Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.480
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 19(4): e1011222, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014912

RESUMEN

Endogenous retroviruses (ERVs) are the relics of ancient retroviruses occupying a substantial fraction of vertebrate genomes. However, knowledge about the functional association of ERVs with cellular activities remains limited. Recently, we have identified approximately 3,315 ERVs from zebrafish at genome-wide level, among which 421 ERVs were actively expressed in response to the infection of Spring viraemia of carp virus (SVCV). These findings demonstrated the previously unrecognized activity of ERVs in zebrafish immunity, thereby making zebrafish an attractive model organism for deciphering the interplay among ERVs, exogenous invading viruses, and host immunity. In the present study, we investigated the functional role of an envelope protein (Env38) derived from an ERV-E5.1.38-DanRer element in zebrafish adaptive immunity against SVCV in view of its strong responsiveness to SVCV infection. This Env38 is a glycosylated membrane protein mainly distributed on MHC-II+ antigen-presenting cells (APCs). By performing blockade and knockdown/knockout assays, we found that the deficiency of Env38 markedly impaired the activation of SVCV-induced CD4+ T cells and thereby led to the inhibition of IgM+/IgZ+ B cell proliferation, IgM/IgZ Ab production, and zebrafish defense against SVCV challenge. Mechanistically, Env38 activates CD4+ T cells by promoting the formation of pMHC-TCR-CD4 complex via cross-linking MHC-II and CD4 molecules between APCs and CD4+ T cells, wherein the surface subunit (SU) of Env38 associates with the second immunoglobin domain of CD4 (CD4-D2) and the first α1 domain of MHC-IIα (MHC-IIα1). Notably, the expression and functionality of Env38 was strongly induced by zebrafish IFNφ1, indicating that env38 acts as an IFN-stimulating gene (ISG) regulated by IFN signaling. To the best of our knowledge, this study is the first to identify the involvement of an Env protein in host immune defense against an exogenous invading virus by promoting the initial activation of adaptive humoral immunity. It improved the current understanding of the cooperation between ERVs and host adaptive immunity.


Asunto(s)
Retrovirus Endógenos , Enfermedades de los Peces , Infecciones por Rhabdoviridae , Rhabdoviridae , Animales , Pez Cebra , Inmunidad Humoral , Inmunoglobulina M , Enfermedades de los Peces/genética
2.
Cell ; 140(5): 717-30, 2010 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-20211140

RESUMEN

Exposure to Mycobacterium tuberculosis produces varied early outcomes, ranging from resistance to infection to progressive disease. Here we report results from a forward genetic screen in zebrafish larvae that identify multiple mutant classes with distinct patterns of innate susceptibility to Mycobacterium marinum. A hypersusceptible mutant maps to the lta4h locus encoding leukotriene A(4) hydrolase, which catalyzes the final step in the synthesis of leukotriene B(4) (LTB(4)), a potent chemoattractant and proinflammatory eicosanoid. lta4h mutations confer hypersusceptibility independent of LTB(4) reduction, by redirecting eicosanoid substrates to anti-inflammatory lipoxins. The resultant anti-inflammatory state permits increased mycobacterial proliferation by limiting production of tumor necrosis factor. In humans, we find that protection from both tuberculosis and multibacillary leprosy is associated with heterozygosity for LTA4H polymorphisms that have previously been correlated with differential LTB(4) production. Our results suggest conserved roles for balanced eicosanoid production in vertebrate resistance to mycobacterial infection.


Asunto(s)
Epóxido Hidrolasas/genética , Enfermedades de los Peces/genética , Lepra/genética , Tuberculosis/genética , Animales , Modelos Animales de Enfermedad , Enfermedades de los Peces/inmunología , Predisposición Genética a la Enfermedad , Humanos , Lepra/inmunología , Tuberculosis/inmunología , Pez Cebra
3.
Genomics ; 116(4): 110868, 2024 07.
Artículo en Inglés | MEDLINE | ID: mdl-38795738

RESUMEN

Hybrid sterility, a hallmark of postzygotic isolation, arises from parental genome divergence disrupting meiosis. While chromosomal incompatibility is often implicated, the underlying mechanisms remain unclear. This study investigated meiotic behavior and genome-wide divergence in bighead catfish (C. macrocephalus), North African catfish (C. gariepinus), and their sterile male hybrids (important in aquaculture). Repetitive DNA analysis using bioinformatics and cytogenetics revealed significant divergence in satellite DNA (satDNA) families between parental species. Notably, one hybrid exhibited successful meiosis and spermatozoa production, suggesting potential variation in sterility expression. Our findings suggest that genome-wide satDNA divergence, rather than chromosome number differences, likely contributes to meiotic failure and male sterility in these catfish hybrids.


Asunto(s)
Bagres , ADN Satélite , Enfermedades de los Peces , Hibridación Genética , Infertilidad Masculina , Meiosis , Animales , Masculino , Bagres/genética , ADN Satélite/genética , Genoma , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , África del Norte , Enfermedades de los Peces/genética
4.
BMC Genomics ; 25(1): 715, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048939

RESUMEN

BF/C2 is a crucial molecule in the coagulation complement cascade pathway and plays a significant role in the immune response of grass carp through the classical, alternative, and lectin pathways during GCRV infection. In vivo experiments demonstrated that the mRNA expression levels of BF/C2 (A, B) in grass carp positively correlated with GCRV viral replication at various stages of infection. Excessive inflammation leading to death coincided with peak levels of BF/C2 (A, B) mRNA expression and GCRV viral replication. Correspondingly, BF/C2 (A, B) recombinant protein, CIK cells and GCRV co-incubation experiments yielded similar findings. Therefore, 3 h (incubation period) and 9 h (death period) were selected as critical points for this study. Transcriptome sequencing analysis revealed significant differences in the expression of BF/C2A and BF/C2B during different stages of CIK infection with GCRV and compared to the blank control group (PBS). Specifically, the BF/C2A_3 and BF/C2A_9 groups exhibited 2729 and 2228 differentially expressed genes (DEGs), respectively, with 1436 upregulated and 1293 downregulated in the former, and 1324 upregulated and 904 downregulated in the latter. The BF/C2B_3 and BF/C2B_9 groups showed 2303 and 1547 DEGs, respectively, with 1368 upregulated and 935 downregulated in the former, and 818 upregulated and 729 downregulated in the latter. KEGG functional enrichment analysis of these DEGs identified shared pathways between BF/C2A and PBS groups at 3 and 9 h, including the C-type lectin receptor signaling pathway, protein processing in the endoplasmic reticulum, Toll-like receptor signaling pathway, Salmonella infection, apoptosis, tight junction, and adipocytokine signaling pathway. Additionally, the BF/C2B groups at 3 and 9 h shared pathways related to protein processing in the endoplasmic reticulum, glycolysis/gluconeogenesis, and biosynthesis of amino acids. The mRNA levels of these DEGs were validated in cellular models, confirming consistency with the sequencing results. In addition, the mRNA expression levels of these candidate genes (mapk1, il1b, rela, nfkbiab, akt3a, hyou1, hsp90b1, dnajc3a et al.) in the head kidney, kidney, liver and spleen of grass carp immune tissue were significantly different from those of the control group by BF/C2 (A, B) protein injection in vivo. These candidate genes play an important role in the response of BF/C2 (A, B) to GCRV infection and it also further confirmed that BF/C2 (A, B) of grass carp plays an important role in coping with GCRV infection.


Asunto(s)
Carpas , Enfermedades de los Peces , Proteínas de Peces , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/virología , Carpas/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/virología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Reoviridae/fisiología , Perfilación de la Expresión Génica , Transcriptoma , Replicación Viral , Regulación de la Expresión Génica
5.
BMC Genomics ; 25(1): 848, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39251938

RESUMEN

BACKGROUND: Temperature is a crucial environmental determinant for the vitality and development of teleost fish, yet the underlying mechanisms by which they sense temperature fluctuations remain largely unexplored. Transient receptor potential (TRP) proteins, renowned for their involvement in temperature sensing, have not been characterized in teleost fish, especially regarding their temperature-sensing capabilities. RESULTS: In this study, a genome-wide analysis was conducted, identifying a total of 28 TRP genes in the mandarin fish Siniperca chuatsi. These genes were categorized into the families of TRPA, TRPC, TRPP, TRPM, TRPML, and TRPV. Despite notable variations in conserved motifs across different subfamilies, TRP family members shared common structural features, including ankyrin repeats and the TRP domain. Tissue expression analysis showed that each of these TRP genes exhibited a unique expression pattern. Furthermore, examination of the tissue expression patterns of ten selected TRP genes following exposure to both high and low temperature stress indicated the expression of TRP genes were responsive to temperatures changes. Moreover, the expression profiles of TRP genes in response to mandarin fish virus infections showed significant upregulation for most genes after Siniperca chuatsi rhabdovirus, mandarin fish iridovirus and infectious spleen and kidney necrosis virus infection. CONCLUSIONS: This study characterized the TRP family genes in mandarin fish genome-wide, and explored their expression patterns in response to temperature stress and virus infections. Our work will enhance the overall understanding of fish TRP channels and their possible functions.


Asunto(s)
Perciformes , Filogenia , Canales de Potencial de Receptor Transitorio , Animales , Canales de Potencial de Receptor Transitorio/genética , Canales de Potencial de Receptor Transitorio/metabolismo , Perciformes/genética , Perciformes/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Perfilación de la Expresión Génica , Familia de Multigenes , Genoma , Temperatura , Infecciones por Virus ADN/genética , Infecciones por Virus ADN/veterinaria , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Regulación de la Expresión Génica , Iridoviridae
6.
J Virol ; 97(2): e0133822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36744960

RESUMEN

Spring viremia of carp virus (SVCV) is the causative agent of spring viremia of carp (SVC), an important infectious disease that causes high mortality in aquaculture cyprinids. How the host defends against SVCV infection and the underlying mechanisms are still elusive. In this study, we identify that a novel gene named maoc1 is induced by SVCV infection. maoc1-deficient zebrafish are more susceptible to SVCV infection, with higher virus replication and antiviral gene induction. Further assays indicate that maoc1 interacts with the P protein of SVCV to trigger P protein degradation through the autophagy-lysosomal pathway, leading to the restriction of SVCV propagation. These findings reveal a unique zebrafish defense machinery in response to SVCV infection. IMPORTANCE SVCV P protein plays an essential role in the virus replication and viral immune evasion process. Here, we identify maoc1 as a novel SVCV-inducible gene and demonstrate its antiviral capacity through attenuating SVCV replication, by directly binding to P protein and mediating its degradation via the autophagy-lysosomal pathway. Therefore, this study not only reveals an essential role of maoc1 in fighting against SVCV infection but also demonstrates an unusual host defense mechanism in response to invading viruses.


Asunto(s)
Autofagia , Enfermedades de los Peces , Lisosomas , Infecciones por Rhabdoviridae , Rhabdoviridae , Proteínas de Pez Cebra , Animales , Enfermedades de los Peces/genética , Enfermedades de los Peces/virología , Infecciones por Rhabdoviridae/veterinaria , Viremia/veterinaria , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/fisiología , Fosfoproteínas
7.
Arch Virol ; 169(7): 148, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38888759

RESUMEN

The inflammasome is a multimeric protein complex that plays a vital role in the defence against pathogens and is therefore considered an essential component of the innate immune system. In this study, the expression patterns of inflammasome genes (NLRC3, ASC, and CAS-1), antiviral genes (IFNγ and MX), and immune genes (IL-1ß and IL-18) were analysed in Oreochromis niloticus liver (ONIL) cells following stimulation with the bacterial ligands peptidoglycan (PGN) and lipopolysaccharide (LPS) and infection with TiLV. The cells were stimulated with PGN and LPS at concentrations of 10, 25, and 50 µg/ml. For viral infection, 106 TCID50 of TiLV per ml was used. After LPS stimulation, all seven genes were found to be expressed at specific time points at each of the three doses tested. However, at even higher doses of LPS, NLRC3 levels decreased. Following TiLV infection, all of the genes showed significant upregulation, especially at early time points. However, the gene expression pattern was found to be unique in PGN-treated cells. For instance, NLRC3 and ASC did not show any response to PGN stimulation, and the expression of IFNγ was downregulated at 25 and 50 µg of PGN per ml. CAS-1 and IL-18 expression was downregulated at 25 µg of PGN per ml. At a higher dose (50 µg/ml), IL-1ß showed downregulation. Overall, our results indicate that these genes are involved in the immune response to viral and bacterial infection and that the degree of response is ligand- and dose-dependent.


Asunto(s)
Cíclidos , Enfermedades de los Peces , Inflamasomas , Animales , Cíclidos/inmunología , Cíclidos/genética , Inflamasomas/genética , Inflamasomas/inmunología , Inflamasomas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Línea Celular , Peptidoglicano/farmacología , Hígado/virología , Hígado/inmunología , Lipopolisacáridos/farmacología , Inmunidad Innata , Proteínas de Peces/genética , Interleucina-18/genética , Interleucina-18/metabolismo , Ligandos , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/inmunología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/inmunología
8.
Mol Biol Rep ; 51(1): 551, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38642170

RESUMEN

Fish health management is critical to aquaculture and fisheries as it directly affects sustainability and productivity. Fish disease diagnosis has taken a massive stride because of advances in immunological and molecular diagnostic tools which provide a sensitive, quick, and accurate means of identifying diseases. This review presents an overview of the main molecular and immunological diagnostic methods for determining the health of fish. The immunological techniques help to diagnose different fish diseases by detecting specific antigens and antibodies. The application of immunological techniques to vaccine development is also examined in this review. The genetic identification of pathogens is made possible by molecular diagnostic techniques that enable the precise identification of bacterial, viral, and parasitic organisms in addition to evaluating host reactions and genetic variation associated with resistance to disease. The combination of molecular and immunological methods has resulted in the creation of novel techniques for thorough evaluation of fish health. These developments improve treatment measures, pathogen identification and provide new information about the variables affecting fish health, such as genetic predispositions and environmental stresses. In the framework of sustainable fish farming and fisheries management, this paper focuses on the importance of these diagnostic techniques that play a crucial role in protecting fish populations and the aquatic habitats. This review also examines the present and potential future directions in immunological and molecular diagnostic techniques in fish health.


Asunto(s)
Acuicultura , Enfermedades de los Peces , Animales , Explotaciones Pesqueras , Anticuerpos , Técnicas de Diagnóstico Molecular , Enfermedades de los Peces/diagnóstico , Enfermedades de los Peces/genética , Peces/genética
9.
Mol Biol Rep ; 51(1): 709, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38824265

RESUMEN

BACKGROUND: Cystatin is a protease inhibitor that also regulates genes expression linked to inflammation and plays a role in defense and regulation. METHODS AND RESULTS: Cystatin 10 (Smcys10) was cloned from Scophthalmus maximus and encodes a 145 amino acid polypeptide. The results of qRT-PCR showed that Smcys10 exhibited tissue-specific expression patterns, and its expression was significantly higher in the skin than in other tissues. The expression level of Smcys10 was significantly different in the skin, gill, head kidney, spleen and macrophages after Vibrio anguillarum infection, indicating that Smcys10 may play an important role in resistance to V. anguillarum infection. The recombinant Smcys10 protein showed binding and agglutinating activity in a Ca2+-dependent manner against bacteria. rSmcys10 treatment upregulated the expression of IL-10, TNF-α and TGF-ß in macrophages of turbot and hindered the release of lactate dehydrogenase (LDH) from macrophages after V. anguillarum infection, which confirmed that rSmcys10 reduced the damage to macrophages by V. anguillarum. The NF-κB pathway was suppressed by Smcys10, as demonstrated by dual-luciferase analysis. CONCLUSIONS: These results indicated that Smcys10 is involved in the host antibacterial immune response.


Asunto(s)
Cistatinas , Enfermedades de los Peces , Proteínas de Peces , Peces Planos , Macrófagos , Vibrio , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/metabolismo , Vibrio/patogenicidad , Cistatinas/genética , Cistatinas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Macrófagos/metabolismo , Macrófagos/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Enfermedades de los Peces/microbiología , Vibriosis/inmunología , Vibriosis/veterinaria , Vibriosis/genética , FN-kappa B/metabolismo , Clonación Molecular/métodos , Regulación de la Expresión Génica
10.
Genet Sel Evol ; 56(1): 38, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750427

RESUMEN

BACKGROUND: The accuracy of genomic prediction is partly determined by the size of the reference population. In Atlantic salmon breeding programs, four parallel populations often exist, thus offering the opportunity to increase the size of the reference set by combining these populations. By allowing a reduction in the number of records per population, multi-population prediction can potentially reduce cost and welfare issues related to the recording of traits, particularly for diseases. In this study, we evaluated the accuracy of multi- and across-population prediction of breeding values for resistance to amoebic gill disease (AGD) using all single nucleotide polymorphisms (SNPs) on a 55K chip or a selected subset of SNPs based on the signs of allele substitution effect estimates across populations, using both linear and nonlinear genomic prediction (GP) models in Atlantic salmon populations. In addition, we investigated genetic distance, genetic correlation estimated based on genomic relationships, and persistency of linkage disequilibrium (LD) phase across these populations. RESULTS: The genetic distance between populations ranged from 0.03 to 0.07, while the genetic correlation ranged from 0.19 to 0.99. Nonetheless, compared to within-population prediction, there was limited or no impact of combining populations for multi-population prediction across the various models used or when using the selected subset of SNPs. The estimates of across-population prediction accuracy were low and to some extent proportional to the genetic correlation estimates. The persistency of LD phase between adjacent markers across populations using all SNP data ranged from 0.51 to 0.65, indicating that LD is poorly conserved across the studied populations. CONCLUSIONS: Our results show that a high genetic correlation and a high genetic relationship between populations do not guarantee a higher prediction accuracy from multi-population genomic prediction in Atlantic salmon.


Asunto(s)
Desequilibrio de Ligamiento , Polimorfismo de Nucleótido Simple , Salmo salar , Animales , Salmo salar/genética , Genómica/métodos , Enfermedades de los Peces/genética , Genética de Población/métodos , Modelos Genéticos , Cruzamiento/métodos , Genoma , Resistencia a la Enfermedad/genética
11.
Zoolog Sci ; 41(3): 263-274, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38809865

RESUMEN

cytochrome P-450, 21-hydroxylase (cyp21a2), encodes an enzyme required for cortisol biosynthesis, and its mutations are the major genetic cause of congenital adrenal hyperplasia (CAH) in humans. Here, we have generated a null allele for the medaka cyp21a2 with a nine base-pair insertion which led to a truncated protein. We have observed a delay in hatching and a low survival rate in homozygous mutants. The interrenal gland (adrenal counterpart in teleosts) exhibits hyperplasia and the number of pomca-expressing cells in the pituitary increases in the homozygous mutant. A mass spectrometry-based analysis of whole larvae confirmed a lack of cortisol biosynthesis, while its corresponding precursors were significantly increased, indicating a systemic glucocorticoid deficiency in our mutant model. Furthermore, these phenotypes at the larval stage are rescued by cortisol. In addition, females showed complete sterility with accumulated follicles in the ovary while male homozygous mutants were fully fertile in the adult mutants. These results demonstrate that the mutant medaka recapitulates several aspects of cyp21a2-deficiency observed in humans, making it a valuable model for studying steroidogenesis in CAH.


Asunto(s)
Oryzias , Esteroide 21-Hidroxilasa , Animales , Oryzias/genética , Esteroide 21-Hidroxilasa/genética , Esteroide 21-Hidroxilasa/metabolismo , Femenino , Masculino , Glucocorticoides/metabolismo , Hiperplasia/genética , Hiperplasia/veterinaria , Hidrocortisona/metabolismo , Hiperplasia Suprarrenal Congénita/genética , Hiperplasia Suprarrenal Congénita/veterinaria , Mutación , Enfermedades de los Peces/genética , Larva/genética , Larva/metabolismo
12.
J Fish Dis ; 47(2): e13880, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37933190

RESUMEN

Lufenuron is a benzoylurea insecticide currently in use to combat sea lice infestation in salmon aquaculture in Chile. With pending approval in Norway, the aim of this work was to study the uptake and toxicity of lufenuron in liver tissue of Atlantic salmon. Juvenile salmon weighing 40 g were given a standard 7-day oral dose, and bioaccumulation and transcriptional responses in the liver were examined 1 day after the end-of-treatment (day 8) and after 1 week of elimination (day 14). Bioaccumulation levels of lufenuron were 29 ± 3 mg/kg at day 8 and 14 ± 1 mg/kg at day 14, indicating relatively rapid clearance. However, residues of lufenuron were still present in the liver after 513 days of depuration. The exposure gave a transient inhibition of transcription in the liver at day 8 (2437 significant DEGs, p-adj < .05), followed by a weaker compensatory response at day 14 (169 significant DEGs). Pathways associated with RNA metabolism such as the sumoylation pathway were most strongly affected at day 8, while the apelin pathway was most profoundly affected at day 14. In conclusion, this study shows that lufenuron easily bioaccumulates and that a standard 7-day oral dose induces a transient inhibition of transcription in liver of salmon.


Asunto(s)
Copépodos , Enfermedades de los Peces , Salmo salar , Animales , Salmo salar/genética , Enfermedades de los Peces/genética , Hígado/metabolismo , Expresión Génica , Copépodos/fisiología
13.
J Fish Dis ; 47(3): e13898, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38014710

RESUMEN

Enterobacter roggenkampii is an opportunistic pathogen that causes infections in a wide range of hosts. A bacterial strain named EOBSR_19 was isolated from diseased silver arowana, Osteoglossum bicirrhosum. This bacterium was identified as E. roggenkampii based on the phenotypic characteristics and sequence analysis of the16S rDNA and gyrB genes. Average nucleotide identity and phylogenetic analysis based on the whole genome sequence further confirmed the bacterial taxonomy of EOBSR_19. Artificial experimental infection indicated that EOBSR_19 was pathogenic to fish. Antimicrobial susceptibility test showed it was multi-drug resistant. The EOBSR_19 was found to be resistant to 18 antibiotics belonging to quinolones, macrolides, sulfonamides, aminoglycosides, and ß-lactams classes. The whole genome sequencing analysis showed that EOBSR_19 carried 730 virulence genes that were annotated for different functional modules, such as adhesion and invasion, secretion system, siderophore transport system and bacterial toxin. Among them, the virulence genes related to adhesion and invasion were the most abundant. In addition, drug resistance genes involved in multiple mechanisms of antimicrobial resistance were identified in its genomics, including multidrug resistance efflux pumps, antibiotic inactivating enzymes, and antibiotic binding site mutations. Its genomic analysis via whole-genome sequencing provided insights into the pathogenicity and antimicrobial resistance.


Asunto(s)
Enterobacter , Enfermedades de los Peces , Genoma Bacteriano , Animales , Virulencia/genética , Antibacterianos/farmacología , Filogenia , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Bacteriana Múltiple/genética , Enfermedades de los Peces/genética , Genómica , Pruebas de Sensibilidad Microbiana
14.
Artículo en Inglés | MEDLINE | ID: mdl-38354902

RESUMEN

The red-leg syndrome in amphibians is a condition commonly associated with the bacteria Aeromonas hydrophila and has led to population declines. However, there is little information concerning the inflammatory assemblage in infected anurans. We evaluated immune and endocrine alterations induced by stimulation with heat-killed A. hydrophila injected in Rhinella diptycha toads. Control animals were not manipulated, while the others were separated into groups that received intraperitoneal injection of 300 µl of saline or heat-killed bacteria: groups A1 (3 × 107 cells), A2 (3 × 108 cells), and A3 (3 × 109 cells). Animals were bled and euthanized six hours post-injection. We evaluated neutrophil: lymphocyte ratio (NLR), plasma bacterial killing ability (BKA), testosterone (T), melatonin (MEL), and corticosterone (CORT) plasma levels. Heat-killed A. hydrophila increased CORT and NLR, and decreased MEL, especially at higher concentrations. There was no effect of treatment on T and BKA. We then selected the saline and A3 groups to conduct mRNA expression of several genes including glucocorticoid receptor (GR), toll-like receptor-4 (TLR-4), interferon-γ (IFN-γ), interleukin (IL)-1ß, IL-6, and IL-10. We found higher expression of IL-6, IL-1ß, IL-10, and IFN-γ in group A3 compared to the saline group. These results indicate the beginning of an inflammatory assemblage, notably at the two highest concentrations of bacteria, and give a better understanding of how anurans respond to an infection within an integrated perspective, evaluating different physiological aspects. Future studies should investigate later phases of the immune response to elucidate more about the inflammation in amphibians challenged with A. hydrophila.


Asunto(s)
Enfermedades de los Peces , Interleucina-10 , Animales , Aeromonas hydrophila , Calor , Interleucina-6 , Bufonidae , Anuros , Enfermedades de los Peces/genética
15.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-39337523

RESUMEN

The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.


Asunto(s)
Lubina , Infecciones por Virus ADN , Resistencia a la Enfermedad , Enfermedades de los Peces , Estudio de Asociación del Genoma Completo , Polimorfismo de Nucleótido Simple , Ranavirus , Animales , Lubina/genética , Lubina/virología , Lubina/inmunología , Ranavirus/fisiología , Enfermedades de los Peces/virología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Resistencia a la Enfermedad/genética , Infecciones por Virus ADN/veterinaria , Infecciones por Virus ADN/virología , Infecciones por Virus ADN/inmunología , Infecciones por Virus ADN/genética , Mutación INDEL
16.
Int J Mol Sci ; 25(14)2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39062994

RESUMEN

E3 ubiquitin ligases, key components of the ubiquitin proteasome system, orchestrate protein degradation through ubiquitylation and profoundly impact cellular biology. Small HERC E3 ligases (HERC3-6) have diverse functions in mammals, including roles in spermatogenesis, protein degradation, and immunity. Until now, only mammals' HERC3, HERC5, and HERC6 are known to participate in immune responses, with major involvement in the antiviral response. Interestingly, an exclusive HERC7 has been characterized in fish showing great molecular conservation and antiviral roles. Thus, this study identifies and characterizes the herc7 gene in the European sea bass teleost. The European sea bass herc7 gene and the putative protein show good conservation of the promoter binding sites for interferons and the RCC1 and HECT domains characteristic of HERC proteins, respectively. The phylogenetic analysis shows a unique cluster with the fish-exclusive HERC7 orthologues. During ontogeny, the herc7 gene is expressed from 3 days post-fertilization onwards, being constitutively and widely distributed in adult tissues. In vitro, stimulated leucocytes up-regulate the herc7 gene in response to mitogens and viruses, pointing to a role in the immune response. Furthermore, sea bass herc7 expression is related to the interferon response intensity and viral load in different tissues upon in vivo infection with red-grouper betanodavirus (RGNNV), suggesting the potential involvement of fish HERC7 in ISGylation-based antiviral activity, similarly to mammalian HERC5. This study broadens the understanding of small HERC proteins in fish species and highlights HERC7 as a potential contributor to the immune response in European sea bass, with implications for antiviral defense mechanisms. Future research is needed to unravel the precise actions and functions of HERC7 in teleost fish immunity, providing insights into direct antiviral activity and viral evasion.


Asunto(s)
Lubina , Enfermedades de los Peces , Proteínas de Peces , Filogenia , Ubiquitina-Proteína Ligasas , Animales , Lubina/inmunología , Lubina/genética , Lubina/virología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/inmunología , Proteínas de Peces/metabolismo , Enfermedades de los Peces/virología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Nodaviridae , Infecciones por Virus ARN/inmunología , Infecciones por Virus ARN/virología , Infecciones por Virus ARN/genética , Infecciones por Virus ARN/veterinaria
17.
Int J Mol Sci ; 25(12)2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38928053

RESUMEN

The innate immune response in Salmo salar, mediated by pattern recognition receptors (PRRs), is crucial for defending against pathogens. This study examined DDX41 protein functions as a cytosolic/nuclear sensor for cyclic dinucleotides, RNA, and DNA from invasive intracellular bacteria. The investigation determined the existence, conservation, and functional expression of the ddx41 gene in S. salar. In silico predictions and experimental validations identified a single ddx41 gene on chromosome 5 in S. salar, showing 83.92% homology with its human counterpart. Transcriptomic analysis in salmon head kidney confirmed gene transcriptional integrity. Proteomic identification through mass spectrometry characterized three unique peptides with 99.99% statistical confidence. Phylogenetic analysis demonstrated significant evolutionary conservation across species. Functional gene expression analysis in SHK-1 cells infected by Piscirickettsia salmonis and Renibacterium salmoninarum indicated significant upregulation of DDX41, correlated with increased proinflammatory cytokine levels and activation of irf3 and interferon signaling pathways. In vivo studies corroborated DDX41 activation in immune responses, particularly when S. salar was challenged with P. salmonis, underscoring its potential in enhancing disease resistance. This is the first study to identify the DDX41 pathway as a key component in S. salar innate immune response to invading pathogens, establishing a basis for future research in salmonid disease resistance.


Asunto(s)
Enfermedades de los Peces , Inmunidad Innata , Filogenia , Piscirickettsia , Infecciones por Piscirickettsiaceae , Renibacterium , Salmo salar , Animales , Piscirickettsia/genética , Inmunidad Innata/genética , Salmo salar/microbiología , Salmo salar/genética , Salmo salar/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/genética , Infecciones por Piscirickettsiaceae/microbiología , Infecciones por Piscirickettsiaceae/inmunología , Infecciones por Piscirickettsiaceae/genética , Infecciones por Piscirickettsiaceae/veterinaria , Renibacterium/genética , Renibacterium/inmunología , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Evolución Molecular
18.
Int J Mol Sci ; 25(19)2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39408905

RESUMEN

Ras-related associated with diabetes (RRAD) is a member of the Ras GTPase superfamily that plays a role in several cellular functions, such as cell proliferation and differentiation. In particular, the superfamily acts as an NF-κB signaling pathway inhibitor and calcium regulator to participate in the immune response pathway. A recent transcriptome study revealed that rrad was expressed in the spleen of disease-resistant Japanese flounder (Paralichthys olivaceus) individuals compared with disease-susceptible individuals, and the results were also verified by qPCR. Thus, the present study aimed to explore how rrad regulates antimicrobial immunity via the NF-κB pathway. First, the coding sequence of P. olivaceus rrad was identified. The sequence was 1092 bp in length, encoding 364 amino acids. Based on phylogenetic and structural relationship analyses, P. olivaceus rrad appeared to be more closely related to teleosts. Next, rrad expression differences between disease-resistant and disease-susceptible individuals in immune-related tissues were evaluated, and the results revealed that rrad was expressed preferentially in the spleen of disease-resistant individuals. In response to Edwardsiella piscicida infection, rrad expression in the spleen changed. In vitro, co-culture was carried out to assess the hypo-methylated levels of the rrad promoter in the disease-resistant spleen, which was consistent with the high mRNA expression. The siRNA-mediated knockdown of rrad performed with the gill cell line of P. olivaceus affected many rrad-network-related genes, i.e., dcp1b, amagt, rus1, rapgef1, ralbp1, plce1, rasal1, nckipsd, prkab2, cytbc-1, sh3, and others, as well as some inflammation-related genes, such as bal2 and Il-1ß. In addition, flow cytometry analysis showed that rrad overexpression was more likely to induce cell apoptosis, with establishing a link between rrad's function and its potential roles in regulating the NF-κB pathway. Thus,. the current study provided some clarity in terms of understanding the immune response about rrad gene differences between disease-resistant and disease-susceptible P. olivaceus individuals. This study provides a molecular basis for fish rrad gene functional analysis and may serve as a reference for in-depth of bacterial disease resistance of teleost.


Asunto(s)
Resistencia a la Enfermedad , Edwardsiella , Infecciones por Enterobacteriaceae , Enfermedades de los Peces , Lenguado , Animales , Edwardsiella/genética , Edwardsiella/patogenicidad , Lenguado/genética , Lenguado/microbiología , Infecciones por Enterobacteriaceae/veterinaria , Infecciones por Enterobacteriaceae/microbiología , Infecciones por Enterobacteriaceae/inmunología , Infecciones por Enterobacteriaceae/genética , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Resistencia a la Enfermedad/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Filogenia , FN-kappa B/metabolismo , FN-kappa B/genética , Proteínas ras/metabolismo , Proteínas ras/genética
19.
Int J Mol Sci ; 25(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38891899

RESUMEN

In aquaculture, viral diseases pose a significant threat and can lead to substantial economic losses. The primary defense against viral invasion is the innate immune system, with interferons (IFNs) playing a crucial role in mediating the immune response. With advancements in molecular biology, the role of non-coding RNA (ncRNA), particularly microRNAs (miRNAs), in gene expression has gained increasing attention. While the function of miRNAs in regulating the host immune response has been extensively studied, research on their immunomodulatory effects in teleost fish, including silver carp (Hyphthalmichthys molitrix), is limited. Therefore, this research aimed to investigate the immunomodulatory role of microRNA-30b-5p (miR-30b-5p) in the antiviral immune response of silver carp (Hypophthalmichthys molitrix) by targeting cytokine receptor family B5 (CRFB5) via the JAK/STAT signaling pathway. In this study, silver carp were stimulated with polyinosinic-polycytidylic acid (poly (I:C)), resulting in the identification of an up-regulated miRNA (miR-30b-5p). Through a dual luciferase assay, it was demonstrated that CRFB5, a receptor shared by fish type I interferon, is a novel target of miR-30b-5p. Furthermore, it was found that miR-30b-5p can suppress post-transcriptional CRFB5 expression. Importantly, this study revealed for the first time that miR-30b-5p negatively regulates the JAK/STAT signaling pathway, thereby mediating the antiviral immune response in silver carp by targeting CRFB5 and maintaining immune system stability. These findings not only contribute to the understanding of how miRNAs act as negative feedback regulators in teleost fish antiviral immunity but also suggest their potential therapeutic measures to prevent an excessive immune response.


Asunto(s)
Carpas , Proteínas de Peces , MicroARNs , Poli I-C , Transducción de Señal , Animales , Carpas/genética , Carpas/inmunología , Carpas/virología , Carpas/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Enfermedades de los Peces/genética , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inmunidad Innata/genética , Quinasas Janus/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Poli I-C/farmacología , Factores de Transcripción STAT/metabolismo , Factores de Transcripción STAT/genética
20.
Int J Mol Sci ; 25(14)2024 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-39063205

RESUMEN

Hsp40-Hsp70 typically function in concert as molecular chaperones, and their roles in post-infection immune responses are increasingly recognized. However, in the economically important fish species Scophthalmus maximus (turbot), there is still a lack in the systematic identification, interaction models, and binding site analysis of these proteins. Herein, 62 Hsp40 genes and 16 Hsp70 genes were identified in the turbot at a genome-wide level and were unevenly distributed on 22 chromosomes through chromosomal distribution analysis. Phylogenetic and syntenic analysis provided strong evidence in supporting the orthologies and paralogies of these HSPs. Protein-protein interaction and expression analysis was conducted to predict the expression profile after challenging with Aeromonas salmonicida. dnajb1b and hspa1a were found to have a co-expression trend under infection stresses. Molecular docking was performed using Auto-Dock Tool and PyMOL for this pair of chaperone proteins. It was discovered that in addition to the interaction sites in the J domain, the carboxyl-terminal domain of Hsp40 also plays a crucial role in its interaction with Hsp70. This is important for the mechanistic understanding of the Hsp40-Hsp70 chaperone system, providing a theoretical basis for turbot disease resistance breeding, and effective value for the prevention of certain diseases in turbot.


Asunto(s)
Enfermedades de los Peces , Peces Planos , Proteínas del Choque Térmico HSP40 , Proteínas HSP70 de Choque Térmico , Filogenia , Animales , Peces Planos/inmunología , Peces Planos/genética , Peces Planos/microbiología , Peces Planos/metabolismo , Proteínas del Choque Térmico HSP40/genética , Proteínas del Choque Térmico HSP40/metabolismo , Proteínas HSP70 de Choque Térmico/genética , Proteínas HSP70 de Choque Térmico/metabolismo , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/genética , Enfermedades de los Peces/metabolismo , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Proteínas de Peces/inmunología , Infecciones por Bacterias Gramnegativas/inmunología , Infecciones por Bacterias Gramnegativas/veterinaria , Infecciones por Bacterias Gramnegativas/microbiología , Infecciones por Bacterias Gramnegativas/genética , Simulación del Acoplamiento Molecular , Aeromonas salmonicida/inmunología , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA