Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Biochim Biophys Acta ; 1757(5-6): 369-79, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16829225

RESUMEN

Femtosecond absorption difference spectroscopy was applied to study the time and spectral evolution of low-temperature (90 K) absorbance changes in isolated reaction centers (RCs) of the HM182L mutant of Rhodobacter (Rb.) sphaeroides. In this mutant, the composition of the B-branch RC cofactors is modified with respect to that of wild-type RCs by replacing the photochemically inactive BB accessory bacteriochlorophyll (BChl) by a photoreducible bacteriopheophytin molecule (referred to as PhiB). We have examined vibrational coherence within the first 400 fs after excitation of the primary electron donor P with 20-fs pulses at 870 nm by studying the kinetics of absorbance changes at 785 nm (PhiB absorption band), 940 nm (P*-stimulated emission), and 1020 nm (BA- absorption band). The results of the femtosecond measurements are compared with those recently reported for native Rb. sphaeroides R-26 RCs containing an intact BB BChl. At delay times longer than approximately 50 fs (maximum at 120 fs), the mutant RCs exhibit a pronounced BChl radical anion (BA-) absorption band at 1020 nm, which is similar to that observed for Rb. sphaeroides R-26 RCs and represents the formation of the intermediate charge-separated state P+ BA-. Femtosecond oscillations are revealed in the kinetics of the absorption development at 1020 nm and of decay of the P*-stimulated emission at 940 nm, with the oscillatory components of both kinetics displaying a generally synchronous behavior. These data are interpreted in terms of coupling of wave packet-like nuclear motions on the potential energy surface of the P* excited state to the primary electron-transfer reaction P*-->P+ BA- in the A-branch of the RC cofactors. At very early delay times (up to 80 fs), the mutant RCs exhibit a weak absorption decrease around 785 nm that is not observed for Rb. sphaeroides R-26 RCs and can be assigned to a transient bleaching of the Qy ground-state absorption band of the PhiB molecule. In the range of 740-795 nm, encompassing the Qy optical transitions of bacteriopheophytins HA, HB, and PhiB, the absorption difference spectra collected for mutant RCs at 30-50 fs resemble the difference spectrum of the P+ PhiB- charge-separated state previously detected for this mutant in the picosecond time domain (E. Katilius, Z. Katiliene, S. Lin, A.K.W. Taguchi, N.W. Woodbury, J. Phys. Chem., B 106 (2002) 1471-1475). The dynamics of bleaching at 785 nm has a non-monotonous character, showing a single peak with a maximum at 40 fs. Based on these observations, the 785-nm bleaching is speculated to reflect reduction of 1% of PhiB in the B-branch within about 40 fs, which is earlier by approximately 80 fs than the reduction process in the A-branch, both being possibly linked to nuclear wave packet motion in the P* state.


Asunto(s)
Cromatóforos Bacterianos/fisiología , Bacterioclorofilas/fisiología , Feofitinas/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Pigmentos Biológicos/metabolismo , Rhodobacter sphaeroides/fisiología , Cromatóforos Bacterianos/genética , Bacterioclorofilas/genética , Transporte de Electrón , Cinética , Mutagénesis Sitio-Dirigida , Feofitinas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Pigmentos Biológicos/genética , Rhodobacter sphaeroides/genética , Análisis Espectral
2.
Biochim Biophys Acta ; 1710(1): 34-46, 2005 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16181607

RESUMEN

All of the membrane-embedded cofactors of the purple bacterial reaction centre have well-defined functional or structural roles, with the exception of the bacteriopheophytin (H(B)) located approximately half-way across the membrane on the so-called inactive- or B-branch of cofactors. Sequence alignments indicate that this bacteriochlorin cofactor is a conserved feature of purple bacterial reaction centres, and a pheophytin is also found at this position in the Photosystem-II reaction centre. Possible structural or functional consequences of replacing the H(B) bacteriopheophytin by bacteriochlorophyll were investigated in the Rhodobacter sphaeroides reaction centre through mutagenesis of residue Leu L185 to His (LL185H). Results from absorbance spectroscopy indicated that the LL185H mutant assembled with a bacteriochlorophyll at the H(B) position, but this did not affect the capacity of the reaction centre to support photosynthetic growth, or change the kinetics of charge separation along the A-branch of cofactors. It was also found that mutation of residue Ala M149 to Trp (AM149W) caused the reaction centre to assemble without an H(B) bacteriochlorin, demonstrating that this cofactor is not required for correct assembly of the reaction centre. The absence of a cofactor at this position did not affect the capacity of the reaction centre to support photosynthetic growth, or the kinetics of A-branch electron transfer. A combination of X-ray crystallography and FTIR difference spectroscopy confirmed that the H(B) cofactor was absent in the AM149W mutant, and that this had not produced any significant disturbance of the adjacent ubiquinol reductase (Q(B)) site. The data are discussed with respect to possible functional roles of the H(B) bacteriopheophytin, and we conclude that the reason(s) for conservation of a bacteriopheophytin cofactor at this position in purple bacterial reaction centres are likely to be different from those underlying conservation of a pheophytin at the analogous position in Photosystem-II.


Asunto(s)
Feofitinas/química , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Clorofila , Color , Cristalografía por Rayos X , Modelos Moleculares , Conformación Molecular , Mutación/genética , Fenotipo , Feofitinas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/genética , Análisis Espectral , Temperatura
3.
J Biochem ; 136(3): 363-9, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15598894

RESUMEN

Reaction centers (RCs) of the photosynthetic bacterium Rhodobacter sphaeroides R-26 were reconstituted in liposomes after release of pigments (bacteriochlorophyll a (BChla) and bacteriopheophytin a (BPhea)) by treatment with acetone. As shown by absorption and circular dichroism spectroscopies, the reconstituted RCs had the same arrangement of pigments as the native RC and exhibited photoactivity of the special pair. The recovery yield of RCs of up to 30% was achieved by addition of 7.8-fold excess of BChla in the acetone treatment. Furthermore BChla was partially replaced with Zn-BChla by addition of the pigments during the acetone treatment. About 30% and 50% of the special pair and accessory pigments can be replaced with Zn-BChla, respectively. From this rate, an oxidation-reduction potential of 520 mV (vs. the normal hydrogen electrode NHE) was derived by the simulation of the experimental data, which is 35 mV higher than that of the native RC (484 mV vs. NHE).


Asunto(s)
Bacterioclorofila A/genética , Acetona/química , Acetona/farmacología , Ácido Ascórbico/farmacología , Bacterioclorofilas , Cromatografía Líquida de Alta Presión , Dicroismo Circular , Electrodos , Hidrógeno/química , Luz , Complejos de Proteína Captadores de Luz/metabolismo , Liposomas/química , Liposomas/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Feofitinas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/fisiología , Rhodobacter sphaeroides/metabolismo , Espectrofotometría , Factores de Tiempo , Zinc/química
4.
J Phys Chem B ; 115(44): 13037-50, 2011 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-21970763

RESUMEN

The kinetics of recombination of the P(+)H(A)(-) radical pair were compared in wild-type reaction centers from Rhodobacter sphaeroides and in seven mutants in which the free energy gap, ΔG, between the charge separated states P(+)B(A)(-) and P(+)H(A)(-) was either increased or decreased. Five of the mutant RCs had been described previously, and X-ray crystal structures of two newly constructed complexes were determined by X-ray crystallography. The charge recombination reaction was accelerated in all mutants with a smaller ΔG than in the wild-type, and was slowed in a mutant having a larger ΔG. The free energy difference between the state P(+)H(A)(-) and the PH(A) ground state was unaffected by most of these mutations. These observations were consistent with a model in which the P(+)H(A)(-) → PH(A) charge recombination is thermally activated and occurs via the intermediate state P(+)B(A)(-), with a mean rate related to the size of the ΔG between the states P(+)B(A)(-) and P(+)H(A)(-) and not the ΔG between P(+)H(A)(-) and the ground state. A more detailed analysis of charge recombination in the mutants showed that the kinetics of the reaction were multiexponential, and characterized by ~0.5, ~1-3, and 7-17 ns lifetimes, similar to those measured for wild-type reaction centers. The exact lifetimes and relative amplitudes of the three components were strongly modulated by the mutations. Two models were considered in order to explain the observed multiexponentiality and modulation, involving heterogeneity or relaxation of P(+)H(A)(-) states, with the latter model giving a better fit to the experimental results.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Feofitinas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Bacterioclorofilas/química , Bacterioclorofilas/genética , Cristalografía por Rayos X , Transporte de Electrón , Cinética , Modelos Moleculares , Mutación , Feofitinas/química , Feofitinas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/genética
5.
Plant Cell ; 21(3): 767-85, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19304936

RESUMEN

During leaf senescence, chlorophyll is removed from thylakoid membranes and converted in a multistep pathway to colorless breakdown products that are stored in vacuoles. Dephytylation, an early step of this pathway, increases water solubility of the breakdown products. It is widely accepted that chlorophyll is converted into pheophorbide via chlorophyllide. However, chlorophyllase, which converts chlorophyll to chlorophyllide, was found not to be essential for dephytylation in Arabidopsis thaliana. Here, we identify pheophytinase (PPH), a chloroplast-located and senescence-induced hydrolase widely distributed in algae and land plants. In vitro, Arabidopsis PPH specifically dephytylates the Mg-free chlorophyll pigment, pheophytin (phein), yielding pheophorbide. An Arabidopsis mutant deficient in PPH (pph-1) is unable to degrade chlorophyll during senescence and therefore exhibits a stay-green phenotype. Furthermore, pph-1 accumulates phein during senescence. Therefore, PPH is an important component of the chlorophyll breakdown machinery of senescent leaves, and we propose that the sequence of early chlorophyll catabolic reactions be revised. Removal of Mg most likely precedes dephytylation, resulting in the following order of early breakdown intermediates: chlorophyll --> pheophytin --> pheophorbide. Chlorophyllide, the last precursor of chlorophyll biosynthesis, is most likely not an intermediate of breakdown. Thus, chlorophyll anabolic and catabolic reactions are metabolically separated.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis , Senescencia Celular/fisiología , Clorofila/metabolismo , Hidrolasas/metabolismo , Feofitinas/metabolismo , Hojas de la Planta/fisiología , Secuencia de Aminoácidos , Arabidopsis/anatomía & histología , Arabidopsis/fisiología , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Cloroplastos/enzimología , Hidrolasas/clasificación , Hidrolasas/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Feofitinas/genética , Fotosíntesis/fisiología , Filogenia , Fitol/metabolismo , Hojas de la Planta/citología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia
6.
Biochemistry ; 45(12): 3845-51, 2006 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-16548512

RESUMEN

We present studies on a series of photosynthetic reaction center (RC) mutants created in the background of the Rhodobacter capsulatus D(LL) mutant, in which the D helix of the M subunit has been substituted with that from the L subunit. Previous work on the D(LL) mutant in chromatophore preparations showed that RCs assembled without the bacteriopheophytin H(L) electron acceptor and performed no charge separation following light absorption. We have successfully isolated poly-His-tagged D(LL) RCs by using the detergent Deriphat 160-C and shown that the RCs are devoid of H(L). The excited state of the primary electron donor, P*, is found to have a lifetime of 180 +/- 20 ps and to decay exclusively (>95%) via internal conversion to the ground state, with no evidence for formation of any charge-separated intermediates. By additional mutation in the D(LL) background of two residues that affect the P/P+ oxidation potential and one that facilitates M-side electron transfer, we achieve an unprecedented 70% yield of P+ H(M)-, more than doubling the highest yield of this state achieved previously. This result underscores the importance of the relative free energies of P* and the charge-separated states in governing the rates and yields of electron transfer in bacterial RCs and provides a basis for systematically investigating M-side electron transfer without any competition from the native L-side pathway.


Asunto(s)
Mutación , Feofitinas/química , Rhodobacter capsulatus/química , Secuencia de Aminoácidos , Detergentes/química , Transporte de Electrón , Histidina/química , Modelos Moleculares , Datos de Secuencia Molecular , Oxidación-Reducción , Feofitinas/genética , Plásmidos , Rhodobacter capsulatus/genética , Análisis Espectral/métodos
7.
Biochemistry ; 44(18): 6920-8, 2005 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-15865437

RESUMEN

The photosynthetic reaction center (RC) from purple bacteria converts light into chemical energy. Although the RC shows two nearly structurally symmetric branches, A and B, light-induced electron transfer in the native RC occurs almost exclusively along the A-branch to a primary quinone electron acceptor Q(A). Subsequent electron and proton transfer to a mobile quinone molecule Q(B) converts it to a quinol, Q(B)H(2). We report the construction and characterization of a series of mutants in Rhodobacter sphaeroides designed to reduce Q(B) via the B-branch. The quantum efficiency to Q(B) via the B-branch Phi(B) ranged from 0.4% in an RC containing the single mutation Ala-M260 --> Trp to 5% in a quintuple mutant which includes in addition three mutations to inhibit transfer along the A-branch (Gly-M203 --> Asp, Tyr-M210 --> Phe, Leu-M214 --> His) and one to promote transfer along the B-branch (Phe-L181 --> Tyr). Comparing the value of 0.4% for Phi(B) obtained in the AW(M260) mutant, which lacks Q(A), to the 100% quantum efficiency for Phi(A) along the A-branch in the native RC, we obtain a ratio for A-branch to B-branch electron transfer of 250:1. We determined the structure of the most effective (quintuple) mutant RC at 2.25 A (R-factor = 19.6%). The Q(A) site did not contain a quinone but was occupied by the side chain of Trp-M260 and a Cl(-). In this structure a nonfunctional quinone was found to occupy a new site near M258 and M268. The implications of this work to trap intermediate states are discussed.


Asunto(s)
Benzoquinonas/química , Benzoquinonas/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Bacterioclorofilas/química , Bacterioclorofilas/genética , Bacterioclorofilas/metabolismo , Benzoquinonas/antagonistas & inhibidores , Sitios de Unión/genética , Cristalización , Cristalografía por Rayos X , Transporte de Electrón/genética , Cinética , Rayos Láser , Modelos Químicos , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Feofitinas/química , Feofitinas/genética , Feofitinas/metabolismo , Fotólisis , Proteínas del Complejo del Centro de Reacción Fotosintética/aislamiento & purificación , Rhodobacter sphaeroides/crecimiento & desarrollo , Espectrofotometría
8.
Biospectroscopy ; 5(1): 35-46, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10219879

RESUMEN

The freeze-trapped bacteriopheophytin alpha radical anion phi(*)A- has been investigated by 1H-ENDOR/Special TRIPLE resonance spectroscopy in photosynthetic reaction centers of Rhodobacter sphaeroides, in which the Tyr at position M210 had been replaced by either Phe, Leu, His or Trp. In the wild type reaction center and the mutants YF(M210) and YW(M210) two distinct states of phi(*)A-, denoted I(*)1- and I(*)2-, can be stabilized below 200 K. The state I(*)1 is metastable and relaxes to I(*)2- as the temperature is raised from 135 K to 180 K. The difference in the electronic structure of phi(*)A- between the two states is interpreted in terms of a conformational change of phiA after freeze-trapping, involving a reorientation of the 3-acetyl group with respect to the macrocycle of the bacteriopheophytin. This interpretation is supported by the results of RHF-INDO/SP calculations. In the YH(M210) reaction center only one phiA- state is obtained that is distinct from I(*)1- and I(*)2, and the observed electronic structure indicates an almost in-plane orientation of the 3-acetyl group. This is consistent with the proposal that a hydrogen bond is formed between His M210 and the 3(1)-keto oxygen of phiA that impedes the reorientation of the acetyl group. Only one phi(*)A- state is observed in the YL(M210) reaction center, which is similar to the metastable state I(*)1 in the wild type complex. This result is interpreted in terms of a steric hindrance of the reorientation of the 3-acetyl group that is exerted by the side chain of Leu at position M210. Possible implications of these findings for the mechanism of electron transfer in bacterial reaction centers are discussed.


Asunto(s)
Espectroscopía de Resonancia por Spin del Electrón/métodos , Feofitinas/química , Rhodobacter sphaeroides/química , Histidina , Leucina/química , Modelos Moleculares , Conformación Molecular , Mutación , Feofitinas/genética , Protones
9.
Biochemistry ; 37(38): 13066-74, 1998 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-9748312

RESUMEN

It is demonstrated by ENDOR and Special TRIPLE spectroscopy that two distinct radical anion states of the intermediate electron acceptor (I), a bacteriopheophytin, can be freeze-trapped in isolated photosynthetic reaction centers of Rhodobacter sphaeroides. The formation of these states depends on the illumination time prior to freezing and the temperature. The first state, I1.-, is metastable and relaxes irreversibly at T approximately 160 K to the second state, I2.-. Experiments on quinone depleted as well as mutant reaction centers help to exclude the possibility that other cofactors besides the bacteriopheophytin in the A-branch, PhiA, are reduced during the trapping procedure. In particular, two mutants are investigated, in which the hydrogen bonds to PhiA that exist in the wild type are removed. These mutants are EL(L104), in which Glu at position L104 near the 13(1)-keto group of PhiA is replaced by Leu, and WF(L100), in which Trp at position L100 near the 13(2)-methyl ester of PhiA is replaced by Phe. Both mutations have characteristic effects on both I.- states. In addition, the replacement of Thr at position M133 near the 13(1)-keto group of the inactive bacteriopheophytin and of Gly at position M203 near the 13(1)-keto group of the accessory bacteriochlorophyll in the A-branch by Asp causes no changes of the electronic structure of I.-. The two I.- states are interpreted in terms of a reorientation of the 3-acetyl group of PhiA after reduction. Possible implications for the initial charge separation process are discussed.


Asunto(s)
Feofitinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Conformación Proteica , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón/genética , Complejos de Proteína Captadores de Luz , Mutagénesis Sitio-Dirigida , Feofitinas/genética , Feofitinas/metabolismo , Fotoquímica , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/genética , Análisis Espectral
10.
Biochemistry ; 38(27): 8794-9, 1999 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-10393555

RESUMEN

The kinetics of the P+HA- (oxidized donor, reduced bacteriopheophytin acceptor) recombination reaction was measured in a series of reaction center mutants of Rhodobacter sphaeroides with altered P/P+ midpoint potentials between 410 and 765 mV. The time constant for P+HA- recombination was found to range between 14 and 26 ns and was essentially independent of P/P+ midpoint potential. Previous work has shown that the time constant for initial electron transfer in these mutants at room temperature is also only weakly dependent on the P/P+ midpoint potential, ranging from about 2.5 ps to about 50 ps. These results, taken together, imply that heterogeneity in the P/P+ midpoint potential within the reaction center population is not likely the dominant cause of the substantial kinetic complexity observed in the decay of the excited singlet state of P on the picosecond to nanosecond time scale. In addition, the pathway of P+HA- decay appears to be direct or via P+BA- rather than proceeding back through P, even in the highest-potential mutant, as is evident from the fact that the rate of P+HA- recombination is unaltered by pushing P+HA- much closer to P in energy. Finally, the midpoint potential independence of the P+HA- recombination rate constant suggests that the slow rate of P+HA- recombination arises from an inherent limitation in the maximum rate of this process rather than because it occurs in the inverted region of a classical Marcus rate vs free energy curve.


Asunto(s)
Feofitinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter sphaeroides/química , Transporte de Electrón , Cinética , Oxidación-Reducción , Feofitinas/genética , Feofitinas/metabolismo , Fotoquímica , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Conformación Proteica , Quinonas/química , Rhodobacter sphaeroides/genética , Rhodobacter sphaeroides/metabolismo , Espectrometría de Fluorescencia , Temperatura , Termodinámica
11.
Biochemistry ; 29(26): 6203-10, 1990 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-2169865

RESUMEN

Electron paramagnetic resonance (EPR) has been used to investigate the cation and triplet states of Rhodobacter capsulatus reaction centers (RCs) containing amino acid substitutions affecting the primary donor, monomeric bacteriochlorophylls (Bchls), and the photoactive bacteriopheophytin (Bphe). The broadened line width of the cation radical in HisM200----Leu and HisM200----Phe reaction centers, whose primary donor consists of a Bchl-Bphe heterodimer, indicates a highly asymmetric distribution of the unpaired electron over the heterodimer. A T0 polarized triplet state with reduced yield is observed in heterodimer-containing RCs. The zero field splitting parameters indicate that this triplet essentially resides on the Bchl half of the heterodimer. The cation and triplet states of reaction centers containing HisM200----Gln, HisL173----Gln, GluL104----Gln, or GluL104----Leu substitutions are similar to those observed in wild type. Oligonucleotide-mediated mutagenesis has been used to change the histidine residues that are positioned near the central Mg2+ ions of the reaction center monomeric bacteriochlorophylls. Reaction centers containing serine substitutions at M180 and L153 or a threonine substitution at L153 have unaltered pigment compositions and are photochemically active. The cation and triplet states of HisL153----Leu reaction centers are similar to those observed in wild type. Triplet energy transfer to carotenoid is not observed at 100 K in HisM180----Arg chromatophores. These results have important implications for the structural requirements of tetrapyrrole binding and for our understanding of the mechanisms of primary electron transfer in the reaction center.


Asunto(s)
Bacterioclorofilas/genética , Feofitinas/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Rhodospirillaceae/metabolismo , Bacterioclorofilas/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Complejos de Proteína Captadores de Luz , Mutación , Oxidación-Reducción , Feofitinas/metabolismo , Feofitinas/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Pirroles/metabolismo , Tetrapirroles
12.
Biochemistry ; 38(35): 11516-30, 1999 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-10471304

RESUMEN

We report the primary charge separation events in a series of Rhodobacter capsulatus reaction centers (RCs) that have been genetically modified to contain a lysine near the bacteriochlorophyll molecule, BChl(M), on the nonphotoactive M-side of the RC. Using wild type and previously constructed mutants as templates, we substituted Lys for the native Ser residue at position 178 on the L polypeptide to make the S(L178)K single mutant, the S(L178)K/G(M201)D and S(L178)K/L(M212)H double mutants, and the S(L178)K/G(M201)D/L(M212)H triple mutant. In the triple mutant, the decay of the photoexcited primary electron donor (P) occurs with a time constant of 15 ps and is accompanied by 15% return to the ground state, 62% electron transfer to the L-side bacteriopheophytin, BPh(L), and 23% electron transfer to the M-side analogue, BPh(M). The data supporting electron transfer to the M-side include bleaching of the Q(X) band of BPh(M) at 528 nm and a spectrally and kinetically resolved anion band with a maximum at 640 nm assigned to BPh(M)(-). The decay of these features and concomitant approximately 20% decay of bleaching of the 850 nm band of P give a P(+)BPh(M)(-) lifetime on the order of 1-2 ns that reflects deactivation to give the ground state. These data and additional findings are compared to those from parallel experiments on the G(M201)D/L(M212)H double mutant, in which 15% electron transfer to BPh(M) has been reported previously and is reproduced here. We also compare the above results with the primary electron-transfer processes in S(L178)K, S(L178)K/G(M201)D, and S(L178)K /L(M212)H RCs and with those for the L(M212)H and G(M201)D single mutants and wild-type RCs. The comparison of extensive results that track the primary events in these eight RCs helps to elucidate key factors underlying the directionality and high yield of charge separation in the bacterial photosynthetic RC.


Asunto(s)
Bacterioclorofilas/metabolismo , Lisina/genética , Mutagénesis Sitio-Dirigida , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Sustitución de Aminoácidos/genética , Aniones/química , Ácido Aspártico/genética , Benzoquinonas/química , Transporte de Electrón/genética , Histidina/genética , Cinética , Complejos de Proteína Captadores de Luz , Feofitinas/química , Feofitinas/genética , Feofitinas/metabolismo , Fotoquímica , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodobacter capsulatus , Análisis Espectral
13.
Biochemistry ; 38(35): 11541-52, 1999 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-10471306

RESUMEN

The light-induced Fourier transform infrared (FTIR) difference spectra corresponding to the photoreduction of either the HA bacteriopheophytin electron acceptor (HA-/HA spectrum) or the QA primary quinone (QA-/QA spectrum) in photosynthetic reaction centers (RCs) of Rhodopseudomonas viridis are reported. These spectra have been compared for wild-type (WT) RCs and for two site-directed mutants in which the proposed interactions between the carbonyls on ring V of HA and the RC protein have been altered. In the mutant EQ(L104), the putative hydrogen bond between the protein and the 9-keto C=O of HA should be affected by changing Glu L104 to a Gln. In the mutant WF(M250), the van der Waals interactions between Trp M250 and the 10a-ester C=O of HA should be modified. The characteristic effects of both mutations on the FTIR spectra support the proposed interactions and allow the IR modes of the 9-keto and 10a-ester C=O of HA and HA- to be assigned. Comparison of the HA-/HA and QA-/QA spectra leads us to conclude that the QA-/QA IR signals in the spectral range above 1700 cm-1 are largely dominated by contributions from the electrostatic response of the 10a-ester C=O mode of HA upon QA photoreduction. A heterogeneity in the conformation of the 10a-ester C=O mode of HA in WT RCs, leading to three distinct populations of HA, appears to be related to differences in the hydrogen-bonding interactions between the carbonyls of ring V of HA and the RC protein. The possibility that this structural heterogeneity is related to the observed multiexponential kinetics of electron transfer and the implications for primary processes are discussed. The effect of 1H/2H exchange on the QA-/QA spectra of the WT and mutant RCs shows that neither Glu L104 nor any other exchangeable carboxylic residue changes appreciably its protonation state upon QA reduction.


Asunto(s)
Mutagénesis Sitio-Dirigida , Feofitinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Rhodopseudomonas/química , Sustitución de Aminoácidos/genética , Benzoquinonas/química , Óxido de Deuterio , Transporte de Electrón , Ácido Glutámico/genética , Glutamina/genética , Oxidación-Reducción , Fenilalanina/genética , Feofitinas/genética , Fotoquímica , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Conformación Proteica , Protones , Rhodopseudomonas/genética , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad Estática , Triptófano/genética
14.
Biospectroscopy ; 5(6): 346-57, 1999.
Artículo en Inglés | MEDLINE | ID: mdl-10604287

RESUMEN

Qy-excitation resonance Raman (RR) spectra are reported for two mutant reaction centers (RCs) from Rhodobacter capsulatus in which the photoactive bacteriopheophytin (BPhL) is replaced by a bacteriochlorophyll (BChl) molecule, designated beta. The pigment change in both mutants is induced via introduction of a histidine residue near the photoactive cofactor. In one mutant, L(M212)H, the histidine is positioned over the core of the cofactor and serves as an axial ligand to the Mg+2 ion. In the other mutant, F(L121)H/F(L97)V, the histidine is positioned over ring V of the cofactor, which is nominally too distant to permit bonding to the Mg+2 ion. The salient observations are as follows: (1) The beta cofactor in F(L121)H/F(L97)V RCs is a five-coordinate BChl molecule. However, there is no evidence for the formation of a Mg-His bond. This bond is either much weaker than in the L(M212)H RCs or completely absent, the latter implying coordination by an alternative ligand. The different axial ligation for beta in the F(L121)H/F(L97)V versus L(M212)H RCs in turn leads to different conformations of the BChl macrocycles. (2) The C9-keto group of beta in F(L121)H/F(L97)V RCs is free of hydrogen bonding interactions, unlike the L(M212)H RCs in which the C9-keto of beta is hydrogen bonded to Glu L104. The interactions between other peripheral substituents of beta and the protein are also different in the F(L121)H/F(L97)V RCs versus L(M212)H RCs. Accordingly, the position and orientation of beta in the protein is different in the two beta-containing RCs. Nonetheless, previous studies have shown that the primary electron transfer reactions are very similar in the two mutants but differ in significant respects compared to wild-type RCs. Collectively, these observations indicate that changes in the conformation of a photoactive tetrapyrrole macrocycle or its interactions with the protein do not necessarily lead to significantly perturbed photochemistry and do not underlie the altered primary events in beta-type RCs.


Asunto(s)
Bacterioclorofilas/química , Feofitinas/química , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Bacterioclorofilas/genética , Bacterioclorofilas/metabolismo , Complejos de Proteína Captadores de Luz , Estructura Molecular , Feofitinas/genética , Feofitinas/metabolismo , Fotoquímica , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Conformación Proteica , Rhodobacter capsulatus/química , Rhodobacter capsulatus/genética , Espectrometría Raman/métodos , Relación Estructura-Actividad , Vibración
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA