Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.086
Filtrar
Más filtros

Intervalo de año de publicación
1.
PLoS Pathog ; 20(10): e1012623, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39405339

RESUMEN

It is a great challenge to isolate the broadly neutralizing antibodies (bnAbs) against foot-and-mouth disease virus (FMDV) due to its existence as seven distinct serotypes without cross-protection. Here, by vaccination of pig with FMDV serotypes O and A whole virus antigens, we obtained 10 bnAbs against serotypes O, A and/or Asia1 by dissecting 216 common clonotypes of two serotypes O and A specific porcine B-cell receptor (BCR) gene repertoires containing total 12720 B cell clones, indicating the induction of cross-serotype bnAbs after sequential vaccination with serotypes O and A antigens. The majority of porcine bnAbs (9/10) were derived from terminally differentiated B cells of different clonal lineages, which convergently targeted the conserved "RGDL" motif on structural protein VP1 of FMDV by mimicking receptor recognition to inhibit viral attachment to cells. Cryo-EM complex structures revealed that the other bnAb pOA-2 specifically targets a novel inter-pentamer antigen structure surrounding the viral three-fold axis, with a highly conserved determinant at residue 68 on VP2. This unique binding pattern enabled cross-serotype neutralization by destabilizing the viral particle. The evolutionary analysis of pOA-2 demonstrated its origin from an intermediate B-cell, emphasizing the crucial role of somatic hypermutations (SHMs) in balancing the breadth and potency of neutralization. However, excessive SHMs may deviate from the trajectory of broad neutralization. This study provides a strategy to uncover bnAbs against highly mutable pathogens and the cross-serotype antigenic structures to explore broadly protective FMDV vaccine.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos B , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/inmunología , Porcinos , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Fiebre Aftosa/virología , Linfocitos B/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Antígenos Virales/genética , Serogrupo , Anticuerpos ampliamente neutralizantes/inmunología , Enfermedades de los Porcinos/inmunología , Enfermedades de los Porcinos/virología
2.
PLoS Pathog ; 20(3): e1012104, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38512977

RESUMEN

The interaction between foot-and-mouth disease virus (FMDV) and the host is extremely important for virus infection, but there are few researches on it, which is not conducive to vaccine development and FMD control. In this study, we designed a porcine genome-scale CRISPR/Cas9 knockout library containing 93,859 single guide RNAs targeting 16,886 protein-coding genes, 25 long ncRNAs, and 463 microRNAs. Using this library, several previously unreported genes required for FMDV infection are highly enriched post-FMDV selection in IBRS-2 cells. Follow-up studies confirmed the dependency of FMDV on these genes, and we identified a functional role for one of the FMDV-related host genes: TOB1 (Transducer of ERBB2.1). TOB1-knockout significantly inhibits FMDV infection by positively regulating the expression of RIG-I and MDA5. We further found that TOB1-knockout led to more accumulation of mRNA transcripts of transcription factor CEBPA, and thus its protein, which further enhanced transcription of RIG-I and MDA5 genes. In addition, TOB1-knockout was shown to inhibit FMDV adsorption and internalization mediated by EGFR/ERBB2 pathway. Finally, the FMDV lethal challenge on TOB1-knockout mice confirmed that the deletion of TOB1 inhibited FMDV infection in vivo. These results identify TOB1 as a key host factor involved in FMDV infection in pigs.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Receptores ErbB/metabolismo , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Regulación de la Expresión Génica , ARN Guía de Sistemas CRISPR-Cas , Porcinos
3.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38289108

RESUMEN

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Vacunas Virales , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Linfocitos T CD8-positivos , Fiebre Aftosa/inmunología , Fiebre Aftosa/prevención & control , Virus de la Fiebre Aftosa/fisiología , Porcinos , Vacunación
4.
J Virol ; 98(9): e0111424, 2024 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-39194213

RESUMEN

Zinc finger protein 36 (ZFP36) is a key regulator of inflammatory and cytokine production. However, the interplay between swine zinc-finger protein 36 (sZFP36) and foot-and-mouth disease virus (FMDV) has not yet been reported. Here, we demonstrate that overexpression of sZFP36 restricted FMDV replication, while the knockdown of sZFP36 facilitated FMDV replication. To subvert the antagonism of sZFP36, FMDV decreased sZFP36 protein expression through its non-structural protein 3C protease (3Cpro). Our results also suggested that 3Cpro-mediated sZFP36 degradation was dependent on its protease activity. Further investigation revealed that both N-terminal and C-terminal-sZFP36 could be degraded by FMDV and FMDV 3Cpro. In addition, both N-terminal and C-terminal-sZFP36 decreased FMDV replication. Moreover, sZFP36 promotes the degradation of FMDV structural proteins VP3 and VP4 via the CCCH-type zinc finger and NES domains of sZFP36. Together, our results confirm that sZFP36 is a host restriction factor that negatively regulates FMDV replication.IMPORTANCEFoot-and-mouth disease (FMD) is an infectious disease of animals caused by the pathogen foot-and-mouth disease virus (FMDV). FMD is difficult to prevent and control because there is no cross-protection between its serotypes. Thus, we designed this study to investigate virus-host interactions. We first demonstrate that swine zinc-finger protein 36 (sZFP36) impaired FMDV structural proteins VP3 and VP4 to suppress viral replication. To subvert the antagonism of sZFP36, FMDV and FMDV 3Cpro downregulate sZFP36 expression to facilitate FMDV replication. Taken together, the present study reveals a previously unrecognized antiviral mechanism for ZFP36 and elucidates the role of FMDV in counteracting host antiviral activity.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Animales , Porcinos , Fiebre Aftosa/virología , Fiebre Aftosa/metabolismo , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteasas Virales 3C/metabolismo , Línea Celular , Interacciones Huésped-Patógeno , Células HEK293 , Proteolisis , Factor 1 de Respuesta al Butirato/metabolismo , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética
5.
J Virol ; 98(10): e0090224, 2024 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-39324793

RESUMEN

The life cycle of foot-and-mouth disease virus (FMDV) is tightly regulated by host cell lipid metabolism. In previous studies, we reported downregulated expression of stearoyl coenzyme A desaturase-1 (SCD1), a key enzyme of fatty acid metabolism, in BHK-VEC cells (a virus-negative cell line derived from BKH-21 cells with persistent FMDV infection) on comparing transcriptomic data for BHK-VEC and BHK-21 cells (Y. Yuan et al., Front Cell Infect Microbiol 12:940906, 2022, https://doi.org/10.3389/fcimb.2022.940906; L. Han et al., Vet Microbiol 263:109247, 2021, https://doi.org/10.1016/j.vetmic.2021.109247). In the present study, we identify that SCD1 regulates FMDV replication. SCD1 overexpression or exogenous addition of oleic acid (OA), a product of the enzymatic activity of SCD1, increased FMDV replication in both BHK-21 cells and SCD1-knockdown cells. Overexpression of SCD1 or exogenous addition of OA restored FMDV infection and replication in BHK-VEC cells, and OA also promoted FMDV replication in BHK-21 cells with persistent FMDV infection. SCD1 recruited the nonstructural FMDV protein 2C to a detergent-resistant membrane located in the perinuclear region of cells to form replication complexes. Inhibiting SCD1 enzyme activity resulted in a significantly decreased number of FMDV replication complexes with abnormal morphology. Inhibition of SCD1 activity also effectively decreased the replication of other RNA viruses such as respiratory enteric orphan virus-3-176, poliovirus-1, enterovirus 71, and vesicular stomatitis virus. Our results demonstrate that SCD1, as a key host regulator of RNA virus replication, is a potential target for developing novel drugs against infections by RNA viruses. IMPORTANCE: Many positive-stranded RNA viruses, including foot-and-mouth disease virus (FMDV), alter host membranes and lipid metabolism to create a suitable microenvironment for their survival and replication within host cells. In FMDV-infected cells, the endoplasmic reticulum membrane is remodeled, forming vesicular structures that rely heavily on increased free fatty acids, thereby linking lipid metabolism to the FMDV replication complex. Nonstructural FMDV protein 2C is crucial for this complex, while host cell enzyme stearoyl coenzyme A desaturase 1 (SCD1) is vital for lipid metabolism. We found that FMDV infection alters SCD1 expression in host cells. Inhibiting SCD1 expression or its enzymatic activity markedly decreases FMDV replication, while supplementing oleic acid, a catalytic product of SCD1, regulates FMDV replication. Additionally, SCD1 forms part of the FMDV replication complex and helps recruit 2C to a detergent-resistant membrane. Our study provides insights into the pathogenesis of FMDV and a potential novel drug target against the virus.


Asunto(s)
Virus de la Fiebre Aftosa , Metabolismo de los Lípidos , Estearoil-CoA Desaturasa , Replicación Viral , Virus de la Fiebre Aftosa/fisiología , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/metabolismo , Estearoil-CoA Desaturasa/metabolismo , Estearoil-CoA Desaturasa/genética , Animales , Línea Celular , Cricetinae , Ácido Oléico/metabolismo , Ácido Oléico/farmacología , Proteínas no Estructurales Virales/metabolismo , Proteínas no Estructurales Virales/genética , Fiebre Aftosa/virología , Fiebre Aftosa/metabolismo , Interacciones Huésped-Patógeno
6.
PLoS Pathog ; 19(11): e1011811, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37983290

RESUMEN

Foot-and-mouth disease virus (FMDV) serotype A is antigenically most variable within serotypes. The structures of conserved and variable antigenic sites were not well resolved. Here, a historical A/AF72 strain from A22 lineage and a latest A/GDMM/2013 strain from G2 genotype of Sea97 lineage were respectively used as bait antigen to screen single B cell antibodies from bovine sequentially vaccinated with A/WH/CHA/09 (G1 genotype of Sea97 lineage), A/GDMM/2013 and A/AF72 antigens. Total of 39 strain-specific and 5 broad neutralizing antibodies (bnAbs) were isolated and characterized. Two conserved antigenic sites were revealed by the Cryo-EM structures of FMDV serotype A with two bnAbs W2 and W125. The contact sites with both VH and VL of W125 were closely around icosahedral threefold axis and covered the B-C, E-F, and H-I loops on VP2 and the B-B knob and H-I loop on VP3; while contact sites with only VH of W2 concentrated on B-B knob, B-C and E-F loops on VP3 scattering around the three-fold axis of viral particle. Additional highly conserved epitopes also involved key residues of VP158, VP1147 and both VP272 / VP1147 as determined respectively by bnAb W153, W145 and W151-resistant mutants. Furthermore, the epitopes recognized by 20 strain-specific neutralization antibodies involved the key residues located on VP3 68 for A/AF72 (11/20) and VP3 175 position for A/GDMM/2013 (9/19), respectively, which revealed antigenic variation between different strains of serotype A. Analysis of antibody-driven variations on capsid of two virus strains showed a relatively stable VP2 and more variable VP3 and VP1. This study provided important information on conserve and variable antigen structures to design broad-spectrum molecular vaccine against FMDV serotype A.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Bovinos , Anticuerpos Neutralizantes , Serogrupo , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes/genética , Epítopos , Proteínas de la Cápside/genética , Anticuerpos Monoclonales
7.
PLoS Pathog ; 19(5): e1011373, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37126532

RESUMEN

Picornavirus genome replication takes place in specialized intracellular membrane compartments that concentrate viral RNA and proteins as well as a number of host factors that also participate in the process. The core enzyme in the replication machinery is the viral RNA-dependent RNA polymerase (RdRP) 3Dpol. Replication requires the primer protein 3B (or VPg) attached to two uridine molecules. 3B uridylylation is also catalysed by 3Dpol. Another critical interaction in picornavirus replication is that between 3Dpol and the precursor 3AB, a membrane-binding protein responsible for the localization of 3Dpol to the membranous compartments at which replication occurs. Unlike other picornaviruses, the animal pathogen foot-and-mouth disease virus (FMDV), encodes three non-identical copies of the 3B (3B1, 3B2, and 3B3) that could be specialized in different functions within the replication complex. Here, we have used a combination of biophysics, molecular and structural biology approaches to characterize the functional binding of FMDV 3B1 to the base of the palm of 3Dpol. The 1.7 Å resolution crystal structure of the FMDV 3Dpol -3B1 complex shows that 3B1 simultaneously links two 3Dpol molecules by binding at the bottom of their palm subdomains in an almost symmetric way. The two 3B1 contact surfaces involve a combination of hydrophobic and basic residues at the N- (G5-P6, R9; Region I) and C-terminus (R16, L19-P20; Region II) of this small protein. Enzyme-Linked Immunosorbent Assays (ELISA) show that the two 3B1 binding sites play a role in 3Dpol binding, with region II presenting the highest affinity. ELISA assays show that 3Dpol has higher binding affinity for 3B1 than for 3B2 or 3B3. Membrane-based pull-down assays show that 3B1 region II, and to a lesser extent also region I play essential roles in mediating the interaction of 3AB with the polymerase and its recruitment to intracellular membranes.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Picornaviridae , Animales , Virus de la Fiebre Aftosa/genética , Replicación Viral/genética , Picornaviridae/metabolismo , ARN Viral/genética , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas de la Membrana/metabolismo
8.
PLoS Pathog ; 19(2): e1011126, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36735752

RESUMEN

Foot-and-mouth disease, a class of animal diseases, is caused by foot-and-mouth disease virus (FMDV). The metabolic changes during FMDV infection remain unclear. Here, PK-15 cells, serum, and tonsils infected with FMDV were analyzed by metabolomics. A total of 284 metabolites in cells were significantly changed after FMDV infection, and most of them belong to amino acids and nucleotides. Further studies showed that FMDV infection significantly enhanced aspartate in vitro and in vivo. The amino acid transporter solute carrier family 38 member 8 (SLC38A8) was responsible for FMDV-upregulated aspartate. Enterovirus 71 (EV71) and Seneca Valley virus (SVV) infection also enhanced aspartate by SLC38A8. Aspartate aminotransferase activity was also elevated in FMDV-, EV71-, and SVV-infected cells, which may lead to reversible transition between the TCA cycle and amino acids synthesis. Aspartate and SLC38A8 were essential for FMDV, EV71, and SVV replication in cells. In addition, aspartate and SLC38A8 also promoted FMDV and EV71 replication in mice. Detailed analysis indicated that FMDV infection promoted the transfer of mTOR to lysosome to enhance interaction between mTOR and Rheb, and activated PI3K/AKT/TSC2/Rheb/mTOR/p70S6K1 pathway to promote viral replication. The mTORC1 signaling pathway was responsible for FMDV-induced SLC38A8 protein expression. For the first time, our data identified metabolic changes during FMDV infection. These data identified a novel mechanism used by FMDV to upregulate aspartate to promote viral replication and will provide new perspectives for developing new preventive strategies.


Asunto(s)
Enterovirus , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Ratones , Sistemas de Transporte de Aminoácidos Neutros , Ácido Aspártico/metabolismo , Virus de la Fiebre Aftosa/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral/fisiología
9.
FASEB J ; 38(14): e23822, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39072864

RESUMEN

Secondary and tertiary RNA structures play key roles in genome replication of single-stranded positive sense RNA viruses. Complex, functional structures are particularly abundant in the untranslated regions of picornaviruses, where they are involved in initiation of translation, priming of new strand synthesis and genome circularization. The 5' UTR of foot-and-mouth disease virus (FMDV) is predicted to include a c. 360 nucleotide-long stem-loop, termed the short (S) fragment. This structure is highly conserved and essential for viral replication, but the precise function(s) are unclear. Here, we used selective 2' hydroxyl acetylation analyzed by primer extension (SHAPE) to experimentally determine aspects of the structure, alongside comparative genomic analyses to confirm structure conservation from a wide range of field isolates. To examine its role in virus replication in cell culture, we introduced a series of deletions to the distal and proximal regions of the stem-loop. These truncations affected genome replication in a size-dependent and, in some cases, host cell-dependent manner. Furthermore, during the passage of viruses incorporating the largest tolerated deletion from the proximal region of the S fragment stem-loop, an additional mutation was selected in the viral RNA-dependent RNA polymerase, 3Dpol. These data suggest that the S fragment and 3Dpol interact in the formation of the FMDV replication complex.


Asunto(s)
Virus de la Fiebre Aftosa , Conformación de Ácido Nucleico , ARN Viral , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Replicación Viral/genética , ARN Viral/genética , ARN Viral/metabolismo , Animales , Regiones no Traducidas 5' , Fiebre Aftosa/virología , Genoma Viral , Línea Celular , Cricetinae
10.
Proc Natl Acad Sci U S A ; 119(10): e2118425119, 2022 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-35238628

RESUMEN

SignificanceMathematical models of infectious disease transmission continue to play a vital role in understanding, mitigating, and preventing outbreaks. The vast majority of epidemic models in the literature are parametric, meaning that they contain inherent assumptions about how transmission occurs in a population. However, such assumptions can be lacking in appropriate biological or epidemiological justification and in consequence lead to erroneous scientific conclusions and misleading predictions. We propose a flexible Bayesian nonparametric framework that avoids the need to make strict model assumptions about the infection process and enables a far more data-driven modeling approach for inferring the mechanisms governing transmission. We use our methods to enhance our understanding of the transmission mechanisms of the 2001 UK foot and mouth disease outbreak.


Asunto(s)
Teorema de Bayes , Enfermedades Transmisibles/epidemiología , Modelos Teóricos , Animales , Enfermedades Transmisibles/transmisión , Brotes de Enfermedades , Fiebre Aftosa/epidemiología , Humanos , Estadísticas no Paramétricas , Reino Unido/epidemiología
11.
BMC Genomics ; 25(1): 796, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39179961

RESUMEN

The WD40 domain is one of the most abundant domains and is among the top interacting domains in eukaryotic genomes. The WD40 domain of ATG16L1 is essential for LC3 recruitment to endolysosomal membranes during non-canonical autophagy, but dispensable for canonical autophagy. Canonical autophagy was utilized by FMDV, while the relationship between FMDV and non-canonical autophagy is still elusive. In the present study, WD40 knockout (KO) PK15 cells were successfully generated via CRISPR/cas9 technology as a tool for studying the effect of non-canonical autophagy on FMDV replication. The results of growth curve analysis, morphological observation and karyotype analysis showed that the WD40 knockout cell line was stable in terms of growth and morphological characteristics. After infection with FMDV, the expression of viral protein, viral titers, and the number of copies of viral RNA in the WD40-KO cells were significantly greater than those in the wild-type PK15 cells. Moreover, RNA‒seq technology was used to sequence WD40-KO cells and wild-type cells infected or uninfected with FMDV. Differentially expressed factors such as Mx1, RSAD2, IFIT1, IRF9, IFITM3, GBP1, CXCL8, CCL5, TNFRSF17 were significantly enriched in the autophagy, NOD-like receptor signaling pathway, RIG-I-like receptor signaling pathway, Toll-like receptor signaling pathway, cytokine-cytokine receptor interaction and TNF signaling pathway, etc. The expression levels of differentially expressed genes were detected via qRT‒PCR, which was consistent with the RNA‒seq data. Here, we experimentally demonstrate for the first time that knockout of the WD40 domain of ATG16L1 enhances FMDV replication by downregulation innate immune factors. In addition, this result also indicates non-canonical autophagy inhibits FMDV replication. In total, our results play an essential role in regulating the replication level of FMDV and providing new insights into virus-host interactions and potential antiviral strategies.


Asunto(s)
Proteínas Relacionadas con la Autofagia , Autofagia , Virus de la Fiebre Aftosa , Técnicas de Inactivación de Genes , Replicación Viral , Virus de la Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/fisiología , Proteínas Relacionadas con la Autofagia/genética , Proteínas Relacionadas con la Autofagia/metabolismo , Animales , Autofagia/genética , Línea Celular , Repeticiones WD40/genética , Sistemas CRISPR-Cas , Fiebre Aftosa/virología
12.
J Gen Virol ; 105(10)2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39422666

RESUMEN

Foot-and-mouth disease vaccination using inactivated virus is suboptimal, as the icosahedral viral capsids often disassemble into antigenically distinct pentameric units during long-term storage, or exposure to elevated temperature or lowered pH, and thus raise a response that is no longer protective. Furthermore, as foot-and-mouth disease virus (FMDV)'s seven serotypes are antigenically diverse, cross-protection from a single serotype vaccine is limited, and most existing mouse and bovine antibodies and camelid single-domain heavy chain-only antibodies are serotype-specific. For quality control purposes, there is a real need for pan-serotype antibodies that clearly distinguish between pentamer (12S) and protective intact FMDV capsid. To date, few cross-serotype bovine-derived antibodies have been reported in the literature. We identify a bovine antibody with an ultralong CDR-H3, Ab117, whose structural analysis reveals that it binds to a deep, hydrophobic pocket on the interior surface of the capsid via the CDR-H3. Main-chain and hydrophobic interactions provide broad serotype specificity. ELISA analysis confirms that Ab117 is a novel pan-serotype and conformational epitope-specific 12S reagent, suitable for assessing capsid integrity.


Asunto(s)
Anticuerpos Antivirales , Proteínas de la Cápside , Cápside , Virus de la Fiebre Aftosa , Virus de la Fiebre Aftosa/inmunología , Animales , Bovinos , Anticuerpos Antivirales/inmunología , Cápside/inmunología , Proteínas de la Cápside/inmunología , Fiebre Aftosa/inmunología , Fiebre Aftosa/virología , Serogrupo , Reacciones Cruzadas , Epítopos/inmunología
13.
Am Nat ; 204(2): 133-146, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39008835

RESUMEN

AbstractInfectious disease dynamics operate across biological scales: pathogens replicate within hosts but transmit among populations. Functional changes in the pathogen-host interaction thus generate cascading effects across organizational scales. We investigated within-host dynamics and among-host transmission of three strains (SAT-1, -2, -3) of foot-and-mouth disease viruses (FMDVs) in their wildlife host, African buffalo. We combined data on viral dynamics and host immune responses with mathematical models to ask the following questions: How do viral and immune dynamics vary among strains? Which viral and immune parameters determine viral fitness within hosts? And how do within-host dynamics relate to virus transmission? Our data reveal contrasting within-host dynamics among viral strains, with SAT-2 eliciting more rapid and effective immune responses than SAT-1 and SAT-3. Within-host viral fitness was overwhelmingly determined by variation among hosts in immune response activation rates but not by variation among individual hosts in viral growth rate. Our analyses investigating across-scale linkages indicate that viral replication rate in the host correlates with transmission rates among buffalo and that adaptive immune activation rate determines the infectious period. These parameters define the virus's relative basic reproductive number (ℛ0), suggesting that viral invasion potential may be predictable from within-host dynamics.


Asunto(s)
Búfalos , Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Búfalos/virología , Virus de la Fiebre Aftosa/inmunología , Virus de la Fiebre Aftosa/crecimiento & desarrollo , Fiebre Aftosa/transmisión , Fiebre Aftosa/virología , Fiebre Aftosa/inmunología , Interacciones Huésped-Patógeno/inmunología , Replicación Viral , Modelos Biológicos
14.
J Virol ; 97(8): e0018123, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37565750

RESUMEN

Vacuolar protein sorting 28 (Vps28), a component of the ESCRT-I (endosomal sorting complex required for transport I), plays an important role in the pathogen life cycle. Here, we investigated the reciprocal regulation between Vps28 and the foot-and-mouth disease virus (FMDV). Overexpression of Vps28 decreased FMDV replication. On the contrary, the knockdown of Vps28 increased viral replication. Subsequently, the mechanistic study showed that Vps28 destabilized the replication complex (RC) by associating with 3A rather than 2C protein. In addition, Vps28 targeted FMDV VP0, VP1, and VP3 for degradation to inhibit viral replication. To counteract this, FMDV utilized tactics to restrict Vps28 to promote viral replication. FMDV degraded Vps28 mainly through the ubiquitin-proteasome pathway. Additional data demonstrated that 2B and 3A proteins recruited E3 ubiquitin ligase tripartite motif-containing protein 21 to degrade Vps28 at Lys58 and Lys25, respectively, and FMDV 3Cpro degraded Vps28 through autophagy and its protease activity. Meantime, the 3Cpro-mediated Vps28 degradation principally alleviated the ability to inhibit viral propagation. Intriguingly, we also demonstrated that the N-terminal and C-terminal domains of Vps28 were responsible for the suppression of FMDV replication, which suggested the elaborated counteraction between FMDV and Vps28. Collectively, our results first investigate the role of ESCRTs in host defense against picornavirus and unveil underlying strategies utilized by FMDV to evade degradation machinery for triumphant propagation. IMPORTANCE ESCRT machinery plays positive roles in virus entry, replication, and budding. However, little has been reported on its negative regulation effects during viral infection. Here, we uncovered the novel roles of ESCRT-I subunit Vps28 on FMDV replication. The data indicated that Vps28 destabilized the RC and impaired viral structural proteins VP0, VP1, and VP3 to inhibit viral replication. To counteract this, FMDV hijacked intracellular protein degradation pathways to downregulate Vps28 expression and thus promoted viral replication. Our findings provide insights into how ESCRT regulates pathogen life cycles and elucidate additional information regarding FMDV counteraction of host antiviral activity.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/metabolismo , Proteínas Virales/metabolismo , Transducción de Señal , Transporte de Proteínas , Replicación Viral/fisiología
15.
J Virol ; 97(7): e0068623, 2023 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-37367489

RESUMEN

Foot-and-mouth disease (FMD) is an acute, highly contagious disease of cloven-hoofed animals caused by FMD virus (FMDV). Currently, the molecular pathogenesis of FMDV infection remains poorly understood. Here, we demonstrated that FMDV infection induced gasdermin E (GSDME)-mediated pyroptosis independent of caspase-3 activity. Further studies showed that FMDV 3Cpro cleaved porcine GSDME (pGSDME) at the Q271-G272 junction adjacent to the cleavage site (D268-A269) of porcine caspase-3 (pCASP3). The inhibition of enzyme activity of 3Cpro failed to cleave pGSDME and induce pyroptosis. Furthermore, overexpression of pCASP3 or 3Cpro-mediated cleavage fragment pGSDME-NT was sufficient to induce pyroptosis. Moreover, the knockdown of GSDME attenuated the pyroptosis caused by FMDV infection. Our study reveals a novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the pathogenesis of FMDV and the design of antiviral drugs. IMPORTANCE Although FMDV is an important virulent infectious disease virus, few reports have addressed its relationship with pyroptosis or pyroptosis factors, and most studies focus on the immune escape mechanism of FMDV. GSDME (DFNA5) was initially identified as being associated with deafness disorders. Accumulating evidence indicates that GSDME is a key executioner for pyroptosis. Here, we first demonstrate that pGSDME is a novel cleavage substrate of FMDV 3Cpro and can induce pyroptosis. Thus, this study reveals a previously unrecognized novel mechanism of pyroptosis induced by FMDV infection and might provide new insights into the design of anti-FMDV therapies and the mechanisms of pyroptosis induced by other picornavirus infections.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Porcinos , Virus de la Fiebre Aftosa/metabolismo , Caspasa 3/metabolismo , Cisteína Endopeptidasas/metabolismo , Gasderminas , Piroptosis , Proteínas Virales/metabolismo
16.
J Virol ; 97(5): e0017123, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37154761

RESUMEN

Foot-and-mouth disease virus (FMDV) is a picornavirus, which infects cloven-hoofed animals to cause foot-and-mouth disease (FMD). The positive-sense RNA genome contains a single open reading frame, which is translated as a polyprotein that is cleaved by viral proteases to produce the viral structural and nonstructural proteins. Initial processing occurs at three main junctions to generate four primary precursors; Lpro and P1, P2, and P3 (also termed 1ABCD, 2BC, and 3AB1,2,3CD). The 2BC and 3AB1,2,3CD precursors undergo subsequent proteolysis to generate the proteins required for viral replication, including the enzymes 2C, 3Cpro, and 3Dpol. These precursors can be processed through both cis and trans (i.e., intra- and intermolecular proteolysis) pathways, which are thought to be important for controlling virus replication. Our previous studies suggested that a single residue in the 3B3-3C junction has an important role in controlling 3AB1,2,3CD processing. Here, we use in vitro based assays to show that a single amino acid substitution at the 3B3-3C boundary increases the rate of proteolysis to generate a novel 2C-containing precursor. Complementation assays showed that while this amino acid substitution enhanced production of some nonenzymatic nonstructural proteins, those with enzymatic functions were inhibited. Interestingly, replication could only be supported by complementation with mutations in cis acting RNA elements, providing genetic evidence for a functional interaction between replication enzymes and RNA elements. IMPORTANCE Foot-and-mouth disease virus (FMDV) is responsible for foot-and-mouth disease (FMD), an important disease of farmed animals, which is endemic in many parts of the world and can results in major economic losses. Replication of the virus occurs within membrane-associated compartments in infected cells and requires highly coordinated processing events to produce an array of nonstructural proteins. These are initially produced as a polyprotein that undergoes proteolysis likely through both cis and trans alternative pathways (i.e., intra- and intermolecular proteolysis). The role of alternative processing pathways may help coordination of viral replication by providing temporal control of protein production and here we analyze the consequences of amino acid substitutions that change these pathways in FMDV. Our data suggest that correct processing is required to produce key enzymes for replication in an environment in which they can interact with essential viral RNA elements. These data further the understanding of RNA genome replication.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Virus de la Fiebre Aftosa/metabolismo , Poliproteínas/genética , Poliproteínas/metabolismo , Replicación Viral/genética , Proteínas no Estructurales Virales/metabolismo , ARN/metabolismo
17.
J Virol ; 97(5): e0036923, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37162335

RESUMEN

Foot-and-mouth disease virus (FMDV) is a single-stranded picornavirus that causes economically devastating disease in even-hooved animals. There has been little research on the function of host cells during FMDV infection. We aimed to shed light on key host factors associated with FMDV replication during acute infection. We found that HDAC1 overexpression in host cells induced upregulation of FMDV RNA and protein levels. Activation of the AKT-mammalian target of rapamycin (mTOR) signaling pathway using bpV(HOpic) or SC79 also promoted FMDV replication. Furthermore, short hairpin RNA (shRNA)-induced suppression of carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD), a transcription factor downstream of the AKT-mTOR signaling pathway, resulted in downregulation of FMDV RNA and protein levels. Coimmunoprecipitation assays showed that the ACTase domain of CAD could interact with the FMDV 2C protein, suggesting that the ACTase domain of CAD may be critical in FMDV replication. CAD proteins participate in de novo pyrimidine synthesis. Inhibition of FMDV replication by deletion of the ACTase domain of CAD in host cells could be reversed by supplementation with uracil. These results revealed that the contribution of the CAD ACTase domain to FMDV replication is dependent on de novo pyrimidine synthesis. Our research shows that HDAC1 promotes FMDV replication by regulating de novo pyrimidine synthesis from CAD via the AKT-mTOR signaling pathway. IMPORTANCE Foot-and-mouth disease virus is an animal virus of the Picornaviridae family that seriously harms the development of animal husbandry and foreign trade of related products, and there is still a lack of effective means to control its harm. Replication complexes would generate during FMDV replication to ensure efficient replication cycles. 2C is a common viral protein in the replication complex of Picornaviridae virus, which is thought to be an essential component of membrane rearrangement and viral replication complex formation. The host protein CAD is a key protein in the pyrimidines de novo synthesis. In our research, the interaction of CAD and FMDV 2C was demonstrated in FMDV-infected BHK-21 cells, and it colocalized with 2C in the replication complex. The inhibition of the expression of FMDV 3D protein through interference with CAD and supplementation with exogenous pyrimidines reversed this inhibition, suggesting that FMDV might recruit CAD through the 2C protein to ensure pyrimidine supply during replication. In addition, we also found that FMDV infection decreased the expression of the host protein HDAC1 and ultimately inhibited CAD activity through the AKT-mTOR signaling pathway. These results revealed a unique means of counteracting the virus in BHK-21 cells lacking the interferon (IFN) signaling pathway. In conclusion, our study provides some potential targets for the development of drugs against FMDV.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Línea Celular , Virus de la Fiebre Aftosa/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Pirimidinas , ARN/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Replicación Viral , Cricetinae
18.
PLoS Pathog ; 18(6): e1010589, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666744

RESUMEN

Non-coding regions of viral RNA (vRNA) genomes are critically important in the regulation of gene expression. In particular, pseudoknot (PK) structures, which are present in a wide range of RNA molecules, have a variety of roles. The 5' untranslated region (5' UTR) of foot-and-mouth disease virus (FMDV) vRNA is considerably longer than in other viruses from the picornavirus family and consists of a number of distinctive structural motifs that includes multiple (2, 3 or 4 depending on the virus strain) putative PKs linked in tandem. The role(s) of the PKs in the FMDV infection are not fully understood. Here, using bioinformatics, sub-genomic replicons and recombinant viruses we have investigated the structural conservation and importance of the PKs in the FMDV lifecycle. Our results show that despite the conservation of two or more PKs across all FMDVs, a replicon lacking PKs was replication competent, albeit at reduced levels. Furthermore, in competition experiments, GFP FMDV replicons with less than two (0 or 1) PK structures were outcompeted by a mCherry FMDV wt replicon that had 4 PKs, whereas GFP replicons with 2 or 4 PKs were not. This apparent replicative advantage offered by the additional PKs correlates with the maintenance of at least two PKs in the genomes of FMDV field isolates. Despite a replicon lacking any PKs retaining the ability to replicate, viruses completely lacking PK were not viable and at least one PK was essential for recovery of infections virus, suggesting a role for the PKs in virion assembly. Thus, our study points to roles for the PKs in both vRNA replication and virion assembly, thereby improving understanding the molecular biology of FMDV replication and the wider roles of PK in RNA functions.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Regiones no Traducidas 5' , Animales , Virus ADN , Fiebre Aftosa/genética , Virus de la Fiebre Aftosa/genética , Genoma Viral , ARN Viral/química , Replicación Viral/genética
19.
PLoS Pathog ; 18(5): e1009942, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35512014

RESUMEN

Previous studies have shown after the resolution of acute infection and viraemia, foot-and-mouth disease virus (FMDV) capsid proteins and/or genome are localised in the light zone of germinal centres of lymphoid tissue in cattle and African buffalo. The pattern of staining for FMDV proteins was consistent with the virus binding to follicular dendritic cells (FDCs). We have now demonstrated a similar pattern of FMDV protein staining in mouse spleens after acute infection and showed FMDV proteins are colocalised with FDCs. Blocking antigen binding to complement receptor type 2 and 1 (CR2/CR1) prior to infection with FMDV significantly reduced the detection of viral proteins on FDCs and FMDV genomic RNA in spleen samples. Blocking the receptors prior to infection also significantly reduced neutralising antibody titres, through significant reduction in their avidity to the FMDV capsid. Therefore, the binding of FMDV to FDCs and sustained induction of neutralising antibody responses are dependent on FMDV binding to CR2/CR1 in mice.


Asunto(s)
Virus de la Fiebre Aftosa , Fiebre Aftosa , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales/metabolismo , Proteínas de la Cápside/metabolismo , Bovinos , Células Dendríticas Foliculares/metabolismo , Virus de la Fiebre Aftosa/genética , Centro Germinal , Ratones , Receptores de Complemento/metabolismo
20.
Microb Pathog ; 195: 106908, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39218377

RESUMEN

Outbreaks of the foot-and-mouth disease (FMD) have major economic impact on the global livestock industry by affecting the animal health and product safety. L-protease, a non-structural protein of FMDV, is a papain-like cysteine proteinase involved in viral protein processing as well as cleavage of host proteins for promoting the virus growth. FMDV synthesizes two forms of leader proteinase, Lpro (Labpro and Lbpro), where the deletion of Labpro is lethal and Lbpro deletion is reported to be attenuated. Defective replicons have been used by trans-complementing the deleted gene to produce one time replicating virus; thus, the bio-safety procedure can be compromised in the production units. Attempts are made to rescue of ΔLbproFMDV Asia1 virus by co-expressing the Lbpro protein carried in pcDNA plasmid. Mutant FMDV cDNA, pAsia-ΔLbpro, was constructed by PCR mediated mutagenesis using inverse primers. Transfection of BHK-21 cells with in-vitro transcribed RNA from the constructs failed to produce an infective mutant FMDV. Genetic trans-complementation of the Lbpro, which was done by co-transfecting the pcDNALbpro plasmid DNA along with the pAsia-ΔLbpro RNA in BHK-21 cells also failed to produce viable virus. Expression experiments of reporter genes and indirect immune-fluorescence confirmed the production of the viral proteins in wild type FMDV pAsiaWT; however, it was absent in the pAsia-ΔLbpro indicating that the leaderless virus was unable to produce infectious progeny and infect the cells. Failure to produce virus either by Lbpro deleted mutant clone or by genetic complementation suggests little chance of reversion of the disabled virus with large deletions of FMDV genome.


Asunto(s)
Virus de la Fiebre Aftosa , Virus de la Fiebre Aftosa/genética , Animales , Línea Celular , Genoma Viral/genética , Replicación Viral , Fiebre Aftosa/virología , Cricetinae , Plásmidos/genética , Cisteína Endopeptidasas/genética , Cisteína Endopeptidasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Eliminación de Gen , Endopeptidasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA