Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Pathog ; 20(2): e1012022, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38359079

RESUMEN

Enterovirus A71 (EV-A71) infection involves a variety of receptors. Among them, two transmembrane protein receptors have been investigated in detail and shown to be critical for infection: P-selectin glycoprotein ligand-1 (PSGL-1) in lymphocytes (Jurkat cells), and scavenger receptor class B member 2 (SCARB2) in rhabdomyosarcoma (RD) cells. PSGL-1 and SCARB2 have been reported to be expressed on the surface of Jurkat and RD cells, respectively. In the work reported here, we investigated the roles of PSGL-1 and SCARB2 in the process of EV-A71 entry. We first examined the expression of SCARB2 in Jurkat cells, and detected it within the cytoplasm, but not on the cell surface. Further, using PSGL-1 and SCARB2 knockout cells, we found that although both PSGL-1 and SCARB2 are essential for virus infection of Jurkat cells, virus attachment to these cells requires only PSGL-1. These results led us to evaluate the cell surface expression and the roles of SCARB2 in other EV-A71-susceptible cell lines. Surprisingly, in contrast to the results of previous studies, we found that SCARB2 is absent from the surface of RD cells and other susceptible cell lines we examined, and that although SCARB2 is essential for infection of these cells, it is dispensable for virus attachment. These results indicate that a receptor other than SCARB2 is responsible for virus attachment to the cell and probably for internalization of virions, not only in Jurkat cells but also in RD cells and other EV-A71-susceptible cells. SCARB2 is highly concentrated in lysosomes and late endosomes, where it is likely to trigger acid-dependent uncoating of virions, the critical final step of the entry process. Our results suggest that the essential interactions between EV-A71 and SCARB2 occur, not at the cell surface, but within the cell.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Membrana Celular/metabolismo , Línea Celular , Receptores Depuradores/genética , Receptores Depuradores/metabolismo , Proteínas de Membrana de los Lisosomas/genética
2.
J Virol ; 98(7): e0081324, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38904364

RESUMEN

Enteroviruses are single-stranded, positive-sense RNA viruses causing endoplasmic reticulum (ER) stress to induce or modulate downstream signaling pathways known as the unfolded protein responses (UPR). However, viral and host factors involved in the UPR related to viral pathogenesis remain unclear. In the present study, we aimed to identify the major regulator of enterovirus-induced UPR and elucidate the underlying molecular mechanisms. We showed that host Golgi-specific brefeldin A-resistant guanine nucleotide exchange factor 1 (GBF1), which supports enteroviruses replication, was a major regulator of the UPR caused by infection with enteroviruses. In addition, we found that severe UPR was induced by the expression of 3A proteins encoded in human pathogenic enteroviruses, such as enterovirus A71, coxsackievirus B3, poliovirus, and enterovirus D68. The N-terminal-conserved residues of 3A protein interact with the GBF1 and induce UPR through inhibition of ADP-ribosylation factor 1 (ARF1) activation via GBF1 sequestration. Remodeling and expansion of ER and accumulation of ER-resident proteins were observed in cells infected with enteroviruses. Finally, 3A induced apoptosis in cells infected with enteroviruses via activation of the protein kinase RNA-like endoplasmic reticulum kinase (PERK)/C/EBP homologous protein (CHOP) pathway of UPR. Pharmaceutical inhibition of PERK suppressed the cell death caused by infection with enteroviruses, suggesting the UPR pathway is a therapeutic target for treating diseases caused by infection with enteroviruses.IMPORTANCEInfection caused by several plus-stranded RNA viruses leads to dysregulated ER homeostasis in the host cells. The mechanisms underlying the disruption and impairment of ER homeostasis and its significance in pathogenesis upon enteroviral infection remain unclear. Our findings suggested that the 3A protein encoded in human pathogenic enteroviruses disrupts ER homeostasis by interacting with GBF1, a major regulator of UPR. Enterovirus-mediated infections drive ER into pathogenic conditions, where ER-resident proteins are accumulated. Furthermore, in such scenarios, the PERK/CHOP signaling pathway induced by an unresolved imbalance of ER homeostasis essentially drives apoptosis. Therefore, elucidating the mechanisms underlying the virus-induced disruption of ER homeostasis might be a potential target to mitigate the pathogenesis of enteroviruses.


Asunto(s)
Estrés del Retículo Endoplásmico , Retículo Endoplásmico , Factores de Intercambio de Guanina Nucleótido , Homeostasis , Respuesta de Proteína Desplegada , Humanos , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Apoptosis , Enterovirus/fisiología , Enterovirus/metabolismo , Células HeLa , Replicación Viral , Factor 1 de Ribosilacion-ADP/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Células HEK293 , Interacciones Huésped-Patógeno , Transducción de Señal , eIF-2 Quinasa/metabolismo
3.
J Virol ; 98(6): e0026824, 2024 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-38775480

RESUMEN

Enteroviruses are the causative agents associated with several human and animal diseases, posing a significant threat to human and animal health. As one of the host immune defense strategies, innate immunity plays a crucial role in defending against invading pathogens, where the host utilizes a variety of mechanisms to inhibit or eliminate the pathogen. Here, we report a new strategy for the host to repress enterovirus replication by the 78 kDa glucose-regulated protein (GRP78), also known as heat shock protein family A member 5 (HSPA5). The GRP78 recognizes the EV-encoded RNA-dependent RNA polymerases (RdRPs) 3D protein and interacts with the nuclear factor kappa B kinase complex (CHUK) and subunit beta gene (IKBKB) to facilitate the phosphorylation and nuclear translocation of NF-κB, which induces the production of inflammatory factors and leads to a broad inhibition of enterovirus replication. These findings demonstrate a new role of GRP78 in regulating host innate immunity in response to viral infection and provide new insights into the mechanism underlying enterovirus replication and NF-κB activation.IMPORTANCEGRP78 is known as a molecular chaperone for protein folding and plays a critical role in maintaining protein folding and participating in cell proliferation, cell survival, apoptosis, and metabolism. However, the functions of GRP78 to participate in enterovirus genome replication and innate immune responses are rarely documented. In this study, we explored the functions of the EV-3D-interacting protein GRP78 and found that GRP78 inhibits enterovirus replication by activating NF-κB through binding to EV-F 3D and interacting with the NF-κB signaling molecules CHUK/IKBKB. This is the first report that GRP78 interacts with CHUK/IKBKB to activate the NF-κB signaling pathway, which leads to the expression of the proinflammatory cytokines and inhibition of enterovirus replication. These results demonstrate a unique mechanism of virus replication regulation by GRP78 and provide insights into the prevention and treatment of viral infections.


Asunto(s)
Chaperón BiP del Retículo Endoplásmico , Quinasa I-kappa B , FN-kappa B , Proteínas Virales , Replicación Viral , Animales , Humanos , Chlorocebus aethiops , Chaperón BiP del Retículo Endoplásmico/metabolismo , Enterovirus/crecimiento & desarrollo , Enterovirus/inmunología , Enterovirus/metabolismo , Enterovirus/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Infecciones por Enterovirus/inmunología , Proteínas de Choque Térmico/metabolismo , Células HEK293 , Interacciones Huésped-Patógeno/inmunología , Quinasa I-kappa B/metabolismo , Inmunidad Innata , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , FN-kappa B/metabolismo , Fosforilación , Unión Proteica , ARN Polimerasa Dependiente del ARN/metabolismo , Transducción de Señal , Células Vero , Proteínas Virales/metabolismo
4.
PLoS Pathog ; 19(4): e1011317, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37071661

RESUMEN

Metabolism is key to cellular processes that underlie the ability of a virus to productively infect. Polyamines are small metabolites vital for many host cell processes including proliferation, transcription, and translation. Polyamine depletion also inhibits virus infection via diverse mechanisms, including inhibiting polymerase activity and viral translation. We showed that Coxsackievirus B3 (CVB3) attachment requires polyamines; however, the mechanism was unknown. Here, we report polyamines' involvement in translation, through a process called hypusination, promotes expression of cholesterol synthesis genes by supporting SREBP2 synthesis, the master transcriptional regulator of cholesterol synthesis genes. Measuring bulk transcription, we find polyamines support expression of cholesterol synthesis genes, regulated by SREBP2. Thus, polyamine depletion inhibits CVB3 by depleting cellular cholesterol. Exogenous cholesterol rescues CVB3 attachment, and mutant CVB3 resistant to polyamine depletion exhibits resistance to cholesterol perturbation. This study provides a novel link between polyamine and cholesterol homeostasis, a mechanism through which polyamines impact CVB3 infection.


Asunto(s)
Infecciones por Coxsackievirus , Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/metabolismo , Poliaminas/metabolismo , Replicación Viral , Enterovirus Humano B
5.
PLoS Pathog ; 19(9): e1011673, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37721955

RESUMEN

The cellular protein GBF1, an activator of Arf GTPases (ArfGEF: Arf guanine nucleotide exchange factor), is recruited to the replication organelles of enteroviruses through interaction with the viral protein 3A, and its ArfGEF activity is required for viral replication, however how GBF1-dependent Arf activation supports the infection remains enigmatic. Here, we investigated the development of resistance of poliovirus, a prototype enterovirus, to increasing concentrations of brefeldin A (BFA), an inhibitor of GBF1. High level of resistance required a gradual accumulation of multiple mutations in the viral protein 2C. The 2C mutations conferred BFA resistance even in the context of a 3A mutant previously shown to be defective in the recruitment of GBF1 to replication organelles, and in cells depleted of GBF1, suggesting a GBF1-independent replication mechanism. Still, activated Arfs accumulated on the replication organelles of this mutant even in the presence of BFA, its replication was inhibited by a pan-ArfGEF inhibitor LM11, and the BFA-resistant phenotype was compromised in Arf1-knockout cells. Importantly, the mutations strongly increased the interaction of 2C with the activated form of Arf1. Analysis of other enteroviruses revealed a particularly strong interaction of 2C of human rhinovirus 1A with activated Arf1. Accordingly, the replication of this virus was significantly less sensitive to BFA than that of poliovirus. Thus, our data demonstrate that enterovirus 2Cs may behave like Arf1 effector proteins and that GBF1 but not Arf activation can be dispensable for enterovirus replication. These findings have important implications for the development of host-targeted anti-viral therapeutics.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Proteínas de Unión al GTP Monoméricas , Poliovirus , Humanos , Enterovirus/metabolismo , Proteínas de Unión al GTP Monoméricas/metabolismo , Factor 1 de Ribosilacion-ADP/genética , Factor 1 de Ribosilacion-ADP/metabolismo , Células HeLa , Poliovirus/genética , Proteínas Virales/metabolismo , Antígenos Virales/metabolismo , Brefeldino A/farmacología , Factores de Intercambio de Guanina Nucleótido/genética , Factores de Intercambio de Guanina Nucleótido/metabolismo
6.
FASEB J ; 38(2): e23430, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38243751

RESUMEN

Intestinal tuft cells, a kind of epithelial immune cells, rapidly expand in response to pathogenic infections, which is associated with infection-induced interleukin 25 (IL-25) upregulation. However, the metabolic mechanism of IL-25-induced tuft cell expansion is largely unknown. Folate metabolism provides essential purine and methyl substrates for cell proliferation and differentiation. Thus, we aim to investigate the roles of folate metabolism playing in IL-25-induced tuft cell expansion by enteroviral infection and recombinant murine IL-25 (rmIL-25) protein-stimulated mouse models. At present, enteroviruses, such as EV71, CVA16, CVB3, and CVB4, upregulated IL-25 expression and induced tuft cell expansion in the intestinal tissues of mice. However, EV71 did not induce intestinal tuft cell expansion in IL-25-/- mice. Interestingly, compared to the mock group, folate was enriched in the intestinal tissues of both the EV71-infected group and the rmIL-25 protein-stimulated group. Moreover, folate metabolism supported IL-25-induced tuft cell expansion since both folate-depletion and anti-folate MTX-treated mice had a disrupted tuft cell expansion in response to rmIL-25 protein stimulation. In summary, our data suggested that folate metabolism supported intestinal tuft cell expansion in response to enterovirus-induced IL-25 expression, which provided a new insight into the mechanisms of tuft cell expansion from the perspective of folate metabolism.


Asunto(s)
Infecciones por Enterovirus , Ácido Fólico , Células en Penacho , Animales , Ratones , Proliferación Celular , Enterovirus/metabolismo , Infecciones por Enterovirus/metabolismo , Interleucina-17/metabolismo , Células en Penacho/metabolismo , Ácido Fólico/farmacología
7.
Cell ; 141(5): 799-811, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20510927

RESUMEN

Many RNA viruses remodel intracellular membranes to generate specialized sites for RNA replication. How membranes are remodeled and what properties make them conducive for replication are unknown. Here we show how RNA viruses can manipulate multiple components of the cellular secretory pathway to generate organelles specialized for replication that are distinct in protein and lipid composition from the host cell. Specific viral proteins modulate effector recruitment by Arf1 GTPase and its guanine nucleotide exchange factor GBF1, promoting preferential recruitment of phosphatidylinositol-4-kinase IIIbeta (PI4KIIIbeta) to membranes over coat proteins, yielding uncoated phosphatidylinositol-4-phosphate (PI4P) lipid-enriched organelles. The PI4P-rich lipid microenvironment is essential for both enteroviral and flaviviral RNA replication; PI4KIIIbeta inhibition interferes with this process; and enteroviral RNA polymerases specifically bind PI4P. These findings reveal how RNA viruses can selectively exploit specific elements of the host to form specialized organelles where cellular phosphoinositide lipids are key to regulating viral RNA replication.


Asunto(s)
Enterovirus/metabolismo , Flavivirus/metabolismo , ARN Viral/metabolismo , Vías Secretoras , Replicación Viral , Retículo Endoplásmico/metabolismo , Células HeLa , Humanos , Fosfatos de Fosfatidilinositol/metabolismo
8.
PLoS Pathog ; 18(10): e1010906, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36306280

RESUMEN

As ultimate parasites, viruses depend on host factors for every step of their life cycle. On the other hand, cells evolved multiple mechanisms of detecting and interfering with viral replication. Yet, our understanding of the complex ensembles of pro- and anti-viral factors is very limited in virtually every virus-cell system. Here we investigated the proteins recruited to the replication organelles of poliovirus, a representative of the genus Enterovirus of the Picornaviridae family. We took advantage of a strict dependence of enterovirus replication on a host protein GBF1, and established a stable cell line expressing a truncated GBF1 fused to APEX2 peroxidase that effectively supported viral replication upon inhibition of the endogenous GBF1. This construct biotinylated multiple host and viral proteins on the replication organelles. Among the viral proteins, the polyprotein cleavage intermediates were overrepresented, suggesting that the GBF1 environment is linked to viral polyprotein processing. The proteomics characterization of biotinylated host proteins identified multiple proteins previously associated with enterovirus replication, as well as more than 200 new factors recruited to the replication organelles. RNA metabolism proteins, many of which normally localize in the nucleus, constituted the largest group, underscoring the massive release of nuclear factors into the cytoplasm of infected cells and their involvement in viral replication. Functional analysis of several newly identified proteins revealed both pro- and anti-viral factors, including a novel component of infection-induced stress granules. Depletion of these proteins similarly affected the replication of diverse enteroviruses indicating broad conservation of the replication mechanisms. Thus, our data significantly expand the knowledge of the composition of enterovirus replication organelles, provide new insights into viral replication, and offer a novel resource for identifying targets for anti-viral interventions.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Poliovirus , Humanos , Enterovirus/metabolismo , Biotinilación , Poliovirus/fisiología , Replicación Viral , Proteínas Virales/metabolismo , Poliproteínas/metabolismo , Antivirales/farmacología , Factores de Intercambio de Guanina Nucleótido/metabolismo
9.
Proteomics ; 23(2): e2200362, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36254857

RESUMEN

Enterovirus A71 (EV71) infection can cause hand, foot, and mouth disease (HFMD) and severe neurological complications in children. However, the biological processes regulated by EV71 remain poorly understood. Herein, proteomics and metabonomics studies were conducted to uncover the mechanism of EV71 infection in rhabdomyosarcoma (RD) cells and identify potential drug targets. Differential expressed proteins from enriched membrane were analyzed by isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics technology. Twenty-six differential proteins with 1.5-fold (p < 0.05) change were detected, including 14 upregulated proteins and 12 downregulated proteins. The upregulated proteins are mainly involved in metabolic process, especially in the glycolysis pathway. Alpha-enolase (ENO1) protein was found to increase with temporal dependence following EV71 infection. The targeted metabolomics analysis revealed that glucose absorption and glycolysis metabolites were increased after EV71 infection. The glycolysis pathway was inhibited by knocking down ENO1 or the use of a glycolysis inhibitor (dichloroacetic acid [DCA]); and we found that EV71 infection was inhibited by depleting ENO1 or using DCA. Our study indicates that EV71 may reprogram glucose metabolism by activating glycolysis, and EV71 infection can be inhibited by interrupting the glycolysis pathway. ENO1 may be a potential target against EV71, and DCA could act as an inhibitor of EV71.


Asunto(s)
Enterovirus Humano A , Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Humanos , Enterovirus/metabolismo , Enterovirus Humano A/metabolismo , Proteómica , Infecciones por Enterovirus/metabolismo , Proteínas/metabolismo , Metabolómica , Redes y Vías Metabólicas
10.
Proc Natl Acad Sci U S A ; 117(12): 6784-6791, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152109

RESUMEN

Infection by Rhinovirus-C (RV-C), a species of Picornaviridae Enterovirus, is strongly associated with childhood asthma exacerbations. Cellular binding and entry by all RV-C, which trigger these episodes, is mediated by the first extracellular domain (EC1) of cadherin-related protein 3 (CDHR3), a surface cadherin-like protein expressed primarily on the apical surfaces of ciliated airway epithelial cells. Although recombinant EC1 is a potent inhibitor of viral infection, there is no molecular description of this protein or its binding site on RV-C. Here we present cryo-electron microscopy (EM) data resolving the EC1 and EC1+2 domains of human CDHR3 complexed with viral isolate C15a. Structure-suggested residues contributing to required interfaces on both EC1 and C15a were probed and identified by mutagenesis studies with four different RV-C genotypes. In contrast to most other rhinoviruses, which bind intercellular adhesion molecule 1 receptors via a capsid protein VP1-specific fivefold canyon feature, the CDHR3 EC1 contacts C15a, and presumably all RV-Cs, in a unique cohesive footprint near the threefold vertex, encompassing residues primarily from viral protein VP3, but also from VP1 and VP2. The EC1+2 footprint on C15a is similar to that of EC1 alone but shows that steric hindrance imposed by EC2 would likely prevent multiprotein binding by the native receptor at any singular threefold vertex. Definition of the molecular interface between the RV-Cs and their receptors provides new avenues that can be explored for potential antiviral therapies.


Asunto(s)
Cadherinas/química , Cadherinas/metabolismo , Microscopía por Crioelectrón/métodos , Enterovirus/química , Enterovirus/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Proteínas Virales/metabolismo , Proteínas Relacionadas con las Cadherinas , Enterovirus/clasificación , Infecciones por Enterovirus/virología , Células HeLa , Humanos , Modelos Moleculares , Conformación Proteica
11.
Proc Natl Acad Sci U S A ; 117(44): 27598-27607, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33060297

RESUMEN

Human rhinoviruses (RVs) are positive-strand RNA viruses that cause respiratory tract disease in children and adults. Here we show that the innate immune signaling protein STING is required for efficient replication of members of two distinct RV species, RV-A and RV-C. The host factor activity of STING was identified in a genome-wide RNA interference (RNAi) screen and confirmed in primary human small airway epithelial cells. Replication of RV-A serotypes was strictly dependent on STING, whereas RV-B serotypes were notably less dependent. Subgenomic RV-A and RV-C RNA replicons failed to amplify in the absence of STING, revealing it to be required for a step in RNA replication. STING was expressed on phosphatidylinositol 4-phosphate (PI4P)-enriched membranes and was enriched in RV-A16 compared with RV-B14 replication organelles isolated in isopycnic gradients. The host factor activity of STING was species-specific, as murine STING (mSTING) did not rescue RV-A16 replication in STING-deficient cells. This species specificity mapped primarily to the cytoplasmic, ligand-binding domain of STING. Mouse-adaptive mutations in the RV-A16 2C protein allowed for robust replication in cells expressing mSTING, suggesting a role for 2C in recruiting STING to RV-A replication organelles. Palmitoylation of STING was not required for RV-A16 replication, nor was the C-terminal tail of STING that mediates IRF3 signaling. Despite co-opting STING to promote its replication, interferon signaling in response to STING agonists remained intact in RV-A16 infected cells. These data demonstrate a surprising requirement for a key host mediator of innate immunity to DNA viruses in the life cycle of a small pathogenic RNA virus.


Asunto(s)
Enterovirus/patogenicidad , Interacciones Huésped-Patógeno/inmunología , Proteínas de la Membrana/metabolismo , Replicación Viral/inmunología , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Resfriado Común/inmunología , Resfriado Común/virología , Enterovirus/genética , Enterovirus/inmunología , Enterovirus/metabolismo , Células HeLa , Humanos , Inmunidad Innata , Factor 3 Regulador del Interferón/metabolismo , Lipoilación , Proteínas de la Membrana/agonistas , Mutación , Dominios Proteicos/genética , Transducción de Señal , Especificidad de la Especie , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo
12.
Mem Inst Oswaldo Cruz ; 118: e220252, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36946853

RESUMEN

Neurodegenerative diseases (NDs) are increasingly common, especially in populations with higher life expectancies. They are associated mainly with protein metabolism and structure changes, leading to neuronal cell death. Viral infections affect these cellular processes and may be involved in the etiology of several neurological illnesses, particularly NDs. Enteroviruses (EVs) frequently infect the central nervous system (CNS), causing neurological disease. Inflammation, disruption of the host autophagy machinery, and deregulation and accumulation/misfolding of proteins are the main alterations observed after infection by an EV. In this perspective, we discuss the most recent findings on the subject, examining the possible role of EVs in the development of NDs, and shedding light on the putative role played by these viruses in developing NDs.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedades Neurodegenerativas , Humanos , Infecciones por Enterovirus/complicaciones , Enterovirus/metabolismo , Antígenos Virales , Inflamación
13.
Virologie (Montrouge) ; 27(3): 35-49, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37476987

RESUMEN

Enteroviruses (EVs) include many human pathogens of increasing public health concern. These EVs are often associated with mild clinical manifestations, but they can lead to serious complications such as encephalitis, meningitis, pneumonia, myocarditis or poliomyelitis. Despite significant advances, there is no approved antiviral therapy for the treatment of enterovirus infections. Due to the high genotypic diversity of EVs, molecules targeting highly conserved viral proteins may be considered for developing a pan-EV treatment. In this regard, the ATPase/Helicase 2C, which is a highly conserved non-structural protein among EVs, has essential functions for viral replication and is therefore an attractive antiviral target. Recent functional and structural studies on the 2C protein led to the identification of molecules showing ex vivo anti-EV activity and associated with resistance mutations on the coding sequence of the 2C protein. This review presents the current state of knowledge about the 2C protein from an antiviral target perspective and the mode of action of specific inhibitors for this therapeutic target.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Humanos , Enterovirus/genética , Enterovirus/metabolismo , Antivirales/farmacología , Antivirales/uso terapéutico , Infecciones por Enterovirus/tratamiento farmacológico , Antígenos Virales/metabolismo , Antígenos Virales/farmacología , Antígenos Virales/uso terapéutico , Replicación Viral
14.
PLoS Pathog ; 16(9): e1008927, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32997711

RESUMEN

Viruses cleave cellular proteins to remodel the host proteome. The study of these cleavages has revealed mechanisms of immune evasion, resource exploitation, and pathogenesis. However, the full extent of virus-induced proteolysis in infected cells is unknown, mainly because until recently the technology for a global view of proteolysis within cells was lacking. Here, we report the first comprehensive catalog of proteins cleaved upon enterovirus infection and identify the sites within proteins where the cleavages occur. We employed multiple strategies to confirm protein cleavages and assigned them to one of the two enteroviral proteases. Detailed characterization of one substrate, LSM14A, a p body protein with a role in antiviral immunity, showed that cleavage of this protein disrupts its antiviral function. This study yields a new depth of information about the host interface with a group of viruses that are both important biological tools and significant agents of disease.


Asunto(s)
Cisteína Endopeptidasas/metabolismo , Infecciones por Enterovirus/virología , Enterovirus/patogenicidad , Replicación Viral/fisiología , Antivirales/metabolismo , Enterovirus/metabolismo , Interacciones Huésped-Patógeno/fisiología , Humanos , Proteolisis , Proteínas Virales/metabolismo
15.
EMBO Rep ; 21(2): e48441, 2020 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-31829496

RESUMEN

The lipid kinase PI4KB, which generates phosphatidylinositol 4-phosphate (PI4P), is a key enzyme in regulating membrane transport and is also hijacked by multiple picornaviruses to mediate viral replication. PI4KB can interact with multiple protein binding partners, which are differentially manipulated by picornaviruses to facilitate replication. The protein c10orf76 is a PI4KB-associated protein that increases PI4P levels at the Golgi and is essential for the viral replication of specific enteroviruses. We used hydrogen-deuterium exchange mass spectrometry to characterize the c10orf76-PI4KB complex and reveal that binding is mediated by the kinase linker of PI4KB, with formation of the heterodimeric complex modulated by PKA-dependent phosphorylation. Complex-disrupting mutations demonstrate that PI4KB is required for membrane recruitment of c10orf76 to the Golgi, and that an intact c10orf76-PI4KB complex is required for the replication of c10orf76-dependent enteroviruses. Intriguingly, c10orf76 also contributed to proper Arf1 activation at the Golgi, providing a putative mechanism for the c10orf76-dependent increase in PI4P levels at the Golgi.


Asunto(s)
Enterovirus , Animales , Enterovirus/genética , Enterovirus/metabolismo , Aparato de Golgi/metabolismo , Fosfatos de Fosfatidilinositol , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Unión Proteica , Células Sf9 , Replicación Viral
16.
Acta Pharmacol Sin ; 43(4): 977-991, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34321612

RESUMEN

Enterovirus 71 (EV71) is the major pathogens of human hand, foot, and mouth disease (HFMD). EV71 efficiently escapes innate immunity responses of the host to cause infection. At present, no effective antiviral drugs for EV71 are available. Anemoside B4 (B4) is a natural saponin isolated from the roots of Pulsatilla chinensis (Bunge) Regel. P. chinensis extracts that shows a wide variety of biological activities. In this study, we investigated the antiviral activities of B4 against EV71 both in cell culture and in suckling mice. We showed that B4 (12.5-200 µM) dose dependently increased the viability of EV71-infected RD cells with an IC50 value of 24.95 ± 0.05 µM against EV71. The antiviral activity of B4 was associated with enhanced interferon (IFN)-ß response, since knockdown of IFN-ß abolished its antiviral activity. We also confirmed that the enhanced IFN response was mediated via activation of retinoic acid-inducible gene I (RIG-I) like receptors (RLRs) pathway, and it was executed by upregulation of 14-3-3 protein, which disrupted the interaction between yes-associated protein (YAP) and interferon regulatory factor 3 (IRF3). By using amino acids in cell culture (SILAC)-based proteomics profiling, we identified the Hippo pathway as the top-ranking functional cluster in B4-treated EV71-infected cells. In vivo experiments were conducted in suckling mice (2-day-old) infected with EV71 and subsequently B4 (200 mg · kg-1 · d-1, i.p.) was administered for 16 days. We showed that B4 administration effectively suppressed EV71 replication and improved muscle inflammation and limb activity. Meanwhile, B4 administration regulated the expressions of HFMD biomarkers IL-10 and IFN-γ, attenuating complications of EV71 infection. Collectively, our results suggest that B4 could enhance the antiviral effect of IFN-ß by orchestrating Hippo and RLRs pathway, and B4 would be a potential lead compound for developing an anti-EV71 drug.


Asunto(s)
Enterovirus Humano A , Enterovirus , Interferón Tipo I , Saponinas , Animales , Enterovirus/metabolismo , Interferón Tipo I/metabolismo , Ratones , Saponinas/farmacología
17.
Molecules ; 27(13)2022 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35807341

RESUMEN

Biotransformation of specific saponins in the valuable medical plants to increase their bioavailability and pharmaceutical activities has attracted more and more attention. A gene encoding a thermophilic glycoside hydrolase from Fervidobaterium pennivorans DSM9078 was cloned and expressed in Escherichia coli. The purified recombinant enzyme, exhibiting endoglucanase cellulase activity, was used to transform gypenoside XLIX into gylongiposide I via highly selective and efficient hydrolysis of the glucose moiety linked to the C21 position in gypenoside XLIX. Under the optimal reaction conditions for large scale production of gylongiposide I, 35 g gypenoside XLIX was transformed by using 20 g crude enzyme at pH 6.0 and 80 °C for 4 h with a molar yield of 100%. Finally, 11.51 g of gylongiposide I was purified using a silica gel column with 91.84% chromatographic purity. Furthermore, inhibitory activities of gypenoside XLIX and gylongiposide I against Enterovirus 71 (EV71) were investigated. Importantly, the EC50 of gypenoside XLIX and gylongiposide I calculated from viral titers in supernatants was 3.53 µM and 1.53 µM, respectively. Moreover, the transformed product gylongiposide I has better anti-EV71 activity than the glycosylated precursor. In conclusion, this enzymatic method would be useful in the large-scale production of gylongiposide I, which would be a novel potent anti-EV71 candidate.


Asunto(s)
Enterovirus Humano A , Enterovirus , Saponinas , Antivirales/metabolismo , Antivirales/farmacología , Biotransformación , Enterovirus/metabolismo , Gynostemma/química , Imidazoles , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Saponinas/química , Sulfonamidas , Tiofenos , Triterpenos
18.
Molecules ; 27(13)2022 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-35807435

RESUMEN

Enterovirus 71 (EV71) is a dominant pathogenic agent that may cause severe central nervous system (CNS) diseases among infants and young children in the Asia-pacific. The inflammasome is closely implicated in EV71-induced CNS injuries through a series of signaling pathways. However, the activation pathway of NLRP3 inflammasome involved in EV71-mediated CNS injuries remains poorly defined. In the studies, EV71 infection, ERK1/2 phosphorylation, and activation of NLRP3 are abolished in glioblastoma cells with low vimentin expression by CRISPR/Cas9-mediated knockdown. PD098059, an inhibitor of p-ERK, remarkably blocks the vimentin-mediated ERK1/2 phosphorylation in EV71-infected cells. Nuclear translocation of NF-κB p65 is dependent on p-ERK in a time-dependent manner. Moreover, NLRP3 activation and caspase-1 production are limited in EV71-infected cells upon the caffeic acid phenethyl ester (CAPE) administration, an inhibitor of NF-κB, which contributes to the inflammasome regulation. In conclusion, these results suggest that EV71-mediated NLRP3 inflammasome could be activated via the VIM-ERK-NF-κB pathway, and the treatment of the dephosphorylation of ERK and NF-κB inhibitors is beneficial to host defense in EV71-infected CNS.


Asunto(s)
Enterovirus , Glioblastoma , FN-kappa B , Vimentina , Niño , Preescolar , Enterovirus/metabolismo , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/virología , Humanos , Inflamasomas/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Fosforilación , Vimentina/genética , Vimentina/metabolismo
19.
Proteins ; 89(10): 1365-1375, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34085313

RESUMEN

The coxsackievirus A16 (CVA16) is a highly contagious virus that causes the hand, foot, and mouth disease, which seriously threatens the health of children. At present, there are still no available antiviral drugs or effective treatments against the infection of CVA16, and thus it is of great significance to develop anti-CVA16 vaccines. However, the intrinsic uncoating property of the capsid may destroy the neutralizing epitopes and influence its immunogenicity, which hinders the vaccine developments. In the present work, the functional-quantity-based elastic network model analysis method developed by our group was extended to combine with group theory to investigate the uncoating motions of the CVA16 capsid, and then the functionally key residues controlling the uncoating motions were identified by our functional-quantity-based perturbation method. Several motion modes encoded in the topological structure of the capsid were revealed to be responsible for the uncoating of CVA16 particle. These modes predominantly contribute to the fluctuation of the gyration radius of the capsid. Then, by using the perturbation method, four clusters of key sites involved in the uncoating motions were identified, whose perturbations induce significant changes in the fluctuation of the gyration radius. These key residues are mainly located at the 2-fold channels, the quasi 3-fold channels, the bottom of the canyons, and the inter-subunit interfaces around the 3-fold axes. Our studies are helpful for better understanding the uncoating mechanism of the CVA16 capsid and provide potential target sites to prevent the uncoating motions, which is valuable for the vaccine design against CVA16.


Asunto(s)
Proteínas de la Cápside/química , Cápside/química , Infecciones por Coxsackievirus/virología , Enterovirus/metabolismo , Humanos
20.
J Virol ; 94(6)2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31852778

RESUMEN

Enteric viruses infect the gastrointestinal tract, and bacteria can promote replication and transmission of several enteric viruses. Viruses can be inactivated by exposure to heat or bleach, but poliovirus, coxsackievirus B3, and reovirus can be stabilized by bacteria or bacterial polysaccharides, limiting inactivation and aiding transmission. We previously demonstrated that certain N-acetylglucosamine (GlcNAc)-containing polysaccharides can stabilize poliovirus. However, the detailed virus-glycan binding specificity and glycan chain length requirements, and thus the mechanism of virion stabilization, have been unclear. A previous limitation was our lack of defined-length glycans to probe mechanisms and consequences of virus-glycan interactions. Here, we generated a panel of polysaccharides and oligosaccharides to determine the properties required for binding and stabilization of poliovirus. Poliovirus virions are nonenveloped icosahedral 30-nm particles with 60 copies of each of four capsid proteins, VP1 to VP4. VP1 surrounds the 5-fold axis, and our past work indicates that this region likely contains the glycan binding site. We found that relatively short GlcNAc oligosaccharides, such as a six-unit GlcNAc oligomer, can bind poliovirus but fail to enhance virion stability. Virion stabilization required binding of long GlcNAc polymers of greater than 20 units. Our data suggest a model where GlcNAc polymers of greater than 20 units bind and bridge adjacent 5-fold axes, thus aiding capsid rigidity and stability. This study provides a deeper understanding of enteric virus-bacterial glycan interactions, which are important for virion environmental stability and transmission.IMPORTANCE Enteric viruses are transmitted through the fecal-oral route, but how enteric viruses survive in the environment is unclear. Previously, we found that bacterial polysaccharides enhance poliovirus stability against heat or bleach inactivation, but the specific molecular requirements have been unknown. Here, we showed that certain short-chain oligosaccharides can bind to poliovirus but do not increase virion stability. Long-chain polysaccharides bind and may bridge adjacent sites on the viral surface, thus increasing capsid rigidity and stability. This work defines the unique interactions of poliovirus and glycans, which provides insight into virion environmental stability and transmission.


Asunto(s)
Enterovirus/metabolismo , Oligosacáridos/metabolismo , Poliovirus/fisiología , Polisacáridos , Virión/fisiología , Animales , Bacterias/metabolismo , Proteínas de la Cápside/metabolismo , Chlorocebus aethiops , Infecciones por Enterovirus/virología , Células HeLa , Humanos , Lipopolisacáridos/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA