridis and C. tigris). RESULTS: Although there is conservation in high-level mechanistic pathways regulating venom production (unfolded protein response, Notch signaling and cholesterol homeostasis), there are differences in the regulation of histone methylation enzymes, transcription factors, and microRNAs in venom glands from these two snake families. Histone methyltransferases and transcription factor (TF) specificity protein 1 (Sp1) were highly upregulated in the milked elapid venom gland in comparison to the viperids, whereas nuclear factor I (NFI) TFs were upregulated after viperid venom milking. Sp1 and NFI cis-regulatory elements were common to toxin gene promoter regions, but many unique elements were also present between elapid and viperid toxins. The presence of Sp1 binding sites across multiple elapid toxin gene promoter regions that have been experimentally determined to regulate expression, in addition to upregulation of Sp1 after venom milking, suggests this transcription factor is involved in elapid toxin expression. microRNA profiles were distinctive between milked and unmilked venom glands for both snake families, and microRNAs were predicted to target a diversity of toxin transcripts in the elapid P. textilis venom gland, but only snake venom metalloproteinase transcripts in the viperid C. viridis venom gland. These results suggest differences in toxin gene posttranscriptional regulation between the elapid P. textilis and viperid C. viridis. CONCLUSIONS: Our comparative transcriptomic and genomic analyses between toxin genes and isoforms in elapid and viperid snakes suggests independent toxin regulation between these two snake families, demonstrating multiple different regulatory mechanisms underpin a venomous phenotype.


Asunto(s)
Crotalus , MicroARNs , Toxinas Biológicas , Serpientes Venenosas , Viperidae , Humanos , Animales , Elapidae/genética , Venenos de Serpiente/química , Venenos de Serpiente/genética , Venenos de Serpiente/metabolismo , Venenos Elapídicos/química , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Viperidae/genética , Viperidae/metabolismo , Transcriptoma , Factores de Transcripción/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
2.
J Mol Evol ; 92(3): 317-328, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38814340

RESUMEN

Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.


Asunto(s)
Serpientes de Coral , Venenos Elapídicos , Filogenia , Receptores Nicotínicos , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Venenos Elapídicos/química , Animales , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/genética , Serpientes de Coral/metabolismo , Serpientes de Coral/genética , Interferometría , Conducta Predatoria/fisiología , Elapidae/genética , Elapidae/metabolismo
3.
BMC Biol ; 21(1): 284, 2023 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-38066641

RESUMEN

BACKGROUND: Sea snakes underwent a complete transition from land to sea within the last ~ 15 million years, yet they remain a conspicuous gap in molecular studies of marine adaptation in vertebrates. RESULTS: Here, we generate four new annotated sea snake genomes, three of these at chromosome-scale (Hydrophis major, H. ornatus and H. curtus), and perform detailed comparative genomic analyses of sea snakes and their closest terrestrial relatives. Phylogenomic analyses highlight the possibility of near-simultaneous speciation at the root of Hydrophis, and synteny maps show intra-chromosomal variations that will be important targets for future adaptation and speciation genomic studies of this system. We then used a strict screen for positive selection in sea snakes (against a background of seven terrestrial snake genomes) to identify genes over-represented in hypoxia adaptation, sensory perception, immune response and morphological development. CONCLUSIONS: We provide the best reference genomes currently available for the prolific and medically important elapid snake radiation. Our analyses highlight the phylogenetic complexity and conserved genome structure within Hydrophis. Positively selected marine-associated genes provide promising candidates for future, functional studies linking genetic signatures to the marine phenotypes of sea snakes and other vertebrates.


Asunto(s)
Elapidae , Hydrophiidae , Animales , Elapidae/genética , Hydrophiidae/genética , Filogenia , Cromosomas/genética
4.
BMC Biol ; 20(1): 4, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34996434

RESUMEN

BACKGROUND: The explosive radiation and diversification of the advanced snakes (superfamily Colubroidea) was associated with changes in all aspects of the shared venom system. Morphological changes included the partitioning of the mixed ancestral glands into two discrete glands devoted for production of venom or mucous respectively, as well as changes in the location, size and structural elements of the venom-delivering teeth. Evidence also exists for homology among venom gland toxins expressed across the advanced snakes. However, despite the evolutionary novelty of snake venoms, in-depth toxin molecular evolutionary history reconstructions have been mostly limited to those types present in only two front-fanged snake families, Elapidae and Viperidae. To have a broader understanding of toxins shared among extant snakes, here we first sequenced the transcriptomes of eight taxonomically diverse rear-fanged species and four key viperid species and analysed major toxin types shared across the advanced snakes. RESULTS: Transcriptomes were constructed for the following families and species: Colubridae - Helicops leopardinus, Heterodon nasicus, Rhabdophis subminiatus; Homalopsidae - Homalopsis buccata; Lamprophiidae - Malpolon monspessulanus, Psammophis schokari, Psammophis subtaeniatus, Rhamphiophis oxyrhynchus; and Viperidae - Bitis atropos, Pseudocerastes urarachnoides, Tropidolaeumus subannulatus, Vipera transcaucasiana. These sequences were combined with those from available databases of other species in order to facilitate a robust reconstruction of the molecular evolutionary history of the key toxin classes present in the venom of the last common ancestor of the advanced snakes, and thus present across the full diversity of colubroid snake venoms. In addition to differential rates of evolution in toxin classes between the snake lineages, these analyses revealed multiple instances of previously unknown instances of structural and functional convergences. Structural convergences included: the evolution of new cysteines to form heteromeric complexes, such as within kunitz peptides (the beta-bungarotoxin trait evolving on at least two occasions) and within SVMP enzymes (the P-IIId trait evolving on at least three occasions); and the C-terminal tail evolving on two separate occasions within the C-type natriuretic peptides, to create structural and functional analogues of the ANP/BNP tailed condition. Also shown was that the de novo evolution of new post-translationally liberated toxin families within the natriuretic peptide gene propeptide region occurred on at least five occasions, with novel functions ranging from induction of hypotension to post-synaptic neurotoxicity. Functional convergences included the following: multiple occasions of SVMP neofunctionalised in procoagulant venoms into activators of the clotting factors prothrombin and Factor X; multiple instances in procoagulant venoms where kunitz peptides were neofunctionalised into inhibitors of the clot destroying enzyme plasmin, thereby prolonging the half-life of the clots formed by the clotting activating enzymatic toxins; and multiple occasions of kunitz peptides neofunctionalised into neurotoxins acting on presynaptic targets, including twice just within Bungarus venoms. CONCLUSIONS: We found novel convergences in both structural and functional evolution of snake toxins. These results provide a detailed roadmap for future work to elucidate predator-prey evolutionary arms races, ascertain differential clinical pathologies, as well as documenting rich biodiscovery resources for lead compounds in the drug design and discovery pipeline.


Asunto(s)
Elapidae , Venenos de Serpiente , Animales , Venenos Elapídicos/genética , Elapidae/genética , Evolución Molecular , Venenos de Serpiente/química , Venenos de Serpiente/genética , Venenos de Serpiente/toxicidad , Transcriptoma
5.
Parasitol Res ; 121(6): 1663-1670, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35362741

RESUMEN

Specimens of Dolichoperoides macalpini (Nicoll, 1914) (Digenea: Dolichoperoididae) were collected from Australian venomous snakes (Elapidae): Notechis scutatus Peters, 1861 and Austrelaps superbus (Günther, 1858) from Tasmania and surrounding islands and N. s. occidentalis Glauert, 1948 from wetlands near Perth, Western Australia. Despite variation in morphological measurements, genetic analysis showed that the one species of digeneans infected the snakes from all locations. This study presents the first DNA sequences for D. macalpini (internal transcribed spacer, 18S, 28S), confirming its placement in a family separate from the Reniferidae and Telorchiidae. Analysis of the infection dynamics of infection in Western Australian snakes showed significant differences in levels of infection between wetland locations, season and year of collection. Infection of D. macalpini was reported in the gastrointestinal tract, including the mouth, in freshly euthanised snakes in Western Australia, and in the lung in Tasmanian snakes, consistent with earlier reports. Differences in morphology and site of infection are suggested to be due to a combination of season and maturity of the digenean, with infection potentially occurring early in the season, as the snakes emerge from torpor. The need for research on the seasonal dynamics of infection with this parasite is discussed.


Asunto(s)
Elapidae , Trematodos , Animales , Australia , Elapidae/genética , Serpientes , Trematodos/genética , Australia Occidental , Humedales
6.
Biochem Biophys Res Commun ; 558: 141-146, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33915327

RESUMEN

Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution. Here, using natural abundance 13C, 15N NMR-spectroscopy we performed chemical shift assignments of the signals of the both toxins in aqueous solution in the major and minor forms. Combining NOE and chemical shift data, the toxins' spatial structure was determined. Finally, we proved that the tip of the "finger"-2, or the loop-2 of cytotoxins adopts the shape of an omega-loop with a tightly-bound water molecule in its cavity. Comparison with other NMR and X-ray structures of cytotoxins possessing different amino acid sequences reveals spatial similarity in this family of proteins, including the loop-2 region, previously considered to be flexible.


Asunto(s)
Proteínas Cardiotóxicas de Elápidos/química , Proteínas Cardiotóxicas de Elápidos/genética , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Proteínas Cardiotóxicas de Elápidos/clasificación , Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae/genética , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica
7.
Mol Ecol ; 30(2): 545-554, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33170980

RESUMEN

The question of whether spatial aspects of evolution differ in marine versus terrestrial realms has endured since Ernst Mayr's 1954 essay on marine speciation. Marine systems are often suggested to support larger and more highly connected populations, but quantitative comparisons with terrestrial systems have been lacking. Here, we compared the population histories of marine and terrestrial elapid snakes using the pairwise sequentially Markovian coalescent (PSMC) model to track historical fluctuations in species' effective population sizes (Ne ) from individual whole-genome sequences. To do this we generated a draft genome for the olive sea snake (Aiysurus laevis) and analysed this alongside six published elapid genomes and their sequence reads (marine species Hydrophis curtus, H. melanocephalus and Laticauda laticaudata; terrestrial species Pseudonaja textilis, Naja Naja and Notechis scutatus). Counter to the expectation that marine species should show higher overall Ne and less pronounced fluctuations in Ne , our analyses reveal demographic patterns that are highly variable among species and do not clearly correspond to major ecological divisions. At deeper time intervals, the four marine elapids appear to have experienced relatively stable Ne , while each terrestrial species shows a prominent upturn in Ne starting at ~4 million years ago (Ma) followed by an equally strong decline. However, over the last million years, all seven species show strong and divergent fluctuations. Estimates of Ne in the most recent intervals (~10 kya) are lowest in two of four marine species (H. melanocephalus and Laticauda), and do not correspond to contemporary range sizes in marine or terrestrial taxa.


Asunto(s)
Elapidae , Hydrophiidae , Animales , Elapidae/genética , Genoma/genética , Densidad de Población
8.
BMC Evol Biol ; 20(1): 9, 2020 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-31931699

RESUMEN

BACKGROUND: The relative influence of diet and phylogeny on snake venom activity is a poorly understood aspect of snake venom evolution. We measured the activity of two enzyme toxin groups - phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) - in the venom of 39 species of Australian elapids (40% of terrestrial species diversity) and used linear parsimony and BayesTraits to investigate any correlation between enzyme activity and phylogeny or diet. RESULTS: PLA2 activity ranged from 0 to 481 nmol/min/mg of venom, and LAAO activity ranged from 0 to 351 nmol/min/mg. Phylogenetic comparative methods, implemented in BayesTraits showed that enzyme activity was strongly correlated with phylogeny, more so for LAAO activity. For example, LAAO activity was absent in both the Vermicella and Pseudonaja/Oxyuranus clade, supporting previously proposed relationships among these disparate taxa. There was no association between broad dietary categories and either enzyme activity. There was strong evidence for faster initial rates of change over evolutionary time for LAAO (delta parameter mean 0.2), but no such pattern in PLA2 (delta parameter mean 0.64). There were some exceptions to the phylogenetic patterns of enzyme activity: different PLA2 activity in the ecologically similar sister-species Denisonia devisi and D. maculata; large inter-specific differences in PLA2 activity in Hoplocephalus and Austrelaps. CONCLUSIONS: We have shown that phylogeny is a stronger influence on venom enzyme activity than diet for two of the four major enzyme families present in snake venoms. PLA2 and LAAO activities had contrasting evolutionary dynamics with the higher delta value for PLA2 Some species/individuals lacked activity in one protein family suggesting that the loss of single protein family may not incur a significant fitness cost.


Asunto(s)
Venenos Elapídicos/enzimología , Elapidae/genética , L-Aminoácido Oxidasa/genética , Fosfolipasas A2/genética , Animales , Australia , Dieta , Elapidae/clasificación , Filogenia , Toxinas Biológicas
9.
Zoolog Sci ; 37(6): 586-594, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33269875

RESUMEN

The red-bellied form of Calliophis intestinalis (Laurenti, 1768) sensu lato was originally reported from Pahang, west Malaysia. To determine the taxonomic status of this form, we examined the type specimens of Elaps sumatranus Lidth De Jeude, 1890, Calliophis intestinalis everetti (Boulenger, 1896), and Callophis furcatus var. nigrotaeniatus Peters, 1863. The results indicated that the red-bellied form of C. intestinalis should be named as Calliophis nigrotaeniatus comb. nov., whose valid species status was based on morphological and molecular analyses. We designate a lectotype and redescribe the species, which is genetically close to Calliophis bilineatus (Peters, 1881) from the Philippines, and is clearly distinguishable from other congeners by possessing a pair of gray or dark blue lateral stripes and by being bright red on the ventrum. Elaps sumatranus and C. i. everetti are relegated to subjective junior synonyms of C. nigrotaeniatus.


Asunto(s)
Elapidae/clasificación , Animales , Elapidae/anatomía & histología , Elapidae/genética , Femenino , Genes Mitocondriales , Masculino , Filogenia , Análisis de Secuencia de ADN , Especificidad de la Especie
10.
BMC Genomics ; 19(1): 939, 2018 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-30558533

RESUMEN

BACKGROUND: Unlike the chromosome constitution of most snakes (2n=36), the cobra karyotype shows a diploid chromosome number of 38 with a highly heterochromatic W chromosome and a large morphologically different chromosome 2. To investigate the process of sex chromosome differentiation and evolution between cobras, most snakes, and other amniotes, we constructed a chromosome map of the Siamese cobra (Naja kaouthia) with 43 bacterial artificial chromosomes (BACs) derived from the chicken and zebra finch libraries using the fluorescence in situ hybridization (FISH) technique, and compared it with those of the chicken, the zebra finch, and other amniotes. RESULTS: We produced a detailed chromosome map of the Siamese cobra genome, focusing on chromosome 2 and sex chromosomes. Synteny of the Siamese cobra chromosome 2 (NKA2) and NKAZ were highly conserved among snakes and other squamate reptiles, except for intrachromosomal rearrangements occurring in NKA2. Interestingly, twelve BACs that had partial homology with sex chromosomes of several amniotes were mapped on the heterochromatic NKAW as hybridization signals such as repeat sequences. Sequence analysis showed that most of these BACs contained high proportions of transposable elements. In addition, hybridization signals of telomeric repeat (TTAGGG)n and six microsatellite repeat motifs ((AAGG)8, (AGAT)8, (AAAC)8, (ACAG)8, (AATC)8, and (AAAAT)6) were observed on NKAW, and most of these were also found on other amniote sex chromosomes. CONCLUSIONS: The frequent amplification of repeats might involve heterochromatinization and promote sex chromosome differentiation in the Siamese cobra W sex chromosome. Repeat sequences are also shared among amniote sex chromosomes, which supports the hypothesis of an ancestral super-sex chromosome with overlaps of partial syntenies. Alternatively, amplification of microsatellite repeat motifs could have occurred independently in each lineage, representing convergent sex chromosomal differentiation among amniote sex chromosomes.


Asunto(s)
Cromosomas , Elapidae/genética , Cromosomas Sexuales , Animales , Aves/genética , Pollos/genética , Mapeo Cromosómico , Elementos Transponibles de ADN/genética , Femenino , Hibridación Fluorescente in Situ , Cariotipo , Linfocitos/citología , Linfocitos/metabolismo , Masculino , Metafase , Repeticiones de Microsatélite/genética , Sintenía
11.
J Mol Evol ; 86(1): 58-67, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29379986

RESUMEN

Coral snakes, most notably the genus Micrurus, are the only terrestrial elapid snakes in the Americas. Elapid venoms are generally known for their potent neurotoxicity which is usually caused by Three-Finger Toxin (3FTx) proteins. These toxins can have a wide array of functions that have been characterized from the venom of other elapids. We examined publicly available sequences from Micrurus 3FTx to show that they belong to 8 monophyletic clades that diverged as deep in the 3FTx phylogenetic tree as the other clades with characterized functions. Functional residues from previously characterized clades of 3FTx are not well conserved in most of the Micrurus toxin clades. We also analyzed the patterns of selection on these toxins and find that they have been diversifying at different rates, with some having undergone extreme diversifying selection. This suggests that Micrurus 3FTx may contain a previously underappreciated functional diversity that has implications for the clinical outcomes of bite victims, the evolution and ecology of the genus, as well as the potential for biodiscovery efforts focusing on these toxins.


Asunto(s)
Serpientes de Coral/genética , Venenos Elapídicos/genética , Animales , Evolución Biológica , Serpientes de Coral/metabolismo , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Evolución Molecular , Variación Genética/genética , Filogenia , Proteoma
12.
Mol Phylogenet Evol ; 107: 48-55, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27637992

RESUMEN

Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed "pygmy mulga snakes". Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species.


Asunto(s)
Elapidae/clasificación , Animales , Australia , Teorema de Bayes , ADN Mitocondrial/clasificación , ADN Mitocondrial/genética , Elapidae/genética , Sitios Genéticos , Variación Genética , Filogenia
13.
Protein Expr Purif ; 129: 162-172, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-26363113

RESUMEN

We have previously published a report on the cloning and characterization of Harobin, a fibrinolytic serine protease. However, the broad application of this fibrinolytic enzyme is limited by its low expression level that was achieved in Pichia pastoris. To counteract this shortcoming, random and site-directed mutagenesis have been combined in order to improve functional expression and activity of Harobin. By screening 400 clones from random mutant libraries for enhanced fibrinolytic activity, two mutants were obtained: N111R, R230G. By performing site-directed mutagenesis, a Harobin double mutant, N111R/R230G, was constructed and can be functionally expressed at higher level than the wild type enzyme. In addition, it possessed much higher fibrinolytic and amidolytic activity than the wild type enzyme and other single mutants. The N111R/R230G expressed in basal salts medium was purified by a three step purification procedure. At pH of 6.0-9.0, and the temperature range of 40-90 °C, N111R/R230G was more active and more heat resistant. The fibrinolytic activities of Harobin mutants were completely inhibited by PMSF and SBTI, but not by EDTA, EGTA, DTT, indicating that Harobin is a serine protease. N111R/R230G showed much better anti-thrombosis effect than wild type Harobin and single mutants, and could significantly increase bleeding and clotting time. Intravenous injection of N111R/R230G in spontaneous hypertensive rats (SHR) led to a significant reduction in systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial pressure (MAP) (p < 0.01), while heart rate (HR) was not affected. The in vitro and in vivo results of the present study revealed that Harobin double mutant N111R/R230G is an appropriate candidate for biotechnological applications due to its high expression level and high activity in area of thrombosis and hypertension.


Asunto(s)
Venenos Elapídicos/genética , Elapidae/genética , Fibrinólisis/efectos de los fármacos , Fibrinolíticos , Mutagénesis Sitio-Dirigida , Serina Proteasas , Animales , Venenos Elapídicos/enzimología , Elapidae/metabolismo , Fibrinolíticos/aislamiento & purificación , Fibrinolíticos/metabolismo , Fibrinolíticos/farmacología , Humanos , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología , Serina Proteasas/biosíntesis , Serina Proteasas/genética , Serina Proteasas/aislamiento & purificación , Serina Proteasas/farmacología
14.
Protein Expr Purif ; 130: 13-20, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27702601

RESUMEN

Cytotoxins or cardiotoxins is a group of polycationic toxins from cobra venom belonging to the 'three-finger' protein superfamily (Ly6/uPAR family) which includes small ß-structural proteins (60-90 residues) with high disulfide bond content (4-5 disulfides). Due to a high cytotoxic activity for cancer cells, cytotoxins are considered as potential anticancer agents. Development of the high-throughput production methods is required for the prospective applications of cytotoxins. Here, efficient approach for bacterial production of recombinant analogue of cytotoxin I from N. oxiana containing additional N-terminal Met-residue (rCTX1) was developed. rCTX1 was produced in the form of E. coli inclusion bodies. Refolding in optimized conditions provided ∼6 mg of correctly folded protein from 1 L of bacterial culture. Cytotoxicity of rCTX1 for C6 rat glioma cells was found to be similar to the activity of wild type CTX1. The milligram quantities of 13C,15N-labeled rCTX1 were obtained. NMR study confirmed the similarity of the spatial structures of recombinant and wild-type toxins. Additional Met residue does not perturb the overall structure of the three-finger core. The analysis of available data for different Ly6/uPAR proteins of snake and human origin revealed that efficiency of their folding in vitro is correlated with the number of proline residues in the third loop and the surface area of hydrophobic residues buried within the protein interior. The obtained data indicate that hydrophobic core is important for the folding of proteins with high disulfide bond content. Developed expression method opens new possibilities for structure-function studies of CTX1 and other related three-finger proteins.


Asunto(s)
Antineoplásicos , Proteínas Cardiotóxicas de Elápidos , Elapidae/genética , Glioma/tratamiento farmacológico , Animales , Antineoplásicos/aislamiento & purificación , Antineoplásicos/farmacología , Línea Celular Tumoral , Proteínas Cardiotóxicas de Elápidos/biosíntesis , Proteínas Cardiotóxicas de Elápidos/genética , Proteínas Cardiotóxicas de Elápidos/aislamiento & purificación , Proteínas Cardiotóxicas de Elápidos/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Elapidae/metabolismo , Escherichia coli , Glioma/metabolismo , Glioma/patología , Resonancia Magnética Nuclear Biomolecular , Estructura Secundaria de Proteína , Ratas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/farmacología
15.
J Zoo Wildl Med ; 48(2): 491-496, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28749261

RESUMEN

This article reports five cases of colonic adenocarcinomas in a family group of captive Amur rat snake (Elaphe schrenckii) from the Réserve Africaine de Sigean, France. This tumor was detected in three females and two males, all adults, and accounted for 16% of causes of death of adults of this species at this institution from 1986 to 2013. Grossly, mild to marked thickening of the intestinal wall cranially to the cloaca was found in four cases; tan to yellow firm masses were noted in the distal intestinal wall in the other case. Microscopically, neoplasms were characterized by infiltrating, poorly circumscribed, and unencapsulated nests of epithelial cells. Marked anisokaryosis and anisocytosis were seen in all neoplasms. The etiology of the neoplasms was not determined, but the familial clustering suggests a common etiologic factor.


Asunto(s)
Adenocarcinoma/veterinaria , Neoplasias del Colon/veterinaria , Elapidae , Adenocarcinoma/genética , Animales , Animales de Zoológico , Neoplasias del Colon/genética , Elapidae/genética , Femenino , Masculino
16.
J Biol Chem ; 290(27): 16633-52, 2015 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-26013823

RESUMEN

Cathelicidins are a family of gene-encoded peptide effectors of innate immunity found exclusively in vertebrates. They play pivotal roles in host immune defense against microbial invasions. Dozens of cathelicidins have been identified from several vertebrate species. However, no cathelicidin from marine reptiles has been characterized previously. Here we report the identification and characterization of a novel cathelicidin (Hc-CATH) from the sea snake Hydrophis cyanocinctus. Hc-CATH is composed of 30 amino acids, and the sequence is KFFKRLLKSVRRAVKKFRKKPRLIGLSTLL. Circular dichroism spectroscopy and structure modeling analysis indicated that Hc-CATH mainly assumes an amphipathic α-helical conformation in bacterial membrane-mimetic solutions. It possesses potent broad-spectrum and rapid antimicrobial activity. Meanwhile, it is highly stable and shows low cytotoxicity toward mammalian cells. The microbial killing activity of Hc-CATH is executed through the disruption of cell membrane and lysis of bacterial cells. In addition, Hc-CATH exhibited potent anti-inflammatory activity by inhibiting the LPS-induced production of nitric oxide (NO) and pro-inflammatory cytokines such as TNF-α, IL-1ß, and IL-6. Hc-CATH directly binds with LPS to neutralize its toxicity, and it also binds to Toll-like receptor 4 (TLR4/MD2 complex), which therefore inhibits the binding of LPS to TLR4/MD2 complex and the subsequent activation of LPS-induced inflammatory response pathways. Taken together, our study demonstrates that Hc-CATH, the first cathelicidin from sea snake discovered to have both antimicrobial and anti-inflammatory activity, is a potent candidate for the development of peptide antibiotics.


Asunto(s)
Antiinfecciosos/farmacología , Antiinflamatorios/farmacología , Catelicidinas/farmacología , Elapidae/metabolismo , Secuencia de Aminoácidos , Animales , Antiinfecciosos/química , Antiinfecciosos/metabolismo , Antiinflamatorios/química , Antiinflamatorios/metabolismo , Bacterias/efectos de los fármacos , Secuencia de Bases , Catelicidinas/química , Catelicidinas/genética , Catelicidinas/metabolismo , Elapidae/clasificación , Elapidae/genética , Femenino , Hongos/efectos de los fármacos , Humanos , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Vertebrados/clasificación , Vertebrados/genética
17.
J Recept Signal Transduct Res ; 36(2): 111-8, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26422703

RESUMEN

Phospholipase A2 (PLA2) is the most abundant protein found in snake venom. PLA2 induces a variety of pharmacological effects such as neurotoxicity, myotoxicity and cardiotoxicity as well as anticoagulant, hemolytic, anti-platelet, hypertensive, hemorrhagic and edema inducing effects. In this study, the three dimensional structure of PLA2 of Naja sputatrix (Malayan spitting cobra) was modeled by I-TASSER, SWISS-MODEL, PRIME and MODELLER programs. The best model was selected based on overall stereo-chemical quality. Further, molecular dynamics simulation was performed to know the stability of the modeled protein using Gromacs software. Average structure was generated during the simulation period of 10 ns. High throughput virtual screening was employed through different databases (Asinex, Hit finder, Maybridge, TOSLab and ZINC databases) against PLA2. The top seven compounds were selected based on the docking score and free energy binding calculations. These compounds were analyzed by quantum polarized ligand docking, induced fit docking and density functional theory calculation. Furthermore, the stability of lead molecules in the active site of PLA2 was employed by MD simulation. The results show that selected lead molecules were highly stable in the active site of PLA2.


Asunto(s)
Inhibidores de Fosfolipasa A2/química , Fosfolipasas A2/química , Conformación Proteica , Venenos de Serpiente/química , Secuencia de Aminoácidos/genética , Animales , Dominio Catalítico , Biología Computacional , Elapidae/genética , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Fosfolipasas A2/genética , Fosfolipasas A2/metabolismo , Venenos de Serpiente/genética
18.
Proc Natl Acad Sci U S A ; 110(51): 20651-6, 2013 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-24297900

RESUMEN

Snakes are limbless predators, and many species use venom to help overpower relatively large, agile prey. Snake venoms are complex protein mixtures encoded by several multilocus gene families that function synergistically to cause incapacitation. To examine venom evolution, we sequenced and interrogated the genome of a venomous snake, the king cobra (Ophiophagus hannah), and compared it, together with our unique transcriptome, microRNA, and proteome datasets from this species, with data from other vertebrates. In contrast to the platypus, the only other venomous vertebrate with a sequenced genome, we find that snake toxin genes evolve through several distinct co-option mechanisms and exhibit surprisingly variable levels of gene duplication and directional selection that correlate with their functional importance in prey capture. The enigmatic accessory venom gland shows a very different pattern of toxin gene expression from the main venom gland and seems to have recruited toxin-like lectin genes repeatedly for new nontoxic functions. In addition, tissue-specific microRNA analyses suggested the co-option of core genetic regulatory components of the venom secretory system from a pancreatic origin. Although the king cobra is limbless, we recovered coding sequences for all Hox genes involved in amniote limb development, with the exception of Hoxd12. Our results provide a unique view of the origin and evolution of snake venom and reveal multiple genome-level adaptive responses to natural selection in this complex biological weapon system. More generally, they provide insight into mechanisms of protein evolution under strong selection.


Asunto(s)
Adaptación Biológica/fisiología , Venenos Elapídicos , Elapidae , Evolución Molecular , Genoma/fisiología , Transcriptoma/fisiología , Animales , Venenos Elapídicos/genética , Venenos Elapídicos/metabolismo , Elapidae/genética , Elapidae/metabolismo , Glándulas Exocrinas/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
19.
J Proteome Res ; 14(11): 4896-906, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26486890

RESUMEN

This study demonstrates a direct role of venom protein expression alteration in the evolution of snake venom toxicity. Avian skeletal muscle contractile response to exogenously administered acetylcholine is completely inhibited upon exposure to South Australian and largely preserved following exposure to Queensland eastern brown snake Pseudonaja textilis venom, indicating potent postsynaptic neurotoxicity of the former and lack thereof of the latter venom. Label-free quantitative proteomics reveals extremely large differences in the expression of postsynaptic three-finger α-neurotoxins in these venoms, explaining the difference in the muscle contractile response and suggesting that the type of toxicity induced by venom can be modified by altered expression of venom proteins. Furthermore, the onset of neuromuscular paralysis in the rat phrenic nerve-diaphragm preparation occurs sooner upon exposure to the venom (10 µg/mL) with high expression of α-neurotoxins than the venoms containing predominately presynaptic ß-neurotoxins. The study also finds that the onset of rat plasma coagulation is faster following exposure to the venoms with higher expression of venom prothrombin activator subunits. This is the first quantitative proteomic study that uses extracted ion chromatogram peak areas (MS1 XIC) of distinct homologous tryptic peptides to directly show the differences in the expression of venom proteins.


Asunto(s)
Coagulantes/química , Venenos Elapídicos/química , Elapidae/genética , Neurotoxinas/química , Fragmentos de Péptidos/química , Serina Endopeptidasas/química , Secuencia de Aminoácidos , Animales , Australia , Aves , Coagulantes/aislamiento & purificación , Coagulantes/metabolismo , Coagulantes/toxicidad , Biología Computacional/métodos , Diafragma/efectos de los fármacos , Diafragma/fisiología , Venenos Elapídicos/genética , Venenos Elapídicos/aislamiento & purificación , Venenos Elapídicos/metabolismo , Venenos Elapídicos/toxicidad , Elapidae/clasificación , Evolución Molecular , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Expresión Génica , Datos de Secuencia Molecular , Contracción Muscular/efectos de los fármacos , Contracción Muscular/fisiología , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/fisiología , Neurotoxinas/genética , Neurotoxinas/aislamiento & purificación , Neurotoxinas/toxicidad , Fragmentos de Péptidos/aislamiento & purificación , Nervio Frénico/efectos de los fármacos , Nervio Frénico/fisiología , Ratas , Alineación de Secuencia , Serina Endopeptidasas/aislamiento & purificación , Serina Endopeptidasas/metabolismo , Serina Endopeptidasas/toxicidad , Especificidad de la Especie , Tripsina/química
20.
J Biol Chem ; 289(29): 20170-81, 2014 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-24898246

RESUMEN

Cobra cardiotoxins (CTX) are a family of three-fingered basic polypeptides known to interact with diverse targets such as heparan sulfates, sulfatides, and integrins on cell surfaces. After CTX bind to the membrane surface, they are internalized to intracellular space and exert their cytotoxicity via an unknown mechanism. By the combined in vitro kinetic binding, three-dimensional x-ray structure determination, and cell biology studies on the naturally abundant CTX homologues from the Taiwanese cobra, we showed that slight variations on the spatial distribution of positively charged or hydrophobic domains among CTX A2, A3, and A4 could lead to significant changes in their endocytotic pathways and action mechanisms via distinct sulfated glycoconjugate-mediated processes. The intracellular locations of these structurally similar CTX after internalization are shown to vary between the mitochondria and lysosomes via either dynamin2-dependent or -independent processes with distinct membrane cholesterol sensitivity. Evidence is presented to suggest that the shifting between the sulfated glycoconjugates as distinct targets of CTX A2, A3, and A4 might play roles in the co-evolutionary arms race between venomous snake toxins to cope with different membrane repair mechanisms at the cellular levels. The sensitivity of endocytotic routes to the spatial distribution of positively charged or hydrophobic domains may provide an explanation for the diverse endocytosis pathways of other cell-penetrating basic polypeptides.


Asunto(s)
Proteínas Cardiotóxicas de Elápidos/química , Proteínas Cardiotóxicas de Elápidos/farmacocinética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Células CHO , Línea Celular , Membrana Celular/metabolismo , Proteínas Cardiotóxicas de Elápidos/genética , Cricetinae , Cricetulus , Cristalografía por Rayos X , Elapidae/genética , Elapidae/metabolismo , Endocitosis , Evolución Molecular , Glicoconjugados/química , Glicoconjugados/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Dominios y Motivos de Interacción de Proteínas , Ratas , Electricidad Estática , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA