Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Chem Biol ; 17(4): 465-476, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33542532

RESUMEN

Ferroptosis, triggered by discoordination of iron, thiols and lipids, leads to the accumulation of 15-hydroperoxy (Hp)-arachidonoyl-phosphatidylethanolamine (15-HpETE-PE), generated by complexes of 15-lipoxygenase (15-LOX) and a scaffold protein, phosphatidylethanolamine (PE)-binding protein (PEBP)1. As the Ca2+-independent phospholipase A2ß (iPLA2ß, PLA2G6 or PNPLA9 gene) can preferentially hydrolyze peroxidized phospholipids, it may eliminate the ferroptotic 15-HpETE-PE death signal. Here, we demonstrate that by hydrolyzing 15-HpETE-PE, iPLA2ß averts ferroptosis, whereas its genetic or pharmacological inactivation sensitizes cells to ferroptosis. Given that PLA2G6 mutations relate to neurodegeneration, we examined fibroblasts from a patient with a Parkinson's disease (PD)-associated mutation (fPDR747W) and found selectively decreased 15-HpETE-PE-hydrolyzing activity, 15-HpETE-PE accumulation and elevated sensitivity to ferroptosis. CRISPR-Cas9-engineered Pnpla9R748W/R748W mice exhibited progressive parkinsonian motor deficits and 15-HpETE-PE accumulation. Elevated 15-HpETE-PE levels were also detected in midbrains of rotenone-infused parkinsonian rats and α-synuclein-mutant SncaA53T mice, with decreased iPLA2ß expression and a PD-relevant phenotype. Thus, iPLA2ß is a new ferroptosis regulator, and its mutations may be implicated in PD pathogenesis.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Animales , Araquidonato 15-Lipooxigenasa/metabolismo , Modelos Animales de Enfermedad , Femenino , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Leucotrienos/metabolismo , Metabolismo de los Lípidos/fisiología , Peróxidos Lipídicos/metabolismo , Lípidos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Enfermedad de Parkinson/metabolismo , Proteínas de Unión a Fosfatidiletanolamina/metabolismo , Fosfolipasas/metabolismo , Fosfolípidos/metabolismo , Ratas , Ratas Endogámicas Lew
2.
Proc Natl Acad Sci U S A ; 117(44): 27319-27328, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33087576

RESUMEN

The recently identified ferroptotic cell death is characterized by excessive accumulation of hydroperoxy-arachidonoyl (C20:4)- or adrenoyl (C22:4)- phosphatidylethanolamine (Hp-PE). The selenium-dependent glutathione peroxidase 4 (GPX4) inhibits ferroptosis, converting unstable ferroptotic lipid hydroperoxides to nontoxic lipid alcohols in a tissue-specific manner. While placental oxidative stress and lipotoxicity are hallmarks of placental dysfunction, the possible role of ferroptosis in placental dysfunction is largely unknown. We found that spontaneous preterm birth is associated with ferroptosis and that inhibition of GPX4 causes ferroptotic injury in primary human trophoblasts and during mouse pregnancy. Importantly, we uncovered a role for the phospholipase PLA2G6 (PNPLA9, iPLA2beta), known to metabolize Hp-PE to lyso-PE and oxidized fatty acid, in mitigating ferroptosis induced by GPX4 inhibition in vitro or by hypoxia/reoxygenation injury in vivo. Together, we identified ferroptosis signaling in the human and mouse placenta, established a role for PLA2G6 in attenuating trophoblastic ferroptosis, and provided mechanistic insights into the ill-defined placental lipotoxicity that may inspire PLA2G6-targeted therapeutic strategies.


Asunto(s)
Ferroptosis/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Trofoblastos/metabolismo , Animales , Femenino , Glutatión Peroxidasa/metabolismo , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/fisiología , Humanos , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo , Ratones , Ratones Noqueados , Fosfatidiletanolaminas/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Placenta/metabolismo , Embarazo , Nacimiento Prematuro/metabolismo , Transducción de Señal
3.
Proc Natl Acad Sci U S A ; 117(47): 29811-29822, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33177235

RESUMEN

Inflammasomes have been implicated in the detection and clearance of a variety of bacterial pathogens, but little is known about whether this innate sensing mechanism has any regulatory effect on the expression of stimulatory ligands by the pathogen. During infection with Salmonella and many other pathogens, flagellin is a major activator of NLRC4 inflammasome-mediated macrophage pyroptosis and pathogen eradication. Salmonella switches to a flagellin-low phenotype as infection progresses to avoid this mechanism of clearance by the host. However, the host cues that Salmonella perceives to undergo this switch remain unclear. Here, we report an unexpected role of the NLRC4 inflammasome in promoting expression of its microbial ligand, flagellin, and identify a role for type 1 IFN signaling in switching of Salmonella to a flagellin-low phenotype. Early in infection, activation of NLRC4 by flagellin initiates pyroptosis and concomitant release of lysophospholipids which in turn enhance expression of flagellin by Salmonella thereby amplifying its ability to elicit cell death. TRIF-dependent production of type 1 IFN, however, later represses NLRC4 and the lysophospholipid biosynthetic enzyme iPLA2, causing a decline in intracellular lysophospholipids that results in down-regulation of flagellin expression by Salmonella These findings reveal a previously unrecognized immune-modulating regulatory cross-talk between endosomal TLR signaling and cytosolic NLR activation with significant implications for the establishment of infection with Salmonella.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Proteínas de Unión al Calcio/metabolismo , Flagelina/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Interferón Tipo I/metabolismo , Infecciones por Salmonella/inmunología , Salmonella typhimurium/inmunología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas de Unión al Calcio/genética , Células Cultivadas , Modelos Animales de Enfermedad , Regulación hacia Abajo , Flagelina/inmunología , Fosfolipasas A2 Grupo VI/antagonistas & inhibidores , Humanos , Inmunidad Innata , Inflamasomas/efectos de los fármacos , Inflamasomas/inmunología , Inflamasomas/metabolismo , Cetonas/administración & dosificación , Lipopolisacáridos/administración & dosificación , Lipopolisacáridos/inmunología , Lisofosfolípidos/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Macrófagos/metabolismo , Ratones , Ratones Noqueados , Naftalenos/administración & dosificación , Cultivo Primario de Células , Piroptosis/inmunología , Infecciones por Salmonella/microbiología , Salmonella typhimurium/aislamiento & purificación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
4.
Neurobiol Dis ; 165: 105649, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35122944

RESUMEN

BACKGROUND: PLA2G6-Associated Neurodegeneration (PLAN) is a rare neurodegenerative disease with autosomal recessive inheritance, which belongs to the NBIA (Neurodegeneration with Brain Iron Accumulation) group. Although the pathogenesis of the disease remains largely unclear, lipid peroxidation seems to play a central role in the pathogenesis. Currently, there is no cure for the disease. OBJECTIVE: In this work, we examined the presence of lipid peroxidation, iron accumulation and mitochondrial dysfunction in two cellular models of PLAN, patients-derived fibroblasts and induced neurons, and assessed the effects of α-tocopherol (vitamin E) in correcting the pathophysiological alterations in PLAN cell cultures. METHODS: Pathophysiological alterations were examined in fibroblasts and induced neurons generated by direct reprograming. Iron and lipofuscin accumulation were assessed using light and electron microscopy, as well as biochemical analysis techniques. Reactive Oxygen species production, lipid peroxidation and mitochondrial dysfunction were measured using specific fluorescent probes analysed by fluorescence microscopy and flow cytometry. RESULTS: PLAN fibroblasts and induced neurons clearly showed increased lipid peroxidation, iron accumulation and altered mitochondrial membrane potential. All these pathological features were reverted with vitamin E treatment. CONCLUSIONS: PLAN fibroblasts and induced neurons reproduce the main pathological alterations of the disease and provide useful tools for disease modelling. The main pathological alterations were corrected by Vitamin E supplementation in both models, suggesting that blocking lipid peroxidation progression is a critical therapeutic target.


Asunto(s)
Distrofias Neuroaxonales , Enfermedades Neurodegenerativas , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Mitocondrias/metabolismo , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Enfermedades Neurodegenerativas/metabolismo , Vitamina E/metabolismo , Vitamina E/farmacología
5.
Proc Natl Acad Sci U S A ; 116(41): 20689-20699, 2019 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-31548400

RESUMEN

Mutations in the iPLA2-VIA/PLA2G6 gene are responsible for PARK14-linked Parkinson's disease (PD) with α-synucleinopathy. However, it is unclear how iPLA2-VIA mutations lead to α-synuclein (α-Syn) aggregation and dopaminergic (DA) neurodegeneration. Here, we report that iPLA2-VIA-deficient Drosophila exhibits defects in neurotransmission during early developmental stages and progressive cell loss throughout the brain, including degeneration of the DA neurons. Lipid analysis of brain tissues reveals that the acyl-chain length of phospholipids is shortened by iPLA2-VIA loss, which causes endoplasmic reticulum (ER) stress through membrane lipid disequilibrium. The introduction of wild-type human iPLA2-VIA or the mitochondria-ER contact site-resident protein C19orf12 in iPLA2-VIA-deficient flies rescues the phenotypes associated with altered lipid composition, ER stress, and DA neurodegeneration, whereas the introduction of a disease-associated missense mutant, iPLA2-VIA A80T, fails to suppress these phenotypes. The acceleration of α-Syn aggregation by iPLA2-VIA loss is suppressed by the administration of linoleic acid, correcting the brain lipid composition. Our findings suggest that membrane remodeling by iPLA2-VIA is required for the survival of DA neurons and α-Syn stability.


Asunto(s)
Encéfalo/patología , Membrana Celular/patología , Neuronas Dopaminérgicas/patología , Proteínas de Drosophila/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/patología , alfa-Sinucleína/química , Animales , Animales Modificados Genéticamente , Encéfalo/metabolismo , Membrana Celular/metabolismo , Neuronas Dopaminérgicas/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster , Estrés del Retículo Endoplásmico , Femenino , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo X/genética , Humanos , Masculino , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Degeneración Nerviosa/metabolismo , Enfermedad de Parkinson/metabolismo , Fosfolípidos/metabolismo , Transmisión Sináptica , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
6.
J Biol Chem ; 295(16): 5307-5320, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32161117

RESUMEN

The canonical pathway of eicosanoid production in most mammalian cells is initiated by phospholipase A2-mediated release of arachidonic acid, followed by its enzymatic oxidation resulting in a vast array of eicosanoid products. However, recent work has demonstrated that the major phospholipase in mitochondria, iPLA2γ (patatin-like phospholipase domain containing 8 (PNPLA8)), possesses sn-1 specificity, with polyunsaturated fatty acids at the sn-2 position generating polyunsaturated sn-2-acyl lysophospholipids. Through strategic chemical derivatization, chiral chromatographic separation, and multistage tandem MS, here we first demonstrate that human platelet-type 12-lipoxygenase (12-LOX) can directly catalyze the regioselective and stereospecific oxidation of 2-arachidonoyl-lysophosphatidylcholine (2-AA-LPC) and 2-arachidonoyl-lysophosphatidylethanolamine (2-AA-LPE). Next, we identified these two eicosanoid-lysophospholipids in murine myocardium and in isolated platelets. Moreover, we observed robust increases in 2-AA-LPC, 2-AA-LPE, and their downstream 12-LOX oxidation products, 12(S)-HETE-LPC and 12(S)-HETE-LPE, in calcium ionophore (A23187)-stimulated murine platelets. Mechanistically, genetic ablation of iPLA2γ markedly decreased the calcium-stimulated production of 2-AA-LPC, 2-AA-LPE, and 12-HETE-lysophospholipids in mouse platelets. Importantly, a potent and selective 12-LOX inhibitor, ML355, significantly inhibited the production of 12-HETE-LPC and 12-HETE-LPE in activated platelets. Furthermore, we found that aging is accompanied by significant changes in 12-HETE-LPC in murine serum that were also markedly attenuated by iPLA2γ genetic ablation. Collectively, these results identify previously unknown iPLA2γ-initiated signaling pathways mediated by direct 12-LOX oxidation of 2-AA-LPC and 2-AA-LPE. This oxidation generates previously unrecognized eicosanoid-lysophospholipids that may serve as biomarkers for age-related diseases and could potentially be used as targets in therapeutic interventions.


Asunto(s)
Ácido 12-Hidroxi-5,8,10,14-Eicosatetraenoico/metabolismo , Araquidonato 12-Lipooxigenasa/metabolismo , Plaquetas/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Lisofosfatidilcolinas/metabolismo , Animales , Línea Celular , Células Cultivadas , Ácidos Grasos Insaturados/metabolismo , Fosfolipasas A2 Grupo VI/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Spodoptera
7.
Int J Mol Sci ; 22(14)2021 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-34299248

RESUMEN

Parkinson's disease (PD) is a complex and progressive neurodegenerative disorder with a prevalence of approximately 0.5-1% among those aged 65-70 years. Although most of its clinical manifestations are due to a loss of dopaminergic neurons, the PD etiology is largely unknown. PD is caused by a combination of genetic and environmental factors, and the exact interplay between genes and the environment is still debated. Several biological processes have been implicated in PD, including mitochondrial or lysosomal dysfunctions, alteration in protein clearance, and neuroinflammation, but a common molecular mechanism connecting the different cellular alterations remains incompletely understood. Accumulating evidence underlines a significant role of lipids in the pathological pathways leading to PD. Beside the well-described lipid alteration in idiopathic PD, this review summarizes the several lipid alterations observed in experimental models expressing PD-related genes and suggests a possible scenario in relationship to the molecular mechanisms of neuronal toxicity. PD could be considered a lipid-induced proteinopathy, where alteration in lipid composition or metabolism could induce protein alteration-for instance, alpha-synuclein accumulation-and finally neuronal death.


Asunto(s)
Metabolismo de los Lípidos/genética , Lípidos/fisiología , Enfermedad de Parkinson/genética , Neuronas Dopaminérgicas/metabolismo , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/genética , Proteína 2 Quinasa Serina-Treonina Rica en Repeticiones de Leucina/metabolismo , Lisosomas/metabolismo , Mitocondrias/metabolismo , Degeneración Nerviosa/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
8.
Biol Pharm Bull ; 43(9): 1375-1381, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32879212

RESUMEN

Adipogenic differentiation is a complex process by which fibroblast-like undifferentiated cells are converted into cells that accumulate lipid droplets. We here investigated the effect of gene deletion of calcium-independent phospholipase A2γ (iPLA2γ), a membrane-bound PLA2 enzyme, on adipogenic differentiation in mice. Since iPLA2γ knockout (KO) mice showed reduced fat volume and weight, we prepared mouse embryonic fibroblasts (MEF) from wild-type (WT) and iPLA2γ KO mice and examined the effect of iPLA2γ deletion on in vitro adipogenic differentiation. iPLA2γ increased during adipogenic differentiation in WT mouse-derived MEFs, and the differentiation was partially abolished in iPLA2γ KO-derived MEFs. In KO-derived MEFs, the inductions of peroxisome proliferator activator receptor γ (PPARγ) and CAAT/enhancer-binding protein α (C/EBPα) were also reduced during adipogenic differentiation, and the reductions in PPARγ and C/EBPα expressions and the defect in adipogenesis were restored by treatment with troglitazone, a PPARγ ligand. These results indicate that iPLA2γ might play a critical role in adipogenic differentiation by regulating PPARγ expression.


Asunto(s)
Adipogénesis/fisiología , Fibroblastos/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Lisofosfolipasa/metabolismo , PPAR gamma/metabolismo , Adipogénesis/efectos de los fármacos , Animales , Proteínas Potenciadoras de Unión a CCAAT , Diferenciación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fosfolipasas A2 Grupo VI/genética , Lisofosfolipasa/genética , Ratones , Ratones Noqueados , Cultivo Primario de Células , Troglitazona/farmacología
9.
J Biol Chem ; 293(1): 115-129, 2018 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-29158256

RESUMEN

Congestive heart failure typically arises from cardiac myocyte necrosis/apoptosis, associated with the pathological opening of the mitochondrial permeability transition pore (mPTP). mPTP opening decreases the mitochondrial membrane potential leading to the activation of Ca2+-independent phospholipase A2γ (iPLA2γ) and the production of downstream toxic metabolites. However, the array of enzymatic mediators and the exact chemical mechanisms responsible for modulating myocardial mPTP opening remain unclear. Herein, we demonstrate that human heart failure activates specific myocardial mitochondrial phospholipases that increase Ca2+-dependent production of toxic hydroxyeicosatetraenoic acids (HETEs) and attenuate the activity of phospholipases that promote the synthesis of protective epoxyeicosatrienoic acids (EETs). Mechanistically, HETEs activated the Ca2+-induced opening of the mPTP in failing human myocardium, and the highly selective pharmacological blockade of either iPLA2γ or lipoxygenases attenuated mPTP opening in failing hearts. In contrast, pharmacological inhibition of cytochrome P450 epoxygenases opened the myocardial mPTP in human heart mitochondria. Remarkably, the major mitochondrial phospholipase responsible for Ca2+-activated release of arachidonic acid (AA) in mitochondria from non-failing hearts was calcium-dependent phospholipase A2ζ (cPLA2ζ) identified by sequential column chromatographies and activity-based protein profiling. In contrast, iPLA2γ predominated in failing human myocardium. Stable isotope kinetics revealed that in non-failing human hearts, cPLA2ζ metabolically channels arachidonic acid into EETs, whereas in failing hearts, increased iPLA2γ activity channels AA into toxic HETEs. These results mechanistically identify the sequelae of pathological remodeling of human mitochondrial phospholipases in failing myocardium. This remodeling metabolically channels AA into toxic HETEs promoting mPTP opening, which induces necrosis/apoptosis leading to further progression of heart failure.


Asunto(s)
Fosfolipasas A2 Grupo VI/metabolismo , Insuficiencia Cardíaca/metabolismo , Ácidos Hidroxieicosatetraenoicos/biosíntesis , Mitocondrias Cardíacas/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Calcio/metabolismo , Canales de Calcio/metabolismo , Insuficiencia Cardíaca/enzimología , Insuficiencia Cardíaca/patología , Humanos , Ácidos Hidroxieicosatetraenoicos/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/enzimología , Membranas Mitocondriales/enzimología , Membranas Mitocondriales/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Miocardio/enzimología , Miocardio/metabolismo , Miocardio/patología , Permeabilidad , Fosfolipasas A2/metabolismo
10.
J Biol Chem ; 292(25): 10672-10684, 2017 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-28442572

RESUMEN

Cardiolipin (CL) is a dimeric phospholipid with critical roles in mitochondrial bioenergetics and signaling. Recently, inhibition of the release of oxidized fatty acyl chains from CL by the calcium-independent phospholipase A2γ (iPLA2γ)-selective inhibitor (R)-BEL suggested that iPLA2γ is responsible for the hydrolysis of oxidized CL and subsequent signaling mediated by the released oxidized fatty acids. However, chemical inhibition by BEL is subject to off-target pharmacologic effects. Accordingly, to unambiguously determine the role of iPLA2γ in the hydrolysis of oxidized CL, we compared alterations in oxidized CLs and the release of oxidized aliphatic chains from CL in experiments with purified recombinant iPLA2γ, germ-line iPLA2γ-/- mice, cardiac myocyte-specific iPLA2γ transgenic mice, and wild-type mice. Using charge-switch high mass accuracy LC-MS/MS with selected reaction monitoring and product ion accurate masses, we demonstrated that iPLA2γ is the major enzyme responsible for the release of oxidized aliphatic chains from CL. Our results also indicated that iPLA2γ selectively hydrolyzes 9-hydroxy-octadecenoic acid in comparison to 13-hydroxy-octadecenoic acid from oxidized CLs. Moreover, oxidative stress (ADP, NADPH, and Fe3+) resulted in the robust production of oxidized CLs in intact mitochondria from iPLA2γ-/- mice. In sharp contrast, oxidized CLs were readily hydrolyzed in mitochondria from wild-type mice during oxidative stress. Finally, we demonstrated that CL activates the iPLA2γ-mediated hydrolysis of arachidonic acid from phosphatidylcholine, thereby integrating the production of lipid messengers from different lipid classes in mitochondria. Collectively, these results demonstrate the integrated roles of CL and iPLA2γ in lipid second-messenger production and mitochondrial bioenergetics during oxidative stress.


Asunto(s)
Cardiolipinas/metabolismo , Metabolismo Energético , Fosfolipasas A2 Grupo VI/metabolismo , Mitocondrias Cardíacas/enzimología , Estrés Oxidativo , Transducción de Señal , Animales , Cardiolipinas/genética , Fosfolipasas A2 Grupo VI/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Oxidación-Reducción
11.
Annu Rev Genomics Hum Genet ; 16: 257-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25973518

RESUMEN

Neurodegeneration with brain iron accumulation (NBIA) comprises a heterogeneous group of progressive disorders with the common feature of excessive iron deposition in the brain. Over the last decade, advances in sequencing technologies have greatly facilitated rapid gene discovery, and several single-gene disorders are now included in this group. Identification of the genetic bases of the NBIA disorders has advanced our understanding of the disease processes caused by reduced coenzyme A synthesis, impaired lipid metabolism, mitochondrial dysfunction, and defective autophagy. The contribution of iron to disease pathophysiology remains uncertain, as does the identity of a putative final common pathway by which the iron accumulates. Ongoing elucidation of the pathogenesis of each NBIA disorder will have significant implications for the identification and design of novel therapies to treat patients with these disorders.


Asunto(s)
Encéfalo/metabolismo , Variación Genética , Trastornos del Metabolismo del Hierro/genética , Trastornos del Metabolismo del Hierro/fisiopatología , Hierro/metabolismo , Enfermedades Neurodegenerativas/genética , Animales , Autofagia/genética , Encéfalo/fisiopatología , Ceruloplasmina/deficiencia , Ceruloplasmina/genética , Ceruloplasmina/metabolismo , Coenzima A/biosíntesis , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Trastornos del Metabolismo del Hierro/metabolismo , Metabolismo de los Lípidos/genética , Ratones , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Distrofias Neuroaxonales/genética , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/fisiopatología , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/fisiopatología , Trastornos Parkinsonianos/genética , Trastornos Parkinsonianos/metabolismo
12.
J Biol Chem ; 291(37): 19687-700, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27453526

RESUMEN

Calcium-independent phospholipase A2γ (iPLA2γ) is a mitochondrial enzyme that produces lipid second messengers that facilitate opening of the mitochondrial permeability transition pore (mPTP) and contribute to the production of oxidized fatty acids in myocardium. To specifically identify the roles of iPLA2γ in cardiac myocytes, we generated cardiac myocyte-specific iPLA2γ knock-out (CMiPLA2γKO) mice by removing the exon encoding the active site serine (Ser-477). Hearts of CMiPLA2γKO mice exhibited normal hemodynamic function, glycerophospholipid molecular species composition, and normal rates of mitochondrial respiration and ATP production. In contrast, CMiPLA2γKO mice demonstrated attenuated Ca(2+)-induced mPTP opening that could be rapidly restored by the addition of palmitate and substantially reduced production of oxidized polyunsaturated fatty acids (PUFAs). Furthermore, myocardial ischemia/reperfusion (I/R) in CMiPLA2γKO mice (30 min of ischemia followed by 30 min of reperfusion in vivo) dramatically decreased oxidized fatty acid production in the ischemic border zones. Moreover, CMiPLA2γKO mice subjected to 30 min of ischemia followed by 24 h of reperfusion in vivo developed substantially less cardiac necrosis in the area-at-risk in comparison with their WT littermates. Furthermore, we found that membrane depolarization in murine heart mitochondria was sensitized to Ca(2+) by the presence of oxidized PUFAs. Because mitochondrial membrane depolarization and calcium are known to activate iPLA2γ, these results are consistent with salvage of myocardium after I/R by iPLA2γ loss of function through decreasing mPTP opening, diminishing production of proinflammatory oxidized fatty acids, and attenuating the deleterious effects of abrupt increases in calcium ion on membrane potential during reperfusion.


Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Potencial de la Membrana Mitocondrial , Mitocondrias Cardíacas/enzimología , Daño por Reperfusión Miocárdica/enzimología , Miocardio/enzimología , Miocitos Cardíacos/enzimología , Animales , Calcio/metabolismo , Fosfolipasas A2 Grupo VI/genética , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Daño por Reperfusión Miocárdica/genética , Especificidad de Órganos , Oxidación-Reducción
13.
J Biol Chem ; 291(6): 3076-89, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26655718

RESUMEN

Phospholipase A2 (PLA2) activity has been shown to be involved in the sperm acrosome reaction (AR), but the molecular identity of PLA2 isoforms has remained elusive. Here, we have tested the role of two intracellular (iPLA2ß and cytosolic PLA2α) and one secreted (group X) PLA2s in spontaneous and progesterone (P4)-induced AR by using a set of specific inhibitors and knock-out mice. iPLA2ß is critical for spontaneous AR, whereas both iPLA2ß and group X secreted PLA2 are involved in P4-induced AR. Cytosolic PLA2α is dispensable in both types of AR. P4-induced AR spreads over 30 min in the mouse, and kinetic analyses suggest the presence of different sperm subpopulations, using distinct PLA2 pathways to achieve AR. At low P4 concentration (2 µm), sperm undergoing early AR (0-5 min post-P4) rely on iPLA2ß, whereas sperm undergoing late AR (20-30 min post-P4) rely on group X secreted PLA2. Moreover, the role of PLA2s in AR depends on P4 concentration, with the PLA2s being key actors at low physiological P4 concentrations (≤2 µm) but not at higher P4 concentrations (~10 µm).


Asunto(s)
Reacción Acrosómica/efectos de los fármacos , Acrosoma/enzimología , Exocitosis/efectos de los fármacos , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Progesterona/farmacología , Animales , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo X/genética , Masculino , Ratones , Ratones Noqueados , Progesterona/metabolismo
14.
J Med Genet ; 53(3): 180-9, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26668131

RESUMEN

BACKGROUND: Mutations in PLA2G6, which encodes the calcium-independent phospholipase A2 group VI, cause neurodegeneration and diffuse cortical Lewy body formation by a yet undefined mechanism. We assessed whether altered protein glycosylation due to abnormal Golgi morphology might be a factor in the pathology of this disease. METHODS: Three patients presented with PLA2G6-associated neurodegeneration (PLAN); two had infantile neuroaxonal dystrophy (INAD) and one had adult-onset dystonia-parkinsonism. We analysed protein N-linked and O-linked glycosylation in cerebrospinal fluid, plasma, urine, and cultured skin fibroblasts using high performance liquid chromatography (HPLC) and matrix-assisted laser desorption ionization--time of flight/mass spectrometry (MALDI-TOF/MS). We also assessed sialylation and Golgi morphology in cultured fibroblasts by immunofluorescence and performed rescue experiments using a lentiviral vector. RESULTS: The patients with INAD had PLA2G6 mutations NM_003560.2: c.[950G>T];[426-1077dup] and c.[1799G>A];[2221C>T] and the patient with dystonia-parkinsonism had PLA2G6 mutations NM_003560.2: c.[609G>A];[2222G>A]. All three patients had altered Golgi morphology and abnormalities of protein O-linked glycosylation and sialylation in cultured fibroblasts that were rescued by lentiviral overexpression of wild type PLA2G6. CONCLUSIONS: Our findings add altered Golgi morphology, O-linked glycosylation and sialylation defects to the phenotypical spectrum of PLAN; these pathways are essential for correct processing and distribution of proteins. Lewy body and Tau pathology, two neuropathological features of PLAN, could emerge from these defects. Therefore, Golgi morphology, O-linked glycosylation and sialylation may play a role in the pathogenesis of PLAN and perhaps other neurodegenerative disorders.


Asunto(s)
Trastornos Distónicos/metabolismo , Trastornos Distónicos/patología , Aparato de Golgi/ultraestructura , Fosfolipasas A2 Grupo VI/deficiencia , Distrofias Neuroaxonales/metabolismo , Distrofias Neuroaxonales/patología , Trastornos Parkinsonianos/metabolismo , Trastornos Parkinsonianos/patología , Adulto , Células Cultivadas , Trastornos Distónicos/genética , Femenino , Fibroblastos/metabolismo , Fibroblastos/ultraestructura , Glicosilación , Aparato de Golgi/metabolismo , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo VI/metabolismo , Humanos , Lactante , Masculino , Mutación , Distrofias Neuroaxonales/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Trastornos Parkinsonianos/genética , Sialiltransferasas/metabolismo
15.
J Biol Chem ; 290(17): 11021-31, 2015 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-25762722

RESUMEN

Diabetes is a consequence of reduced ß-cell function and mass, due to ß-cell apoptosis. Endoplasmic reticulum (ER) stress is induced during ß-cell apoptosis due to various stimuli, and our work indicates that group VIA phospholipase A2ß (iPLA2ß) participates in this process. Delineation of underlying mechanism(s) reveals that ER stress reduces the anti-apoptotic Bcl-x(L) protein in INS-1 cells. The Bcl-x pre-mRNA undergoes alternative pre-mRNA splicing to generate Bcl-x(L) or Bcl-x(S) mature mRNA. We show that both thapsigargin-induced and spontaneous ER stress are associated with reductions in the ratio of Bcl-x(L)/Bcl-x(S) mRNA in INS-1 and islet ß-cells. However, chemical inactivation or knockdown of iPLA2ß augments the Bcl-x(L)/Bcl-x(S) ratio. Furthermore, the ratio is lower in islets from islet-specific RIP-iPLA2ß transgenic mice, whereas islets from global iPLA2ß(-/-) mice exhibit the opposite phenotype. In view of our earlier reports that iPLA2ß induces ceramide accumulation through neutral sphingomyelinase 2 and that ceramides shift the Bcl-x 5'-splice site (5'SS) selection in favor of Bcl-x(S), we investigated the potential link between Bcl-x splicing and the iPLA2ß/ceramide axis. Exogenous C6-ceramide did not alter Bcl-x 5'SS selection in INS-1 cells, and neutral sphingomyelinase 2 inactivation only partially prevented the ER stress-induced shift in Bcl-x splicing. In contrast, 5(S)-hydroxytetraenoic acid augmented the ratio of Bcl-x(L)/Bcl-x(S) by 15.5-fold. Taken together, these data indicate that ß-cell apoptosis is, in part, attributable to the modulation of 5'SS selection in the Bcl-x pre-mRNA by bioactive lipids modulated by iPLA2ß.


Asunto(s)
Apoptosis/fisiología , Ceramidas/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Células Secretoras de Insulina/metabolismo , Sitios de Empalme de ARN , Empalme del ARN/fisiología , Proteína bcl-X/metabolismo , Animales , Ceramidas/genética , Estrés del Retículo Endoplásmico/fisiología , Fosfolipasas A2 Grupo VI/genética , Humanos , Células Secretoras de Insulina/citología , Ratones , Ratones Noqueados , Ratas , Esfingomielina Fosfodiesterasa/genética , Esfingomielina Fosfodiesterasa/metabolismo , Proteína bcl-X/genética
16.
Infect Immun ; 84(4): 1137-1142, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26857573

RESUMEN

Trypanosoma cruzi infection, which is the etiological agent of Chagas disease, is associated with intense inflammation during the acute and chronic phases. The pathological progression of Chagas disease is influenced by the infiltration and transmigration of inflammatory cells across the endothelium to infected tissues, which are carefully regulated processes involving several molecular mediators, including adhesion molecules and platelet-activating factor (PAF). We have shown that PAF production is dependent upon calcium-independent group VIA phospholipase A2ß (iPLA2ß) following infection of human coronary artery endothelial cells (HCAECs) with T. cruzi, suggesting that the absence of iPLA2ß may decrease the recruitment of inflammatory cells to the heart to manage parasite accumulation. Cardiac endothelial cells isolated from iPLA2ß-knockout (iPLA2ß-KO) mice infected withT. cruzi demonstrated decreased PAF production compared to that by cells isolated from wild-type (WT) mice but demonstrated increases in adhesion molecule expression similar to those seen in WT mice. Myocardial inflammation in iPLA2ß-KO mice infected with T. cruzi was similar in severity to that in WT mice, but the iPLA2ß-KO mouse myocardium contained more parasite pseudocysts. Upon activation, macrophages from iPLA2ß-KO mice produced significantly less nitric oxide (NO) and caused lessT. cruzi inhibition than macrophages from wild-type mice. Thus, the absence of iPLA2ß activity does not influence myocardial inflammation, but iPLA2ß is essential forT. cruzi clearance.


Asunto(s)
Cardiomiopatía Chagásica/metabolismo , Cardiomiopatía Chagásica/parasitología , Regulación Enzimológica de la Expresión Génica/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Macrófagos/fisiología , Animales , Línea Celular , Eliminación de Gen , Fosfolipasas A2 Grupo VI/genética , Macrófagos/metabolismo , Macrófagos/parasitología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Nitritos , Carga de Parásitos
17.
J Immunol ; 192(2): 752-62, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24337743

RESUMEN

Phospholipase A2s generate lipid mediators that constitute an important component of the integrated response of macrophages to stimuli of the innate immune response. Because these cells contain multiple phospholipase A2 forms, the challenge is to elucidate the roles that each of these forms plays in regulating normal cellular processes and in disease pathogenesis. A major issue is to precisely determine the phospholipid substrates that these enzymes use for generating lipid mediators. There is compelling evidence that group IVA cytosolic phospholipase A2 (cPLA2α) targets arachidonic acid-containing phospholipids but the role of the other cytosolic enzyme present in macrophages, the Ca(2+)-independent group VIA phospholipase A2 (iPLA2ß) has not been clearly defined. We applied mass spectrometry-based lipid profiling to study the substrate specificities of these two enzymes during inflammatory activation of macrophages with zymosan. Using selective inhibitors, we find that, contrary to cPLA2α, iPLA2ß spares arachidonate-containing phospholipids and hydrolyzes only those that do not contain arachidonate. Analyses of the lysophospholipids generated during activation reveal that one of the major species produced, palmitoyl-glycerophosphocholine, is generated by iPLA2ß, with minimal or no involvement of cPLA2α. The other major species produced, stearoyl-glycerophosphocholine, is generated primarily by cPLA2α. Collectively, these findings suggest that cPLA2α and iPLA2ß act on different phospholipids during zymosan stimulation of macrophages and that iPLA2ß shows a hitherto unrecognized preference for choline phospholipids containing palmitic acid at the sn-1 position that could be exploited for the design of selective inhibitors of this enzyme with therapeutic potential.


Asunto(s)
Calcio/metabolismo , Citosol/metabolismo , Fosfolipasas A2 Grupo IV/metabolismo , Fosfolipasas A2 Grupo VI/metabolismo , Macrófagos Peritoneales/metabolismo , Zimosan/farmacología , Animales , Ácido Araquidónico/metabolismo , Células Cultivadas , Citosol/efectos de los fármacos , Macrófagos Peritoneales/efectos de los fármacos , Masculino , Ratones
18.
Brain ; 138(Pt 7): 1801-16, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26001724

RESUMEN

The PLA2G6 gene encodes a group VIA calcium-independent phospholipase A2 beta enzyme that selectively hydrolyses glycerophospholipids to release free fatty acids. Mutations in PLA2G6 have been associated with disorders such as infantile neuroaxonal dystrophy, neurodegeneration with brain iron accumulation type II and Karak syndrome. More recently, PLA2G6 was identified as the causative gene in a subgroup of patients with autosomal recessive early-onset dystonia-parkinsonism. Neuropathological examination revealed widespread Lewy body pathology and the accumulation of hyperphosphorylated tau, supporting a link between PLA2G6 mutations and parkinsonian disorders. Here we show that knockout of the Drosophila homologue of the PLA2G6 gene, iPLA2-VIA, results in reduced survival, locomotor deficits and organismal hypersensitivity to oxidative stress. Furthermore, we demonstrate that loss of iPLA2-VIA function leads to a number of mitochondrial abnormalities, including mitochondrial respiratory chain dysfunction, reduced ATP synthesis and abnormal mitochondrial morphology. Moreover, we show that loss of iPLA2-VIA is strongly associated with increased lipid peroxidation levels. We confirmed our findings using cultured fibroblasts taken from two patients with mutations in the PLA2G6 gene. Similar abnormalities were seen including elevated mitochondrial lipid peroxidation and mitochondrial membrane defects, as well as raised levels of cytoplasmic and mitochondrial reactive oxygen species. Finally, we demonstrated that deuterated polyunsaturated fatty acids, which inhibit lipid peroxidation, were able to partially rescue the locomotor abnormalities seen in aged flies lacking iPLA2-VIA gene function, and restore mitochondrial membrane potential in fibroblasts from patients with PLA2G6 mutations. Taken together, our findings demonstrate that loss of normal PLA2G6 gene activity leads to lipid peroxidation, mitochondrial dysfunction and subsequent mitochondrial membrane abnormalities. Furthermore we show that the iPLA2-VIA knockout fly model provides a useful platform for the further study of PLA2G6-associated neurodegeneration.


Asunto(s)
Proteínas de Drosophila/genética , Fosfolipasas A2 Grupo VI/genética , Fosfolipasas A2 Grupo X/genética , Peroxidación de Lípido/genética , Mitocondrias/metabolismo , Estrés Oxidativo/genética , Animales , Línea Celular , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Fibroblastos/metabolismo , Técnicas de Inactivación de Genes , Fosfolipasas A2 Grupo VI/metabolismo , Fosfolipasas A2 Grupo X/metabolismo , Humanos , Espectrometría de Masas , Potencial de la Membrana Mitocondrial/genética , Microscopía Fluorescente , Mitocondrias/patología , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
19.
J Biol Chem ; 289(20): 14194-210, 2014 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-24648512

RESUMEN

Palmitate (C16:0) induces apoptosis of insulin-secreting ß-cells by processes that involve generation of reactive oxygen species, and chronically elevated blood long chain free fatty acid levels are thought to contribute to ß-cell lipotoxicity and the development of diabetes mellitus. Group VIA phospholipase A2 (iPLA2ß) affects ß-cell sensitivity to apoptosis, and here we examined iPLA2ß effects on events that occur in ß-cells incubated with C16:0. Such events in INS-1 insulinoma cells were found to include activation of caspase-3, expression of stress response genes (C/EBP homologous protein and activating transcription factor 4), accumulation of ceramide, loss of mitochondrial membrane potential, and apoptosis. All of these responses were blunted in INS-1 cells that overexpress iPLA2ß, which has been proposed to facilitate repair of oxidized mitochondrial phospholipids, e.g. cardiolipin (CL), by excising oxidized polyunsaturated fatty acid residues, e.g. linoleate (C18:2), to yield lysophospholipids, e.g. monolysocardiolipin (MLCL), that can be reacylated to regenerate the native phospholipid structures. Here the MLCL content of mouse pancreatic islets was found to rise with increasing iPLA2ß expression, and recombinant iPLA2ß hydrolyzed CL to MLCL and released oxygenated C18:2 residues from oxidized CL in preference to native C18:2. C16:0 induced accumulation of oxidized CL species and of the oxidized phospholipid (C18:0/hydroxyeicosatetraenoic acid)-glycerophosphoethanolamine, and these effects were blunted in INS-1 cells that overexpress iPLA2ß, consistent with iPLA2ß-mediated removal of oxidized phospholipids. C16:0 also induced iPLA2ß association with INS-1 cell mitochondria, consistent with a role in mitochondrial repair. These findings indicate that iPLA2ß confers significant protection of ß-cells against C16:0-induced injury.


Asunto(s)
Apoptosis/efectos de los fármacos , Fosfolipasas A2 Grupo VI/metabolismo , Células Secretoras de Insulina/citología , Células Secretoras de Insulina/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Palmitatos/efectos adversos , Animales , Cardiolipinas/metabolismo , Caspasa 3/metabolismo , Línea Celular Tumoral , Activación Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Lisofosfolípidos/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Oxidación-Reducción/efectos de los fármacos , Ratas
20.
Biochem Biophys Res Commun ; 463(1-2): 13-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25979360

RESUMEN

Caspase-independent, non-apoptotic cell death is an important therapeutic target in myocardial ischemia. Leptin, an adipose-derived hormone, is known to exhibit cytoprotective effects on the ischemic heart, but the mechanisms are poorly understood. In this research, we found that pretreatment of leptin strongly suppressed ischemic-augmented nuclear shrinkage and non-apoptotic cell death on cardiomyocytes. Leptin was also shown to significantly inhibit the activity of iPLA2, which is considered to play crucial roles in non-apoptotic cell death, resulting in effective prevention of ischemia-induced myocyte death. These findings provide the first evidence of a protective mechanism of leptin against ischemia-induced non-apoptotic cardiomyocyte death.


Asunto(s)
Muerte Celular/fisiología , Fosfolipasas A2 Grupo VI/metabolismo , Leptina/metabolismo , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/patología , Células Cultivadas , Medio de Cultivo Libre de Suero , Glucosa/administración & dosificación , Fosfolipasas A2 Grupo VI/antagonistas & inhibidores , Leptina/administración & dosificación , Isquemia Miocárdica/prevención & control , Miocitos Cardíacos/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA