Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS Genet ; 16(12): e1009232, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33347437

RESUMEN

Motile cilia can beat with distinct patterns, but how motility variations are regulated remain obscure. Here, we have studied the role of the coiled-coil protein CFAP53 in the motility of different cilia-types in the mouse. While node (9+0) cilia of Cfap53 mutants were immotile, tracheal and ependymal (9+2) cilia retained motility, albeit with an altered beat pattern. In node cilia, CFAP53 mainly localized at the base (centriolar satellites), whereas it was also present along the entire axoneme in tracheal cilia. CFAP53 associated tightly with microtubules and interacted with axonemal dyneins and TTC25, a dynein docking complex component. TTC25 and outer dynein arms (ODAs) were lost from node cilia, but were largely maintained in tracheal cilia of Cfap53-/- mice. Thus, CFAP53 at the base of node cilia facilitates axonemal transport of TTC25 and dyneins, while axonemal CFAP53 in 9+2 cilia stabilizes dynein binding to microtubules. Our study establishes how differential localization and function of CFAP53 contributes to the unique motion patterns of two important mammalian cilia-types.


Asunto(s)
Dineínas Axonemales/metabolismo , Axonema/metabolismo , Transporte Biológico Activo/genética , Movimiento Celular/genética , Cilios/metabolismo , Embrión de Mamíferos/metabolismo , Microtúbulos/metabolismo , Animales , Dineínas Axonemales/genética , Axonema/genética , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Cilios/genética , Embrión de Mamíferos/fisiología , Embrión de Mamíferos/ultraestructura , Epéndimo/embriología , Epéndimo/metabolismo , Epéndimo/fisiología , Técnica del Anticuerpo Fluorescente , Genotipo , Inmunoprecipitación , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microtúbulos/genética , Mutación , Fenotipo , Tráquea/embriología , Tráquea/metabolismo , Tráquea/fisiología , Tráquea/ultraestructura
2.
Glia ; 65(7): 1032-1042, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28168763

RESUMEN

The V-SVZ adult neurogenic niche is located in the wall of the lateral ventricles and contains neural stem cells, with self-renewing and differentiating ability and postmitotic multiciliated ependymal cells, an important structural and trophic component of the niche. The niche is established at postnatal stages from a subpopulation of radial glial cells, determined during embryogenesis. Radial glial cells constitute a heterogeneous population, which give rise, in addition to niche cellular components, to neurons and glial cells. The mechanisms that direct their fate commitment towards V-SVZ niche cells are largely unknown. In the present review, we discuss recent findings on the signaling networks governing fate commitment decisions of radial glial cells towards multiciliated ependymal cells. We highlight the role of two novel factors: McIdas and GemC1/Lynkeas and the molecular pathways which they activate in order to promote ependymal cell differentiation. Finally, we discuss a possible crosstalk of known signaling pathways, such as Notch, STAT3, and BMPs, for the specification of ependymal versus adult neural stem cells in the V-SVZ niche. GLIA 2017;65:1032-1042.


Asunto(s)
Diferenciación Celular/fisiología , Epéndimo/citología , Epéndimo/fisiología , Células Ependimogliales/fisiología , Ventrículos Laterales/citología , Animales , Proliferación Celular , Células-Madre Neurales/fisiología , Transducción de Señal/fisiología
3.
Adv Exp Med Biol ; 1041: 55-79, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29204829

RESUMEN

The ependyma of the spinal cord is currently proposed as a latent neural stem cell niche. This chapter discusses recent knowledge on the developmental origin and nature of the heterogeneous population of cells that compose this stem cell microenviroment, their diverse physiological properties and regulation. The chapter also reviews relevant data on the ependymal cells as a source of plasticity for spinal cord repair.


Asunto(s)
Epéndimo/fisiología , Células-Madre Neurales/fisiología , Médula Espinal/fisiología , Nicho de Células Madre/fisiología , Animales , Diferenciación Celular/fisiología , Epéndimo/citología , Humanos , Regeneración Nerviosa/fisiología , Células-Madre Neurales/citología , Médula Espinal/citología , Traumatismos de la Médula Espinal/patología , Traumatismos de la Médula Espinal/fisiopatología
4.
Glia ; 62(5): 790-803, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24677590

RESUMEN

Neurogenesis persists in the adult subventricular zone (SVZ) of the mammalian brain. During aging, the SVZ neurogenic capacity undergoes a progressive decline, which is attributed to a decrease in the population of neural stem cells (NSCs). However, the behavior of the NSCs that remain in the aged brain is not fully understood. Here we performed a comparative ultrastructural study of the SVZ niche of 2-month-old and 24-month-old male C57BL/6 mice, focusing on the NSC population. Using thymidine-labeling, we showed that residual NSCs in the aged SVZ divide less frequently than those in young mice. We also provided evidence that ependymal cells are not newly generated during senescence, as others studies suggest. Remarkably, both astrocytes and ependymal cells accumulated a high number of intermediate filaments and dense bodies during aging, resembling reactive cells. A better understanding of the changes occurring in the neurogenic niche during aging will allow us to develop new strategies for fighting neurological disorders linked to senescence.


Asunto(s)
Envejecimiento/fisiología , Astrocitos/fisiología , Epéndimo/citología , Epéndimo/fisiología , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología , Animales , Astrocitos/ultraestructura , Diferenciación Celular/fisiología , Proliferación Celular , Epéndimo/ultraestructura , Ventrículos Laterales/ultraestructura , Masculino , Ratones , Ratones Endogámicos C57BL , Células-Madre Neurales/fisiología , Células-Madre Neurales/ultraestructura , Neurogénesis/fisiología
5.
Cell Mol Neurobiol ; 34(5): 631-42, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24744125

RESUMEN

The discovery of undifferentiated, actively proliferating neural stem cells (NSCs) in the mature brain opened a brand new chapter in the contemporary neuroscience. Adult neurogenesis appears to occur in specific brain regions (including hypothalamus) throughout vertebrates' life, being considered an important player in the processes of memory, learning, and neural plasticity. In the adult mammalian brain, NSCs are located mainly in the subgranular zone (SGZ) of the hippocampal dentate gyrus and in the subventricular zone (SVZ) of the lateral ventricle ependymal wall. Besides these classical regions, hypothalamic neurogenesis occurring mainly along and beneath the third ventricle wall seems to be especially well documented. Neurogenic zones in SGZ, SVZ, and in the hypothalamus share some particular common features like similar cellular cytoarchitecture, vascularization pattern, and extracellular matrix properties. Hypothalamic neurogenic niche is formed mainly by four special types of radial glia-like tanycytes. They are characterized by distinct expression of some neural progenitor and stem cell markers. Moreover, there are numerous suggestions that newborn hypothalamic neurons have a significant ability to integrate into the local neural pathways and to play important physiological roles, especially in the energy balance regulation. Newly formed neurons in the hypothalamus can synthesize and release food intake regulating neuropeptides and they are sensitive to the leptin. On the other hand, high-fat diet positively influences hypothalamic neurogenesis in rodents. The nature of this intriguing new site of adult neurogenesis is still so far poorly studied and requires further investigations.


Asunto(s)
Células Madre Adultas/fisiología , Hipotálamo/citología , Hipotálamo/fisiología , Células-Madre Neurales/fisiología , Neurogénesis/fisiología , Animales , Epéndimo/citología , Epéndimo/fisiología , Humanos , Ventrículos Laterales/citología , Ventrículos Laterales/fisiología
6.
Am J Physiol Lung Cell Mol Physiol ; 304(11): L736-45, 2013 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-23525783

RESUMEN

The airway is covered by multicilia that beat in a metachronous manner toward the mouth to eliminate debris and infectious particles. Coordinated one-directional beating is an essential feature of multicilia in the airway to guarantee proper mucociliary clearance. Defects in ciliary motility lead to primary ciliary dyskinesia (PCD), with major symptoms including bronchitis and other chronic respiratory diseases. Recent work suggested that ciliary motility and planar polarity are required in the process of ciliary alignment that produces coordinated beating. However, the extent to which cilia motility is involved in this process in mammals has not yet been fully clarified. Here, to address the role of ciliary motility in the process of coordinated ciliary alignment, we analyzed Kintoun mice mutants (Ktu(-/-)). Ktu(-/-) exhibited typical phenotypes of PCD with complete loss of ciliary motility in trachea and another ciliated tissue, the brain ependyma. Immunohistochemistry using antibodies against axonemal dynein confirmed the loss of multiple axonemal dynein components in mutant cilia. Observation of cilia orientation based on basal foot directions revealed that ciliary motility was not required in the alignment of airway cilia, whereas a strong requirement was observed in brain ependymal cells. Thus we conclude that the involvement of ciliary motility in the establishment of coordinated ciliary alignment varies among tissues.


Asunto(s)
Cilios/fisiología , Epéndimo/citología , Síndrome de Kartagener/genética , Proteínas/genética , Tráquea/citología , Animales , Dineínas Axonemales/deficiencia , Cilios/genética , Epéndimo/fisiología , Ratones , Ratones Noqueados , Depuración Mucociliar/genética , Tráquea/fisiología
7.
Arch Biochem Biophys ; 534(1-2): 11-9, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23073070

RESUMEN

Stem cells maintain their self-renewal and multipotency capacities through a self-organizing network of transcription factors and intracellular pathways activated by extracellular signaling from the microenvironment or "niche" in which they reside in vivo. In the adult mammalian brain new neurons continue to be generated throughout life of the organisms and this lifelong process of neurogenesis is supported by a reservoir of neural stem cells in the germinal regions. The discovery of adult neurogenesis in the mammalian brain has sparked great interest in defining the conditions that guide neural stem cell (NSC) maintenance and differentiation into the great variety of neuronal and glial subtypes. Here we review current knowledge regarding the paracrine regulation provided by the components of the niche and its function, focusing on the main germinal region of the adult central nervous system (CNS), the subependymal zone (SEZ).


Asunto(s)
Movimiento Celular , Epéndimo/fisiología , Células-Madre Neurales/fisiología , Comunicación Paracrina , Animales , Astrocitos/metabolismo , Astrocitos/fisiología , Proliferación Celular , Plexo Coroideo/metabolismo , Plexo Coroideo/fisiología , Epéndimo/metabolismo , Humanos , Neovascularización Fisiológica , Células-Madre Neurales/metabolismo , Neurogénesis , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/fisiología , Nicho de Células Madre , Transmisión Sináptica
8.
Differentiation ; 83(2): S86-90, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22101065

RESUMEN

Ependymal cells, epithelial cells that line the cerebral ventricles of the adult brain in various animals, extend multiple motile cilia from their apical surface into the ventricles. These cilia move rapidly, beating in a direction determined by the ependymal planar cell polarity (PCP). Ciliary dysfunction interferes with cerebrospinal fluid circulation and alters neuronal migration. In this review, we summarize recent studies on the cellular and molecular mechanisms underlying two distinct types of ependymal PCP. Ciliary beating in the direction of fluid flow is established by a combination of hydrodynamic forces and intracellular planar polarity signaling. The ciliary basal bodies' anterior position on the apical surface of the cell is determined in the embryonic radial glial cells, inherited by ependymal cells, and established by non-muscle myosin II in early postnatal development.


Asunto(s)
Polaridad Celular , Cilios/fisiología , Epéndimo/citología , Animales , Cilios/metabolismo , Epéndimo/química , Epéndimo/fisiología , Humanos , Modelos Biológicos , Transducción de Señal
9.
Stem Cells ; 29(3): 528-38, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21425415

RESUMEN

Neural stem cells comprise a small population of subependymal cells in the adult brain that divide asymmetrically under baseline conditions to maintain the stem cell pool and divide symmetrically in response to injury to increase their numbers. Using in vivo and in vitro models, we demonstrate that Wnt signaling plays a role in regulating the symmetric divisions of adult neural stem cells with no change in the proliferation kinetics of the progenitor population. Using BAT-gal transgenic reporter mice to identify cells with active Wnt signaling, we demonstrate that Wnt signaling is absent in stem cells in conditions where they are dividing asymmetrically and that it is upregulated when stem cells are dividing symmetrically, such as (a) during subependymal regeneration in vivo, (b) in response to stroke, and (c) during colony formation in vitro. Moreover, we demonstrate that blocking Wnt signaling in conditions where neural stem cells are dividing symmetrically inhibits neural stem cell expansion both in vivo and in vitro. Together, these findings reveal that the mechanism by which Wnt signaling modulates the size of the stem cell pool is by regulating the symmetry of stem cell division.


Asunto(s)
Lesiones Encefálicas/patología , Encéfalo/citología , División Celular/fisiología , Células-Madre Neurales/citología , Proteínas Wnt/fisiología , Células Madre Adultas/citología , Células Madre Adultas/metabolismo , Células Madre Adultas/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/fisiología , Lesiones Encefálicas/genética , Lesiones Encefálicas/metabolismo , Recuento de Células , División Celular/genética , Polaridad Celular/genética , Células Cultivadas , Epéndimo/citología , Epéndimo/patología , Epéndimo/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Regeneración Nerviosa/genética , Regeneración Nerviosa/fisiología , Células-Madre Neurales/fisiología , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas Wnt/genética , Proteínas Wnt/metabolismo
10.
J Vet Med Sci ; 73(3): 319-23, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21041988

RESUMEN

The constitution of ependyma derived from the ventricular zone is different from that derived from other regions of the central nervous system. In the mammalian cerebrum, the ependyma is varied by the regions to cortex or basal ganglia (BG). In the avian telencephalon (Tc), previous studies about the constitution of the ependyma have not revealed clear findings. In the present study, we performed immunostaining of ependymal cells in the chicken Tc to confirm differences in the ependyma of various regions. As a result, 4 patterns of ependyma were defined in the outer side of the lateral ventricle. In the base of the lamina pallio-subpallialis (LPS), ependyma consisted of vimentin/glial fibrillary acidic protein (GFAP) double-positive cells, whereas in the base of the lamina frontalis superior, it consisted primarily of vimentin-positive cells and a small number of vimentin/GFAP double-positive cells. With the exception of the above, the pallial ependyma was a single layer containing vimentin single-positive cells. Lastly, the ependyma of the BG was rich in vimentin single-positive cells. The constitutional differences of the ependyma of the pallium and BG concerned differences in ependymal morphology and cell characteristics. These finding suggest that the bounder between pallium and BG is LPS at the point of ependyma.


Asunto(s)
Pollos/anatomía & histología , Pollos/fisiología , Epéndimo/anatomía & histología , Epéndimo/fisiología , Telencéfalo/anatomía & histología , Telencéfalo/fisiología , Animales , Regulación de la Expresión Génica/fisiología , Proteína Ácida Fibrilar de la Glía/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Vimentina/genética , Vimentina/metabolismo
11.
Elife ; 102021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33988504

RESUMEN

Axolotls are uniquely able to resolve spinal cord injuries, but little is known about the mechanisms underlying spinal cord regeneration. We previously found that tail amputation leads to reactivation of a developmental-like program in spinal cord ependymal cells (Rodrigo Albors et al., 2015), characterized by a high-proliferation zone emerging 4 days post-amputation (Rost et al., 2016). What underlies this spatiotemporal pattern of cell proliferation, however, remained unknown. Here, we use modeling, tightly linked to experimental data, to demonstrate that this regenerative response is consistent with a signal that recruits ependymal cells during ~85 hours after amputation within ~830 µm of the injury. We adapted Fluorescent Ubiquitination-based Cell Cycle Indicator (FUCCI) technology to axolotls (AxFUCCI) to visualize cell cycles in vivo. AxFUCCI axolotls confirmed the predicted appearance time and size of the injury-induced recruitment zone and revealed cell cycle synchrony between ependymal cells. Our modeling and imaging move us closer to understanding bona fide spinal cord regeneration.


Asunto(s)
Proliferación Celular , Análisis Espacio-Temporal , Regeneración de la Medula Espinal , Ambystoma mexicanum , Animales , Animales Modificados Genéticamente , Ciclo Celular , Biología Computacional , Epéndimo/fisiología , Traumatismos de la Médula Espinal , Ubiquitinación
12.
Cells ; 10(8)2021 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-34440814

RESUMEN

Adult neural stem and progenitor cells (NSPCs) contribute to learning, memory, maintenance of homeostasis, energy metabolism and many other essential processes. They are highly heterogeneous populations that require input from a regionally distinct microenvironment including a mix of neurons, oligodendrocytes, astrocytes, ependymal cells, NG2+ glia, vasculature, cerebrospinal fluid (CSF), and others. The diversity of NSPCs is present in all three major parts of the CNS, i.e., the brain, spinal cord, and retina. Intrinsic and extrinsic signals, e.g., neurotrophic and growth factors, master transcription factors, and mechanical properties of the extracellular matrix (ECM), collectively regulate activities and characteristics of NSPCs: quiescence/survival, proliferation, migration, differentiation, and integration. This review discusses the heterogeneous NSPC populations in the normal physiology and highlights their potentials and roles in injured/diseased states for regenerative medicine.


Asunto(s)
Células Madre Adultas/fisiología , Células-Madre Neurales/fisiología , Enfermedades Neurodegenerativas/patología , Traumatismos de la Médula Espinal/patología , Células Madre Adultas/citología , Células Madre Adultas/trasplante , Animales , Antígenos/metabolismo , Diferenciación Celular , Epéndimo/citología , Epéndimo/fisiología , Humanos , Células-Madre Neurales/citología , Células-Madre Neurales/trasplante , Enfermedades Neurodegenerativas/terapia , Proteoglicanos/metabolismo , Medicina Regenerativa , Traumatismos de la Médula Espinal/terapia
13.
Science ; 372(6547): 1205-1209, 2021 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-34112692

RESUMEN

Quiescent neural stem cells (NSCs) in the adult mouse ventricular-subventricular zone (V-SVZ) undergo activation to generate neurons and some glia. Here we show that platelet-derived growth factor receptor beta (PDGFRß) is expressed by adult V-SVZ NSCs that generate olfactory bulb interneurons and glia. Selective deletion of PDGFRß in adult V-SVZ NSCs leads to their release from quiescence, uncovering gliogenic domains for different glial cell types. These domains are also recruited upon injury. We identify an intraventricular oligodendrocyte progenitor derived from NSCs inside the brain ventricles that contacts supraependymal axons. Together, our findings reveal that the adult V-SVZ contains spatial domains for gliogenesis, in addition to those for neurogenesis. These gliogenic NSC domains tend to be quiescent under homeostasis and may contribute to brain plasticity.


Asunto(s)
Células Madre Adultas/fisiología , Ventrículos Cerebrales/fisiología , Ventrículos Laterales/fisiología , Células-Madre Neurales/fisiología , Neuroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Astrocitos/citología , Astrocitos/fisiología , Axones/fisiología , Diferenciación Celular , División Celular , Ventrículos Cerebrales/citología , Epéndimo/citología , Epéndimo/fisiología , Femenino , Perfilación de la Expresión Génica , Homeostasis , Ventrículos Laterales/citología , Masculino , Ratones , Neurogénesis , Bulbo Olfatorio/citología , Bulbo Olfatorio/fisiología , Oligodendroglía/citología , Oligodendroglía/fisiología , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética
14.
Eur J Neurosci ; 31(9): 1533-48, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20525067

RESUMEN

In the brain of adult rats neurogenesis persists in the subventricular zone of the lateral ventricles and in the dentate gyrus of the hippocampus. By contrast, low proliferative activity was observed in the hypothalamus. We report here that, after intracerebroventricular treatment with insulin-like growth factor I (IGF-I), cell proliferation significantly increased in both the periventricular and the parenchymal zones of the whole hypothalamus. Neurons, astrocytes, tanycytes, microglia and endothelial cells of the local vessels were stained with the proliferative marker 5-bromo-2'-deoxyuridine (BrdU) in response to IGF-I. Conversely, we never observed BrdU-positive ciliated cubic ependymal cells. Proliferation was intense in the subventricular area of a distinct zone of the mid third ventricle wall limited dorsally by ciliated cubic ependyma and ventrally by tanycytic ependyma. In this area, we saw a characteristic cluster of proliferating cells. This zone of the ventricular wall displayed three cell layers: ciliated ependyma, subependyma and underlying tanycytes. After IGF-I treatment, proliferating cells were seen in the subependyma and in the layer of tanycytes. In the subependyma, proliferating glial fibrillary acidic protein-positive astrocytes contacted the ventricle by an apical process bearing a single cilium and there were many labyrinthine extensions of the periventricular basement membranes. Both features are typical of neurogenic niches in other brain zones, suggesting that the central overlapping zone of the rat hypothalamic wall could be considered a neurogenic niche in response to IGF-I.


Asunto(s)
Células Madre Adultas/fisiología , Hipotálamo/fisiología , Factor I del Crecimiento Similar a la Insulina/metabolismo , Neurogénesis/fisiología , Neuronas/fisiología , Nicho de Células Madre/fisiología , Células Madre Adultas/ultraestructura , Envejecimiento , Animales , Astrocitos/fisiología , Astrocitos/ultraestructura , Proliferación Celular , Células Endoteliales/fisiología , Células Endoteliales/ultraestructura , Epéndimo/fisiología , Epéndimo/ultraestructura , Femenino , Hipotálamo/irrigación sanguínea , Hipotálamo/ultraestructura , Masculino , Microglía/fisiología , Microglía/ultraestructura , Neuronas/ultraestructura , Ratas , Ratas Wistar , Nicho de Células Madre/irrigación sanguínea , Nicho de Células Madre/ultraestructura
15.
Biochem Biophys Res Commun ; 401(1): 1-6, 2010 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-20807502

RESUMEN

Motile cilia play crucial roles in the maintenance of homeostasis in vivo. Defects in the biosynthesis of cilia cause immotile cilia syndrome, also known as primary ciliary dyskinesia (PCD), which is associated with a variety of complex diseases. In this study, we found that inhibitory Smad proteins, Smad7 and Smad6, significantly promoted the differentiation of mouse embryonic stem (ES) cells into ciliated cells. Moreover, these Smad proteins specifically induced morphologically distinct Musashi1-positive ciliated cells. These results suggest that inhibitory Smad proteins could be important regulators not only for the regulation of ciliated cell differentiation, but also for the subtype specification of ciliated cells during differentiation from mouse ES cells.


Asunto(s)
Diferenciación Celular , Células Madre Embrionarias/fisiología , Epéndimo/citología , Proteína smad6/fisiología , Proteína smad7/fisiología , Animales , Línea Celular , Cilios/fisiología , Epéndimo/fisiología , Ratones , Proteína smad6/genética , Proteína smad7/genética
16.
Brain ; 132(Pt 11): 2909-21, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19773354

RESUMEN

The mammalian brain is a remarkably complex organ comprising millions of neurons, glia and various other cell types. Its impressive cytoarchitecture led to the long standing belief that it is a structurally static organ and thus very sensitive to injury. However, an area of striking structural flexibility has been recently described at the centre of the brain. It is the subependymal zone of the lateral wall of the lateral ventricles. The subependymal zone--like a beating heart--continuously sends new cells to different areas of the brain: neurons to the olfactory bulbs and glial cells to the cortex and the corpus callosum. Interestingly, the generation and flow of cells changes in response to signals from anatomically remote areas of the brain or even from the external environment of the organism, therefore indicating that subependymal neurogenesis--as a system--is integrated in the overall homeostatic function of the brain. In this review, it will be attempted to describe the fundamental structural and functional characteristics of the subependymal neurogenic niche and to summarize the available evidence regarding its plasticity. Special focus is given on issues such as whether adult neural stem cells are activated after neurodegeneration, whether defects in neurogenesis contribute to neuropathological conditions and whether monitoring changes in neurogenic activity can have a diagnostic value.


Asunto(s)
Encéfalo/anatomía & histología , Encéfalo/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Nicho de Células Madre , Animales , Encéfalo/patología , Linaje de la Célula , Movimiento Celular/fisiología , Ambiente , Epéndimo/citología , Epéndimo/fisiología , Degeneración Nerviosa/patología , Plasticidad Neuronal/fisiología , Neuronas/citología , Transducción de Señal/fisiología , Nicho de Células Madre/anatomía & histología , Nicho de Células Madre/fisiología , Células Madre/fisiología
17.
Ann Anat ; 231: 151549, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32512203

RESUMEN

BACKGROUND: The regenerating blastema of the tail in the lizard Podarcis muralis contains numerous macrophages among the prevalent mesenchymal cells. Some macrophages are phagocytic but others are devoid of phagosomes suggesting that they have other roles aside phagocytosis. METHODS: The presence of healing macrophages (M2-like) has been tested using autoradiographic, immunohistochemical and ultrastructural studies. RESULTS: Autoradiography shows an uptake of tritiated arginine in sparse cells of the blastema and in the regenerating epidermis. Bioinformatics analysis suggests that epitopes for arginase-1 and -2, recognized by the employed antibody, are present in lizards. Immunofluorescence shows sparse arginase immunopositive macrophages in the blastema and few macrophages also in the apical wound epidermis. The ultrastructural study shows that macrophages contain dense secretory granules, most likely inactive lysosomes, and small cytoplasmic pale vesicles. Some of the small vesicles are arginase-positive while immunolabeling is very diffuse in the macrophage cytoplasm. CONCLUSIONS: The presence of cells incorporating arginine and of arginase 1-positive cells suggests that M2-like macrophages are present among mesenchymal and epidermal cells of the regenerative tail blastema. M2-like macrophages may promote tail regeneration differently from the numerous pro-inflammatory macrophages previously detected in the scarring limb. The presence of M2-like macrophages in addition to hyaluronate, support the hypothesis that the regenerative blastema of the tail in lizards is an immuno-privileged organ where cell proliferation and growth occur without degenerating in a tumorigenic outgrowth.


Asunto(s)
Lagartos/anatomía & histología , Lagartos/fisiología , Macrófagos/fisiología , Regeneración/fisiología , Cola (estructura animal)/fisiología , Animales , Arginasa/inmunología , Autorradiografía/veterinaria , Biomarcadores/análisis , Biología Computacional , Epéndimo/anatomía & histología , Epéndimo/fisiología , Epéndimo/ultraestructura , Técnica del Anticuerpo Fluorescente/veterinaria , Humanos , Inmunohistoquímica/veterinaria , Hígado/enzimología , Macrófagos/enzimología , Macrófagos/ultraestructura , Médula Espinal/anatomía & histología , Médula Espinal/fisiología
18.
Eur J Neurosci ; 30(1): 9-24, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19558606

RESUMEN

The subventricular zone (SVZ) of the lateral ventricles is the major neurogenic region in the adult mammalian brain, harbouring neural stem cells within defined niches. The identity of these stem cells and the factors regulating their fate are poorly understood. We have genetically mapped a population of Nestin-expressing cells during postnatal development to study their potential and fate in vivo. Taking advantage of the recombination characteristics of a nestin::CreER(T2) allele, we followed a subpopulation of neural stem cells and traced their fate in a largely unrecombined neurogenic niche. Perinatal nestin::CreER(T2)-expressing cells give rise to multiple glial cell types and neurons, as well as to stem cells of the adult SVZ. In the adult SVZ nestin::CreER(T2)-expressing neural stem cells give rise to several neuronal subtypes in the olfactory bulb (OB). We addressed whether the same population of neural stem cells play a role in SVZ regeneration. Following anti-mitotic treatment to eliminate rapidly dividing progenitors, relatively quiescent nestin::CreER(T2)-targeted cells are spared and contribute to SVZ regeneration, generating new proliferating precursors and neuroblasts. Finally, we have identified neurogenic progenitors clustered in ependymal-like niches within the rostral migratory stream (RMS) of the OB. These OB-RMS progenitors generate neuroblasts that, upon transplantation, graft, migrate and differentiate into granule and glomerular neurons. In summary, using conditional lineage tracing we have identified neonatal cells that are the source of neurogenic and regenerative neural stem cells in the adult SVZ and occupy a novel neurogenic niche in the OB.


Asunto(s)
Células Madre Adultas/fisiología , Linaje de la Célula , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/fisiología , Bulbo Olfatorio/fisiología , Nicho de Células Madre/citología , Células Madre Adultas/trasplante , Animales , Animales Recién Nacidos , Encéfalo/fisiología , Proliferación Celular , Ventrículos Cerebrales/fisiología , Epéndimo/fisiología , Proteínas de Filamentos Intermediarios/genética , Ratones , Ratones Transgénicos , Regeneración Nerviosa/fisiología , Proteínas del Tejido Nervioso/genética , Nestina , Neuroglía/fisiología , Ratas , Nicho de Células Madre/fisiología , Células Madre/fisiología
19.
Cell Mol Neurobiol ; 29(6-7): 999-1013, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19350385

RESUMEN

Ependymal cells (EC) in the spinal cord central canal (CC) are believed to be responsible for the postnatal neurogenesis following pathological or stimulatory conditions. In this study, we have analyzed the proliferation of the CC ependymal progenitors in adult rats processed to compression SCI or enhanced physical activity. To label dividing cells, a single daily injection of Bromo-deoxyuridine (BrdU) was administered over a 14-day-survival period. Systematic quantification of BrdU-positive ependymal progenitors was performed by using stereological principles of systematic, random sampling, and optical Dissector software. The number of proliferating BrdU-labeled EC increased gradually with the time of survival after both paradigms, spinal cord injury, or increased physical activity. In the spinal cord injury group, we have found 4.9-fold (4 days), 7.1-fold (7 days), 4.9-fold (10 days), and 5.6-fold (14 days) increase of proliferating EC in the rostro-caudal regions, 4 mm away from the epicenter. In the second group subjected to enhanced physical activity by running wheel, we have observed 2.1-2.6 fold increase of dividing EC in the thoracic spinal cord segments at 4 and 7 days, but no significant progression at 10-14 days. Nestin was rapidly induced in the ependymal cells of the CC by 2-4 days and expression decreased by 7-14 days post-injury. Double immunohistochemistry showed that dividing cells adjacent to CC expressed astrocytic (GFAP, S100beta) or nestin markers at 14 days. These data demonstrate that SCI or enhanced physical activity in adult rats induces an endogenous ependymal cell response leading to increased proliferation and differentiation primarily into macroglia or cells with nestin phenotype.


Asunto(s)
Células Madre Adultas/fisiología , Epéndimo/fisiología , Epéndimo/fisiopatología , Compresión de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/fisiopatología , Animales , Bromodesoxiuridina , Recuento de Células , Proliferación Celular , Inmunohistoquímica , Masculino , Actividad Motora , Ratas , Ratas Wistar , Canal Medular/fisiología , Canal Medular/fisiopatología , Vértebras Torácicas
20.
Int J Neurosci ; 119(1): 141-54, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19116837

RESUMEN

We investigated whether X-ray radiation induced apoptosis of the proliferative ependymal cells (ECs) in adult rats with spinal cord injury (SCI) and the effect of X-ray radiation on the proliferative activities of ECs. A rat model with SCI was developed and used to determine the proliferation and apoptosis of ECs in the spinal cords after X-ray exposure. TUNEL assay and BrdU incorporation were used to detect apoptosis and proliferation respectively. We found that there were few TUNEL-positive cells in proliferative ependymal zone (EZ) after SCI except at the epicenter, and approximately half of the irradiated ECs became TUNEL-positive. However, these radiated ECs did not lose their proliferative activity until 1 week later and started to decrease rapidly after 1 week. The observation suggested that only part of ECs were sensitive to radiation and the nonsensitive cells continued their mitosis process. These findings indicated that X-ray exposure of the rats with SCI in early stage induced apoptosis of the proliferative ECs and partially inhibited their proliferative activities.


Asunto(s)
Apoptosis/efectos de la radiación , Proliferación Celular/efectos de la radiación , Epéndimo/efectos de la radiación , Traumatismos de la Médula Espinal/fisiopatología , Médula Espinal/fisiopatología , Médula Espinal/efectos de la radiación , Animales , Apoptosis/fisiología , Bromodesoxiuridina , Cicatriz/fisiopatología , Cicatriz/prevención & control , Cicatriz/terapia , Modelos Animales de Enfermedad , Epéndimo/citología , Epéndimo/fisiología , Células Epiteliales/citología , Células Epiteliales/fisiología , Células Epiteliales/efectos de la radiación , Femenino , Gliosis/fisiopatología , Gliosis/prevención & control , Gliosis/terapia , Etiquetado Corte-Fin in Situ , Regeneración Nerviosa/fisiología , Regeneración Nerviosa/efectos de la radiación , Ratas , Ratas Wistar , Médula Espinal/citología , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA