RESUMEN
Polyene cyclizations are among the most complex and challenging transformations in biology. In a single reaction step, multiple carbon-carbon bonds, ring systems and stereogenic centres are constituted from simple, acyclic precursors1-3. Simultaneously achieving this kind of precise control over product distribution and stereochemistry poses a formidable task for chemists. In particular, the polyene cyclization of (3E,7E)-homofarnesol to the valuable naturally occurring ambergris odorant (-)-ambrox is recognized as a longstanding challenge in chemical synthesis1,4-7. Here we report a diastereoselective and enantioselective synthesis of (-)-ambrox and the sesquiterpene lactone natural product (+)-sclareolide by a catalytic asymmetric polyene cyclization by using a highly Brønsted-acidic and confined imidodiphosphorimidate catalyst in the presence of fluorinated alcohols. Several experiments, including deuterium-labelling studies, suggest that the reaction predominantly proceeds through a concerted pathway in line with the Stork-Eschenmoser hypothesis8-10. Mechanistic studies show the importance of the enzyme-like microenvironment of the imidodiphosphorimidate catalyst for attaining exceptionally high selectivities, previously thought to be achievable only in enzyme-catalysed polyene cyclizations.
Asunto(s)
Catálisis , Ciclización , Diterpenos , Farnesol , Furanos , Naftalenos , Polienos , Alcoholes/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Diterpenos/síntesis química , Diterpenos/química , Farnesol/análogos & derivados , Farnesol/química , Flúor/química , Furanos/síntesis química , Furanos/química , Lactonas/química , Lactonas/síntesis química , Naftalenos/síntesis química , Naftalenos/química , Polienos/química , EstereoisomerismoRESUMEN
Springtails use unique compounds for their outermost epicuticular wax layer, often of terpenoid origin. We report here the structure and synthesis of socialane, the major cuticular constituent of the Collembola Hypogastrura socialis. Socialane is also the first regular nonaprenyl terpene with a cyclic head group. The saturated side chain has seven stereogenic centers, making the determination of the configuration difficult. We describe here the identification of socialane and a synthetic approach using the building blocks farnesol and phytol, enantioselective hydrogenation, and α-alkylation of sulfones for the synthesis of various stereoisomers. NMR experiments showed the presence of an anti-configuration of the methyl groups closest to the benzene ring and that the other methyl groups of the polyprenyl side-chain are not uniformly configured. Furthermore, socialane is structurally different from [6+2]-terpene viaticene of the closely related H. viatica, showing species specificity of the epicuticular lipids of this genus and hinting at a possible role of surface lipids in the communication of these gregarious arthropods.
Asunto(s)
Artrópodos , Terpenos , Animales , Estereoisomerismo , Terpenos/química , Artrópodos/química , Lípidos/química , Farnesol/química , Farnesol/análogos & derivados , Fitol/química , Espectroscopía de Resonancia Magnética , HidrogenaciónRESUMEN
Ras has long been viewed as a promising target for cancer therapy. Farnesylthiosalicylic acid (FTS), as the only Ras inhibitor has ever entered phase II clinical trials, has yielded disappointing results due to its strong hydrophobicity, poor tumor-targeting capacity, and low therapeutic efficiency. Thus, enhancing hydrophilicity and tumor-targeting capacity of FTS for improving its therapeutic efficacy is of great significance. In this study we conjugated FTS with a cancer-targeting small molecule dye IR783 and characterized the anticancer properties of the conjugate FTS-IR783. We showed that IR783 conjugation greatly improved the hydrophilicity, tumor-targeting and therapeutic potential of FTS. After a single oral administration in Balb/c mice, the relative bioavailability of FTS-IR783 was increased by 90.7% compared with FTS. We demonstrated that organic anion transporting polypeptide (OATP) and endocytosis synergistically drove the uptake of the FTS-IR783 conjugate in breast cancer MDA-MB-231 cells, resulting in superior tumor-targeting ability of the conjugate both in vitro and in vivo. We further revealed that FTS-IR783 conjugate could bind with and directly activate AMPK rather than affecting Ras, and subsequently regulate the TSC2/mTOR signaling pathway, thus achieving 2-10-fold increased anti-cancer therapeutic efficacy against 6 human breast cancer cell lines compared to FTS both in vivo and in vitro. Overall, our data highlights a promising approach for the modification of the anti-tumor drug FTS using IR783 and makes it possible to return FTS back to the clinic with a better efficacy.
Asunto(s)
Antineoplásicos , Neoplasias de la Mama , Animales , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Farnesol/análogos & derivados , Farnesol/farmacología , Farnesol/uso terapéutico , Femenino , Humanos , Ratones , Salicilatos , Proteínas ras/metabolismo , Proteínas ras/uso terapéuticoRESUMEN
BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC), one of the most lethal cancers, is driven by oncogenic KRAS mutations. Farnesyl thiosalicylic acid (FTS), also known as salirasib, is a RAS inhibitor that selectively dislodges active RAS proteins from cell membrane, inhibiting downstream signaling. FTS has demonstrated limited therapeutic efficacy in PDAC patients despite being well tolerated. METHODS: To improve the efficacy of FTS in PDAC, we performed a genome-wide CRISPR synthetic lethality screen to identify genetic targets that synergize with FTS treatment. Among the top candidates, multiple genes in the endoplasmic reticulum-associated protein degradation (ERAD) pathway were identified. The role of ERAD inhibition in enhancing the therapeutic efficacy of FTS was further investigated in pancreatic cancer cells using pharmaceutical and genetic approaches. RESULTS: In murine and human PDAC cells, FTS induced unfolded protein response (UPR), which was further augmented upon treatment with a chemical inhibitor of ERAD, Eeyarestatin I (EerI). Combined treatment with FTS and EerI significantly upregulated the expression of UPR marker genes and induced apoptosis in pancreatic cancer cells. Furthermore, CRISPR-based genetic ablation of the key ERAD components, HRD1 and SEL1L, sensitized PDAC cells to FTS treatment. CONCLUSION: Our study reveals a critical role for ERAD in therapeutic response of FTS and points to the modulation of UPR as a novel approach to improve the efficacy of FTS in PDAC treatment.
Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Degradación Asociada con el Retículo Endoplásmico/efectos de los fármacos , Neoplasias Pancreáticas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Apoptosis/genética , Sistemas CRISPR-Cas/genética , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Degradación Asociada con el Retículo Endoplásmico/genética , Farnesol/análogos & derivados , Farnesol/farmacología , Farnesol/uso terapéutico , Técnicas de Inactivación de Genes , Humanos , Hidrazonas/farmacología , Hidrazonas/uso terapéutico , Hidroxiurea/análogos & derivados , Hidroxiurea/farmacología , Hidroxiurea/uso terapéutico , Ratones , Neoplasias Pancreáticas/patología , Proteínas/genética , Salicilatos/farmacología , Salicilatos/uso terapéutico , Mutaciones Letales Sintéticas , Ubiquitina-Proteína Ligasas/genética , Respuesta de Proteína Desplegada/efectos de los fármacosRESUMEN
BACKGROUND: Ras activation is a frequent event in hepatocellular carcinoma (HCC). Combining a RAS inhibitor with traditional clinical therapeutics might be hampered by a variety of side effects, thus hindering further clinical translation. Herein, we report on integrating an IR820 nanocapsule-augmented sonodynamic therapy (SDT) with the RAS inhibitor farnesyl-thiosalicylic acid (FTS). Using cellular and tumor models, we demonstrate that combined nanocapsule-augmented SDT with FTS induces an anti-tumor effect, which not only inhibits tumor progression, and enables fluorescence imaging. To dissect the mechanism of a combined tumoricidal therapeutic strategy, we investigated the scRNA-seq transcriptional profiles of an HCC xenograft following treatment. RESULTS: Integrative single-cell analysis identified several clusters that defined many corresponding differentially expressed genes, which provided a global view of cellular heterogeneity in HCC after combined SDT/FTS treatment. We conclude that the combination treatment suppressed HCC, and did so by inhibiting endothelial cells and a modulated immunity. Moreover, hepatic stellate secretes hepatocyte growth factor, which plays a key role in treating SDT combined FTS. By contrast, enrichment analysis estimated the functional roles of differentially expressed genes. The Gene Ontology terms "cadherin binding" and "cell adhesion molecule binding" and KEGG pathway "pathway in cancer" were significantly enriched by differentially expressed genes after combined SDT/FTS therapy. CONCLUSIONS: Thus, some undefined mechanisms were revealed by scRNA-seq analysis. This report provides a novel proof-of-concept for combinatorial HCC-targeted therapeutics that is based on a non-invasive anti-tumor therapeutic strategy and a RAS inhibitor.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Diatermia/métodos , Neoplasias Hepáticas/tratamiento farmacológico , Análisis de Secuencia de ARN , Proteínas ras/antagonistas & inhibidores , Animales , Carcinoma Hepatocelular/radioterapia , Línea Celular Tumoral , Terapia Combinada , Modelos Animales de Enfermedad , Células Endoteliales , Farnesol/análogos & derivados , Farnesol/farmacología , Femenino , Regulación Neoplásica de la Expresión Génica , Células Hep G2 , Humanos , Neoplasias Hepáticas/radioterapia , Ratones Endogámicos BALB C , Ratones Desnudos , SalicilatosRESUMEN
Juvenile hormone III (JH III) plays an important role in insect reproduction, development, and behavior. The second branch of JH III production includes oxidation of farnesol to farnesal by farnesol dehydrogenase. This study reported the identification and characterization of Plutella xylostella farnesol dehydrogenase (PxFoLDH). Our results showed that PxFoLDH belongs to the short-chain dehydrogenase/reductase superfamily, consisting of a single domain with a structurally conserved Rossman fold, an NAD(P) (H)-binding region and a structurally diverse C-terminal region. The purified enzyme displayed maximum activity at 55$\ $°C with pH 9.5 and was stable in the temperature below 70$\ ^\circ $C. PxFoLDH was determined to be a monomer with a relative molecular weight of 27 kDa and highly specific for trans, trans-farnesol, and NADP+. Among analog inhibitors tested, farnesyl acetate was the most effective inhibitor with the lowest Ki value of 0.02 µm. Our findings showed this purified enzyme may represent as NADP+-farnesol dehydrogenase.
Asunto(s)
Insecticidas/farmacología , Lepidópteros/enzimología , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/antagonistas & inhibidores , NADP/química , Animales , Inhibidores Enzimáticos/farmacología , Farnesol/análogos & derivados , Farnesol/farmacología , Concentración de Iones de Hidrógeno , Insecticidas/química , Cinética , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/química , Oxidorreductasas de Alcohol Dependientes de NAD (+) y NADP (+)/metabolismo , Especificidad por Sustrato , TemperaturaRESUMEN
Background/Aim: Pancreatic adenocarcinoma is a highly malignant tumor. Synergistic combinations of anticancer agents for the effective treatment of pancreatic cancer patients are urgently needed. Here, we investigated the combined effect of celecoxib (CEL) and salirasib (SAL) on pancreatic cancer cells. Methods: Cell viability and apoptosis were measured by the trypan blue assay, three-dimensional cultures, propidium iodide staining, and caspase-3 assay. NF-κB activation and the protein levels of Akt, pAkt, and Bcl-2 were determined by the luciferase reporter assay and western blot. Results: Co-treatment with CEL and SAL had stronger effects on decreasing cell viability and inducing apoptosis in Panc-1 cells as compared with each agent individually. This combination strongly inhibited NF-κB activity and reduced pAkt and Bcl-2 levels in Panc-1 cells. Conclusion: SAL in combination with CEL may represent a new approach for effective inhibition of pancreatic cancer.
Asunto(s)
Celecoxib/farmacología , Farnesol/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-bcl-2/genética , Salicilatos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Farnesol/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , FN-kappa B/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de SeñalRESUMEN
BACKGROUND: Farnesol is a sesquiterpene from propolis and citrus fruit that shows promising anti-bacterial activity for caries treatment and prevention, but its hydrophobicity limits the clinical application. We aimed to develop the novel polymeric micelles (PMs) containing a kind of derivative of farnesol and a ligand of pyrophosphate (PPi) that mediated PMs to adhere tightly with the tooth enamel. RESULTS: Farnesal (Far) was derived from farnesol and successfully linked to PEG via an acid-labile hydrazone bond to form PEG-hyd-Far, which was then conjugated to PPi and loaded into PMs to form the aimed novel drug delivery system, PPi-Far-PMs. The in vitro test about the binding of PPi-Far-PMs to hydroxyapatite showed that PPi-Far-PMs could bind rapidly to hydroxyapatite and quickly release Far under the acidic conditions. Results from the mechanical testing and the micro-computed tomography indicated that PPi-Far-PMs could restore the microarchitecture of teeth with caries. Moreover, PPi-Far-PMs diminished the incidence and severity of smooth and sulcal surface caries in rats that were infected with Streptococcus mutans while being fed with a high-sucrose diet. The anti-caries efficacy of free Far can be improved significantly by PPi-Far-PMs through the effective binding of it with tooth enamel via PPi. CONCLUSIONS: This novel drug-delivery system may be useful for the treatment and prevention of dental caries as well as the targeting therapy of anti-bacterial drugs in the oral disease.
Asunto(s)
Cariostáticos , Caries Dental , Durapatita , Farnesol/análogos & derivados , Micelas , Animales , Cariostáticos/química , Cariostáticos/farmacocinética , Cariostáticos/farmacología , Caries Dental/tratamiento farmacológico , Caries Dental/metabolismo , Caries Dental/patología , Difosfatos/química , Difosfatos/farmacocinética , Difosfatos/farmacología , Portadores de Fármacos , Durapatita/química , Durapatita/metabolismo , Farnesol/química , Farnesol/farmacocinética , Farnesol/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Diente Molar/efectos de los fármacos , Diente Molar/ultraestructura , Polietilenglicoles/química , Ratas , Streptococcus mutans/efectos de los fármacosRESUMEN
Glia cells are involved in upper motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Protease activated receptor 1 (PAR1) pathway is related to brain pathologies. Brain PAR1 is located on peri-synaptic astrocytes, adjacent to pyramidal motor neurons, suggesting possible involvement in ALS. Brain thrombin activity in superoxide dismutase 1 (SOD1) mice was measured using a fluorometric assay, and PAR1 levels by western blot. PAR1 was localized using immunohistochemistry staining. Treatment targeted PAR1 pathway on three levels; thrombin inhibitor TLCK (N-Tosyl-Lys-chloromethylketone), PAR1 antagonist SCH-79797 and the Ras intracellular inhibitor FTS (S-trans-trans-farnesylthiosalicylic acid). Mice were weighed and assessed for motor function and survival. SOD1 brain thrombin activity was increased (p < 0.001) particularly in the posterior frontal lobe (p = 0.027) and hindbrain (p < 0.01). PAR1 levels were decreased (p < 0.001, brain, spinal cord, p < 0.05). PAR1 and glial fibrillary acidic protein (GFAP) staining decreased in the cerebellum and cortex. SOD1 mice lost weight (≥17 weeks, p = 0.047), and showed shorter rotarod time (≥14 weeks, p < 0.01). FTS 40mg/kg significantly improved rotarod scores (p < 0.001). Survival improved with all treatments (p < 0.01 for all treatments). PAR1 antagonism was the most efficient, with a median survival improvement of 10 days (p < 0.0001). Our results support PAR1 pathway involvement in ALS.
Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Modelos Animales de Enfermedad , Receptor PAR-1/metabolismo , Superóxido Dismutasa-1/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Astrocitos/metabolismo , Peso Corporal/efectos de los fármacos , Farnesol/análogos & derivados , Farnesol/farmacología , Proteína Ácida Fibrilar de la Glía/metabolismo , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Mutación , Pirroles/farmacología , Quinazolinas/farmacología , Salicilatos/farmacología , Transducción de Señal/efectos de los fármacos , Superóxido Dismutasa-1/genética , Análisis de Supervivencia , Clorometilcetona Tosilisina/farmacologíaRESUMEN
The white Spot Syndrome Virus (WSSV) is a pathogen that causes huge economic losses in the shrimp-farming industry globally. At the WSSV genome replication stage (12 hpi) in WSSV-infected shrimp hemocytes, activation of the PI3K-Akt-mTOR pathway triggers metabolic changes that resemble the Warburg effect. In shrimp, the upstream regulators of this pathway are still unknown, and in the present study, we isolate, characterize and investigate two candidate factors, i.e. the shrimp Ras GTPase isoforms LvRas and LvRap, both of which are upregulated after WSSV infection. dsRNA silencing experiments show that virus replication is significantly reduced when expression of either of these genes is suppressed. Pretreatment with the Ras inhibitor Salirasib further suggests that LvRas, which is a homolog to a commonly overexpressed human oncoprotein, may be involved in regulating the WSSV-induced Warburg effect. We also show that while both the PI3K-Akt-mTOR and Raf-MEK-ERK pathways are activated by WSSV infection, LvRas appears to be involved only in the regulation of the mTOR pathway.
Asunto(s)
Penaeidae/virología , Replicación Viral/genética , Virus del Síndrome de la Mancha Blanca 1/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas ras/metabolismo , Animales , Acuicultura , Inhibidores Enzimáticos/farmacología , Farnesol/análogos & derivados , Farnesol/farmacología , Hemocitos/virología , Penaeidae/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Interferencia de ARN , ARN Bicatenario/genética , Salicilatos/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Virus del Síndrome de la Mancha Blanca 1/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas ras/genéticaRESUMEN
Agriotes ustulatus is an economically important click beetle in Europe. A female-produced pheromone, (E,E)-farnesyl acetate, has been identified and is used for monitoring and detecting males. More recently, a floral lure targeting females with modest, but significant, activity has been described. Based on preliminary data, we hypothesized, that similar to the effects on the congeneric A. brevis, addition of the pheromone to the floral lure should improve female A. ustulatus catches. Also, as click beetles have been reported to respond to white light, we studied possible interactions between visual and chemical cues. In field trials, the addition of the synthetic pheromone to the floral lure resulted in a dramatic increase in the number of females trapped, whereas male catches remained unaffected and equal to those in traps baited with pheromone only. A white visual cue did not influence trap catches. Maximum catches of both sexes of A. ustulatus can be achieved using the pheromone and the floral lure inside the same trap. Furthermore, the compounds can be formulated in a single polyethylene bag dispenser, making handling of the trap easier. Due to a much larger proportion of females in the catch, this improved trap may be a promising tool for semiochemical-based, environmentally sound agricultural practice against this important pest.
Asunto(s)
Escarabajos/fisiología , Feromonas/química , Acroleína/análogos & derivados , Acroleína/química , Acroleína/farmacología , Derivados de Alilbenceno , Animales , Anisoles/química , Anisoles/farmacología , Conducta Animal/efectos de los fármacos , Farnesol/análogos & derivados , Farnesol/química , Farnesol/farmacología , Femenino , Flores/química , Flores/metabolismo , Control de Insectos , Masculino , Feromonas/farmacología , EstereoisomerismoRESUMEN
Farnesol, a sesquiterpene alcohol, potentiates the activity of ß-lactam antibiotics against antibiotic-resistant bacteria. We document that farnesol and two synthetic derivatives (compounds 2 and 6) have poor antibacterial activities of their own, but they potentiate the activities of ampicillin and oxacillin against Staphylococcus aureus strains (including methicillin-resistant S. aureus). These compounds attenuate the rate of growth of bacteria, which has to be taken into account in assessment of the potentiation effect.
Asunto(s)
Ampicilina/farmacología , Antibacterianos/farmacología , Farnesol/análogos & derivados , Oxacilina/farmacología , beta-Lactamas/farmacología , Antibacterianos/síntesis química , Sinergismo Farmacológico , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Profármacos/síntesis química , Profármacos/farmacología , beta-Lactamas/síntesis químicaRESUMEN
Hop-derived compounds have been subjected to numerous biomedical studies investigating their impact on a wide range of pathologies. Isomerised bitter acids (isoadhumulone, isocohumulone and isohumulone) from hops, used in the brewing process of beer, are known to inhibit members of the aldo-keto-reductase superfamily. Aldo-keto-reductase 1B10 (AKR1B10) is upregulated in various types of cancer and has been reported to promote carcinogenesis. Inhibition of AKR1B10 appears to be an attractive means to specifically treat RAS-dependent malignancies. However, the closely related reductases AKR1A1 and AKR1B1, which fulfil important roles in the detoxification of endogenous and xenobiotic carbonyl compounds oftentimes crossreact with inhibitors designed to target AKR1B10. Accordingly, there is an ongoing search for selective AKR1B10 inhibitors that do not interact with endogeneous AKR1A1 and AKR1B1-driven detoxification systems. In this study, unisomerised α-acids (adhumulone, cohumulone and n-humulone) were separated and tested for their inhibitory potential on AKR1A1, AKR1B1 and AKR1B10. Also AKR1B10-mediated farnesal reduction was effectively inhibited by α-acid congeners with Ki-values ranging from 16.79 ± 1.33 µM (adhumulone) to 3.94 ± 0.33 µM (n-humulone). Overall, α-acids showed a strong inhibition with selectivity (115â»137 fold) for AKR1B10. The results presented herein characterise hop-derived α-acids as a promising basis for the development of novel and selective AKR1B10-inhibitors.
Asunto(s)
Aldehído Reductasa/antagonistas & inhibidores , Ciclohexanonas/farmacología , Ciclohexenos/farmacología , Terpenos/farmacología , Aldehído Reductasa/metabolismo , Aldo-Ceto Reductasas , Evaluación Preclínica de Medicamentos , Ensayos de Selección de Medicamentos Antitumorales , Farnesol/análogos & derivados , Farnesol/química , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Humanos , Humulus/químicaRESUMEN
BACKGROUND & AIMS: Primary biliary cholangitis (PBC) is an autoimmune liver disease of unknown pathogenesis. Consequently, therapeutic targets for PBC have yet to be identified. CD4+ T cells play a pivotal role in immunological dysfunction observed in PBC, and therefore, microRNA (miRNA) and mRNA expression were analysed in CD4+ T cells, to investigate PBC pathogenesis and identify novel therapeutic targets. METHODS: Integral miRNA and mRNA analysis of 14 PBC patients and ten healthy controls was carried out using microarray and quantitative real-time polymerase chain reaction (qRT-PCR), with gene set enrichment analysis. The functional analyses of miRNA were then assessed using reporter and miRNA-overexpression assays. RESULTS: The integral analysis of miRNA and mRNA identified four significantly downregulated miRNAs (miR-181a, -181b, -374b, and -425) related to the T cell receptor (TCR) signalling pathway in CD4+ T cells of PBC. N-Ras, a regulator of the TCR signalling pathway, was found to be targeted by all four identified miRNAs. In addition, in vitro assays confirmed that decreased miR-425 strongly induced inflammatory cytokines (interleukin [IL]-2 and interferon [IFN]-γ) via N-Ras upregulation in the TCR signalling pathway. CONCLUSION: The decreased expression of four miRNAs that dysregulate TCR signalling in PBC CD4+ T cells was identified. miR-425 was demonstrated as an inflammatory regulator of PBC via N-Ras upregulation. Therefore, the restoration of decreased miR-425 or the suppression of N-Ras may be a promising immunotherapeutic strategy against PBC. LAY SUMMARY: Primary biliary cholangitis (PBC) is an autoimmune liver disease, but the causes are unknown. MicroRNAs are molecules known to regulate biological signals. In this study, four microRNAs were identified as being decreased in PBC patients, leading to activation of T cell receptor signalling pathways, involved in inflammation. One particular target, N-Ras, could be an attractive and novel immunotherapeutic option for PBC. TRANSCRIPT PROFILING: Microarray data are deposited in GEO (GEO accession: GSE93172).
Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Citocinas/biosíntesis , Genes ras , Cirrosis Hepática Biliar/genética , Cirrosis Hepática Biliar/inmunología , MicroARNs/genética , Anciano , Linfocitos T CD4-Positivos/metabolismo , Estudios de Casos y Controles , Citocinas/genética , Citocinas/metabolismo , Farnesol/análogos & derivados , Farnesol/farmacología , Perfilación de la Expresión Génica , Humanos , Mediadores de Inflamación/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-2/biosíntesis , Interleucina-2/genética , Células Jurkat , Cirrosis Hepática Biliar/metabolismo , MicroARNs/metabolismo , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero/genética , ARN Mensajero/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , Salicilatos/farmacología , Transducción de Señal/genética , Transducción de Señal/inmunología , Regulación hacia ArribaRESUMEN
We have previously improved the bioactivity of PEG5k-FTS2 system by incorporating disulfide bond (PEG5k-S-S-FTS2) to facilitate the release of farnesyl thiosalicylic acid (FTS).1 Later, fluorenylmethyloxycarbonyl (Fmoc) moiety has been introduced to PEG5k-FTS2 system (PEG5k-Fmoc-FTS2) in order to enhance drug loading capacity (DLC) and formulation stability.2 In this study, we have brought in both disulfide linkage and Fmoc group to PEG5k-FTS2 to form a simple PEG5k-Fmoc-S-S-FTS2 micellar system. PEG5k-Fmoc-S-S-FTS2 conjugate formed filamentous micelles with a â¼10-fold decrease in critical micellar concentration (CMC). Compared with PEG5k-Fmoc-FTS2, our novel system exhibited further strengthened DLC and colloidal stability. More FTS was freed from PEG5k-Fmoc-S-S-FTS2 in treated tumor cells compared to PEG5k-Fmoc-FTS2, which was correlated to an increased cytotoxicity of our new carrier in these cancer cells. After loading Paclitaxel (PTX) into PEG5k-Fmoc-S-S-FTS2 micelles, it showed more potent efficiency in inhibition of tumor cell proliferation than Taxol and PTX-loaded PEG5k-Fmoc-FTS2. PTX release kinetics of PTX/PEG5k-Fmoc-S-S-FTS2 was much slower than that of Taxol and PTX/PEG5k-Fmoc-FTS2 in normal release medium. In contrast, in glutathione (GSH)-containing medium, PTX in PEG5k-Fmoc-S-S-FTS2 micelles revealed faster and more complete release. Pharmacokinetics and tissue distribution study showed that our PEG5k-Fmoc-S-S-FTS2 system maintained PTX in circulation for a longer time and delivered more PTX to tumor sites with less accumulation in major organs. Finally, PTX-loaded PEG5k-Fmoc-S-S-FTS2 micelles resulted in a superior therapeutic effect in vivo compared to Taxol and PTX formulated in PEG5k-Fmoc-FTS2 micelles.
Asunto(s)
Paclitaxel/química , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular/efectos de los fármacos , Química Farmacéutica/métodos , Portadores de Fármacos/química , Sistemas de Liberación de Medicamentos/métodos , Farnesol/análogos & derivados , Farnesol/química , Femenino , Glutatión/química , Ratones , Ratones Endogámicos BALB C , Micelas , Paclitaxel/metabolismo , Paclitaxel/farmacología , Polietilenglicoles/química , Salicilatos/química , Distribución TisularRESUMEN
The RAS and mTOR inhibitor S-trans-trans-farnesylthiosalicylic acid (FTS) is a promising anticancer agent with moderate potency, currently undergoing clinical trials as a chemotherapeutic agent. FTS has displayed its potential against a variety of cancers including endocrine resistant breast cancer. However, the poor pharmacokinetics profile attributed to its high hydrophobicity is a major hindrance for its continued advancement in clinic. One of the ways to improve its therapeutic potential would be to enhance its bioavailability to cancer tissue by developing a method for targeted delivery. In the current study, FTS was conjugated with the cancer-targeting heptamethine cyanine dye 5 to form the FTS-dye conjugate 11. The efficiency of tumor targeting properties of conjugate 11 against cancer cell growth and mTOR inhibition was evaluated in vitro in comparison with parent FTS. Cancer targeting of 11 in a live mouse model of MCF7 xenografts was demonstrated with noninvasive, near-infrared fluorescence (NIRF) imaging. The results from our studies clearly suggest that the bioavailability of FTS is indeed improved as indicated by log P values and cancer cell uptake. The FTS-dye conjugate 11 displayed higher potency (IC50 = 16.8 ± 0.5 µM) than parent FTS (IC50 = â¼51.3 ± 1.8 µM) and inhibited mTOR activity in the cancer cells at a lower concentration (12.5 µM). The conjugate 11 was shown to be specifically accumulated in tumors as observed by in vivo NIRF imaging, organ distribution, and ex vivo tumor histology along with cellular level confocal microscopy. In conclusion, the conjugation of FTS with cancer-targeting heptamethine cyanine dye improved its pharmacological profile.
Asunto(s)
Antineoplásicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Carbocianinas/administración & dosificación , Farnesol/análogos & derivados , Salicilatos/farmacología , Animales , Disponibilidad Biológica , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Farnesol/farmacología , Femenino , Humanos , Células MCF-7 , Ratones , Ratones Desnudos , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Distribución Tisular , Proteínas ras/metabolismoRESUMEN
The Ras oncogene transmits signals, which regulate various cellular processes including cell motility, differentiation, growth and death. Since Ras signalling is abnormally activated in more than 30% of human cancers, Ras and its downstream signalling pathways are considered good targets for therapeutic interference. Ras is post-translationally modified by the addition of a farnesyl group, which permits its attachment to the plasma membrane. Exploiting this knowledge, a synthetic Ras inhibitor, S-trans, trans-farnesylthiosalicylic acid (FTS; Salirasib), was developed. FTS resembles the farnesylcysteine group of Ras, and acts as an effective Ras antagonist. In the present review, the effect of FTS in combination with various other drugs, as tested in vitro and in vivo, and its therapeutic potential are discussed. As reviewed, FTS cooperates with diverse therapeutic agents, which significantly improves treatment outcome. Therefore, combinations of FTS with other agents have a potential to serve as anti-cancer or anti-inflammatory therapies.
Asunto(s)
Antineoplásicos/farmacología , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Farnesol/análogos & derivados , Neoplasias/tratamiento farmacológico , Salicilatos/farmacología , Transducción de Señal/efectos de los fármacos , Animales , Antiinflamatorios/farmacología , Farnesol/farmacología , HumanosRESUMEN
Like normal cellular nucleosides, the nucleoside reverse transcriptase (RT) inhibitor (NRTI) 4'-ethynyl-2-fluoro-2'-deoxyadenosine (EFdA) has a 3'-hydroxyl moiety, and yet EFdA is a highly potent inhibitor of human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication with activity against a broad range of clinically important drug-resistant HIV isolates. We evaluated the anti-HIV activity of EFdA in primary human cells and in HIV-infected humanized mice. EFdA exhibited excellent potency against HIVJR-CSF in phytohemagglutinin-stimulated peripheral blood mononuclear cells (PBMCs), with a 50% inhibitory concentration of 0.25 nM and a selectivity index of 184,000; similar antiviral potency was found against 12 different HIV clinical isolates from multiple clades (A, B, C, D, and CRF01_AE). EFdA was readily absorbed after oral dosing (5 mg/kg of body weight) in both mice and the rhesus macaque, with micromolar levels of the maximum concentration of drug in serum (Cmax) attained at 30 min and 90 min, respectively. Trough levels were at or above 90% inhibitory concentration (IC90) levels in the macaque at 24 h, suggesting once-daily dosing. EFdA showed reasonable penetration of the blood-brain barrier in the rhesus macaque, with cerebrospinal fluid levels at approximately 25% of plasma levels 8 h after single oral dosing. Rhesus PBMCs isolated 24 h following a single oral dose of 5 mg/kg EFdA were refractory to SIV infection due to sufficiently high intracellular EFdA-triphosphate levels. The intracellular half-life of EFdA-triphosphate in PBMCs was determined to be >72 h following a single exposure to EFdA. Daily oral administration of EFdA at low dosage levels (1 to 10 mg/kg/day) was highly effective in protecting humanized mice from HIV infection, and 10 mg/kg/day oral EFdA completely suppressed HIV RNA to undetectable levels within 2 weeks of treatment.
Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Compuestos de Diazonio/uso terapéutico , Farnesol/análogos & derivados , Infecciones por VIH/tratamiento farmacológico , Inhibidores de la Transcriptasa Inversa/uso terapéutico , Animales , Fármacos Anti-VIH/administración & dosificación , Barrera Hematoencefálica , Compuestos de Diazonio/administración & dosificación , Compuestos de Diazonio/farmacocinética , Farnesol/administración & dosificación , Farnesol/farmacocinética , Farnesol/uso terapéutico , Citometría de Flujo , Infecciones por VIH/virología , VIH-1/efectos de los fármacos , Semivida , Humanos , Técnicas In Vitro , Macaca mulatta , Ratones , Ratones SCID , Monocitos/efectos de los fármacos , Monocitos/virología , ARN Viral/biosíntesis , ARN Viral/efectos de los fármacos , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Inhibidores de la Transcriptasa Inversa/farmacocinética , Virus de la Inmunodeficiencia de los Simios , Viremia/tratamiento farmacológico , Viremia/virologíaRESUMEN
PURPOSE: EFdA is a potent nucleoside reverse transcriptase inhibitor (NRTI) with activity against a wide spectrum of wild-type and drug resistant HIV-1 variants. CSIC is a tight-binding non-nucleoside reverse transcriptase inhibitor (NNRTI) with demonstrated anti-HIV properties important for use in topical prevention of HIV transmission. The objective of this study was to develop and characterize film-formulated EFdA and CSIC for use as a female-controlled vaginal microbicide to prevent sexual transmission of HIV. METHODS: Assessments of EFdA- and CSIC-loaded films included physicochemical characteristics, in vitro cytotoxicity, epithelia integrity studies, compatibility with the normal vaginal Lactobacillus flora and anti-HIV bioactivity evaluations. RESULTS: No significant change in physicochemical properties or biological activity of the combination films were noted during 3 months storage. In vitro cytotoxicity and bioactivity testing showed that 50% cytotoxic concentration (CC50) of either EFdA or CSIC was several orders of magnitude higher than the 50% effective concentration (EC50) values. Film-formulated EFdA and CSIC combination showed additive inhibitory activity against wild type and drug-resistant variants of HIV. Epithelial integrity studies demonstrated that the combination vaginal film had a much lower toxicity to HEC-1A monolayers compared to that of VCF®, a commercial vaginal film product containing nonoxynol-9. Polarized ectocervical explants showed films with drug alone or in combination were effective at preventing HIV infection. CONCLUSIONS: Our data suggest that vaginal microbicide films containing a combination of the NRTI EFdA and the NNRTI CSIC have potential to prevent HIV-1 sexual transmission.
Asunto(s)
Fármacos Anti-VIH/farmacología , Antiinfecciosos/farmacología , Compuestos de Diazonio/farmacología , Farnesol/análogos & derivados , VIH-1/efectos de los fármacos , Indoles/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Vagina/microbiología , Administración Intravaginal , Línea Celular , Química Farmacéutica/métodos , Quimioterapia Combinada/métodos , Farnesol/farmacología , Femenino , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/microbiología , Infecciones por VIH/prevención & control , Humanos , Lactobacillus/efectos de los fármacosRESUMEN
Mammalian cells can use exogenous isoprenols to generate isoprenoid diphosphate substrates for protein isoprenylation, but the mechanism, efficiency, and biological importance of this process are not known. We developed mass spectrometry-based methods using chemical probes and newly synthesized stable isotope-labeled tracers to quantitate incorporation of exogenously provided farnesol, geranylgeraniol, and unnatural analogs of these isoprenols containing an aniline group into isoprenoid diphosphates and protein isoprenylcysteines by cultured human cancer cell lines. We found that at exogenous isoprenol concentrations >10 µM, this process can generate as much as 50% of the cellular isoprenoid diphosphate pool used for protein isoprenylation. Mutational activation of p53 in MDA-MB-231 breast cancer cells up-regulates the mevalonate pathway to promote tumor invasiveness. p53 silencing or pharmacological inhibition of HMG-CoA reductase in these cells decreases protein isoprenylation from endogenously synthesized isoprenoids but enhances the use of exogenous isoprenols for this purpose, indicating that this latter process is regulated independently of the mevalonate pathway. Our observations suggest unique opportunities for design of cancer cell-directed therapies and may provide insights into mechanisms underlying pleiotropic therapeutic benefits and unwanted side effects of mevalonate pathway inhibition.