Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 542(7641): 377-380, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28076345

RESUMEN

The spliceosome excises introns from pre-mRNAs in two sequential transesterifications-branching and exon ligation-catalysed at a single catalytic metal site in U6 small nuclear RNA (snRNA). Recently reported structures of the spliceosomal C complex with the cleaved 5' exon and lariat-3'-exon bound to the catalytic centre revealed that branching-specific factors such as Cwc25 lock the branch helix into position for nucleophilic attack of the branch adenosine at the 5' splice site. Furthermore, the ATPase Prp16 is positioned to bind and translocate the intron downstream of the branch point to destabilize branching-specific factors and release the branch helix from the active site. Here we present, at 3.8 Å resolution, the cryo-electron microscopy structure of a Saccharomyces cerevisiae spliceosome stalled after Prp16-mediated remodelling but before exon ligation. While the U6 snRNA catalytic core remains firmly held in the active site cavity of Prp8 by proteins common to both steps, the branch helix has rotated by 75° compared to the C complex and is stabilized in a new position by Prp17, Cef1 and the reoriented Prp8 RNase H-like domain. This rotation of the branch helix removes the branch adenosine from the catalytic core, creates a space for 3' exon docking, and restructures the pairing of the 5' splice site with the U6 snRNA ACAGAGA region. Slu7 and Prp18, which promote exon ligation, bind together to the Prp8 RNase H-like domain. The ATPase Prp22, bound to Prp8 in place of Prp16, could interact with the 3' exon, suggesting a possible basis for mRNA release after exon ligation. Together with the structure of the C complex, our structure of the C* complex reveals the two major conformations of the spliceosome during the catalytic stages of splicing.


Asunto(s)
Microscopía por Crioelectrón , Exones , Empalme del ARN , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/ultraestructura , Biocatálisis , Dominio Catalítico , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/ultraestructura , Exones/genética , Unión Proteica , Dominios Proteicos , ARN Helicasas/metabolismo , ARN Helicasas/ultraestructura , Sitios de Empalme de ARN/genética , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/ultraestructura , ARN Nuclear Pequeño/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa H/química , Ribonucleoproteína Nuclear Pequeña U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/metabolismo , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química
2.
Nature ; 542(7641): 318-323, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-28076346

RESUMEN

Spliceosome rearrangements facilitated by RNA helicase PRP16 before catalytic step two of splicing are poorly understood. Here we report a 3D cryo-electron microscopy structure of the human spliceosomal C complex stalled directly after PRP16 action (C*). The architecture of the catalytic U2-U6 ribonucleoprotein (RNP) core of the human C* spliceosome is very similar to that of the yeast pre-Prp16 C complex. However, in C* the branched intron region is separated from the catalytic centre by approximately 20 Å, and its position close to the U6 small nuclear RNA ACAGA box is stabilized by interactions with the PRP8 RNase H-like and PRP17 WD40 domains. RNA helicase PRP22 is located about 100 Å from the catalytic centre, suggesting that it destabilizes the spliced mRNA after step two from a distance. Comparison of the structure of the yeast C and human C* complexes reveals numerous RNP rearrangements that are likely to be facilitated by PRP16, including a large-scale movement of the U2 small nuclear RNP.


Asunto(s)
Microscopía por Crioelectrón , Empalme del ARN , Empalmosomas/metabolismo , Empalmosomas/ultraestructura , Adenosina/metabolismo , Secuencia de Bases , Biocatálisis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , ARN Helicasas DEAD-box/ultraestructura , Exones/genética , Humanos , Intrones/genética , Modelos Moleculares , Movimiento , Dominios Proteicos , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Factores de Empalme de ARN/ultraestructura , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/ultraestructura , Ribonucleasa H/química , Ribonucleasa H/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/ultraestructura , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/enzimología , Empalmosomas/química
3.
Nucleic Acids Res ; 48(18): 10329-10341, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32663306

RESUMEN

The recently characterized mammalian writer (methyltransferase) and eraser (demethylase) of the DNA N6-methyladenine (N6mA) methyl mark act on single-stranded (ss) and transiently-unpaired DNA. As YTH domain-containing proteins bind N6mA-containing RNA in mammalian cells, we investigated whether mammalian YTH domains are also methyl mark readers of N6mA DNA. Here, we show that the YTH domain of YTHDC1 (known to localize in the nucleus) binds ssDNA containing N6mA, with a 10 nM dissociation constant. This binding is stronger by a factor of 5 than in an RNA context, tested under the same conditions. However, the YTH domains of YTHDF2 and YTHDF1 (predominantly cytoplasmic) exhibited the opposite effect with ∼1.5-2נstronger binding to ssRNA containing N6mA than to the corresponding DNA. We determined two structures of the YTH domain of YTHDC1 in complex with N6mA-containing ssDNA, which illustrated that YTHDC1 binds the methylated adenine in a single-stranded region flanked by duplexed DNA. We discuss the hypothesis that the writer-reader-eraser of N6mA-containining ssDNA is associated with maintaining genome stability. Structural comparison of YTH and SRA domains (the latter a DNA 5-methylcytosine reader) revealed them to be diverse members of a larger family of DNA/RNA modification readers, apparently having originated from bacterial modification-dependent restriction enzymes.


Asunto(s)
Adenina/química , Complejos Multiproteicos/química , Proteínas del Tejido Nervioso/química , Conformación Proteica , Factores de Empalme de ARN/química , ADN/química , ADN/genética , ADN/ultraestructura , ADN de Cadena Simple/química , ADN de Cadena Simple/genética , Histona Demetilasas/genética , Humanos , Metilación , Metiltransferasas/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/ultraestructura , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/ultraestructura , Dominios Proteicos/genética , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/ultraestructura , Proteínas de Unión al ARN/genética
4.
Science ; 359(6375): 537-545, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29301961

RESUMEN

Splicing by the spliceosome involves branching and exon ligation. The branching reaction leads to the formation of the catalytic step I spliceosome (C complex). Here we report the cryo-electron microscopy structure of the human C complex at an average resolution of 4.1 angstroms. Compared with the Saccharomyces cerevisiae C complex, the human complex contains 11 additional proteins. The step I splicing factors CCDC49 and CCDC94 (Cwc25 and Yju2 in S. cerevisiae, respectively) closely interact with the DEAH-family adenosine triphosphatase/helicase Prp16 and bridge the gap between Prp16 and the active-site RNA elements. These features, together with structural comparison of the human C and C* complexes, provide mechanistic insights into ribonucleoprotein remodeling and allow the proposition of a working mechanism for the C-to-C* transition.


Asunto(s)
ARN Helicasas DEAD-box/química , Factores de Empalme de ARN/química , Empalme del ARN , Empalmosomas/química , Secuencia de Aminoácidos , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/ultraestructura , Humanos , Modelos Moleculares , Factores de Empalme de ARN/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/ultraestructura
5.
Science ; 355(6321): 149-155, 2017 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-27980089

RESUMEN

Each cycle of precursor messenger RNA (pre-mRNA) splicing comprises two sequential reactions, first freeing the 5' exon and generating an intron lariat-3' exon and then ligating the two exons and releasing the intron lariat. The second reaction is executed by the step II catalytically activated spliceosome (known as the C* complex). Here, we present the cryo-electron microscopy structure of a C* complex from Saccharomyces cerevisiae at an average resolution of 4.0 angstroms. Compared with the preceding spliceosomal complex (C complex), the lariat junction has been translocated by 15 to 20 angstroms to vacate space for the incoming 3'-exon sequences. The step I splicing factors Cwc25 and Yju2 have been dissociated from the active site. Two catalytic motifs from Prp8 (the 1585 loop and the ß finger of the ribonuclease H-like domain), along with the step II splicing factors Prp17 and Prp18 and other surrounding proteins, are poised to assist the second transesterification. These structural features, together with those reported for other spliceosomal complexes, yield a near-complete mechanistic picture on the splicing cycle.


Asunto(s)
Empalme del ARN , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/ultraestructura , Empalmosomas/química , Empalmosomas/ultraestructura , Secuencias de Aminoácidos , Biocatálisis , Dominio Catalítico , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/ultraestructura , Exones , Factores de Empalme de ARN/química , Factores de Empalme de ARN/ultraestructura , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/química , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/ultraestructura
6.
Science ; 358(6368): 1278-1283, 2017 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-29146870

RESUMEN

The spliceosome undergoes dramatic changes in a splicing cycle. Structures of B, Bact, C, C*, and intron lariat spliceosome complexes revealed mechanisms of 5'-splice site (ss) recognition, branching, and intron release, but lacked information on 3'-ss recognition, exon ligation, and exon release. Here we report a cryo-electron microscopy structure of the postcatalytic P complex at 3.3-angstrom resolution, revealing that the 3' ss is mainly recognized through non-Watson-Crick base pairing with the 5' ss and branch point. Furthermore, one or more unidentified proteins become stably associated with the P complex, securing the 3' exon and potentially regulating activity of the helicase Prp22. Prp22 binds nucleotides 15 to 21 in the 3' exon, enabling it to pull the intron-exon or ligated exons in a 3' to 5' direction to achieve 3'-ss proofreading or exon release, respectively.


Asunto(s)
ARN Helicasas DEAD-box/química , Complejos Multienzimáticos/química , Factores de Empalme de ARN/química , Empalme del ARN , Ribonucleoproteína Nuclear Pequeña U4-U6/química , Ribonucleoproteína Nuclear Pequeña U5/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Empalmosomas/química , Emparejamiento Base , Biocatálisis , Dominio Catalítico , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/ultraestructura , Exones , Intrones , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/ultraestructura , Mutación , Conformación Proteica , Sitios de Empalme de ARN , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/ultraestructura , Ribonucleoproteína Nuclear Pequeña U4-U6/genética , Ribonucleoproteína Nuclear Pequeña U4-U6/ultraestructura , Ribonucleoproteína Nuclear Pequeña U5/genética , Ribonucleoproteína Nuclear Pequeña U5/ultraestructura , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/ultraestructura , Empalmosomas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA