Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Nature ; 630(8015): 198-205, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38720074

RESUMEN

Phosphoinositide-3-kinase-γ (PI3Kγ) is implicated as a target to repolarize tumour-associated macrophages and promote antitumour immune responses in solid cancers1-4. However, cancer cell-intrinsic roles of PI3Kγ are unclear. Here, by integrating unbiased genome-wide CRISPR interference screening with functional analyses across acute leukaemias, we define a selective dependency on the PI3Kγ complex in a high-risk subset that includes myeloid, lymphoid and dendritic lineages. This dependency is characterized by innate inflammatory signalling and activation of phosphoinositide 3-kinase regulatory subunit 5 (PIK3R5), which encodes a regulatory subunit of PI3Kγ5 and stabilizes the active enzymatic complex. We identify p21 (RAC1)-activated kinase 1 (PAK1) as a noncanonical substrate of PI3Kγ that mediates this cell-intrinsic dependency and find that dephosphorylation of PAK1 by PI3Kγ inhibition impairs mitochondrial oxidative phosphorylation. Treatment with the selective PI3Kγ inhibitor eganelisib is effective in leukaemias with activated PIK3R5. In addition, the combination of eganelisib and cytarabine prolongs survival over either agent alone, even in patient-derived leukaemia xenografts with low baseline PIK3R5 expression, as residual leukaemia cells after cytarabine treatment have elevated G protein-coupled purinergic receptor activity and PAK1 phosphorylation. Together, our study reveals a targetable dependency on PI3Kγ-PAK1 signalling that is amenable to near-term evaluation in patients with acute leukaemia.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib , Leucemia , Transducción de Señal , Quinasas p21 Activadas , Animales , Humanos , Ratones , Línea Celular , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Citarabina/farmacología , Citarabina/uso terapéutico , Leucemia/tratamiento farmacológico , Leucemia/enzimología , Leucemia/genética , Leucemia/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Quinasas p21 Activadas/antagonistas & inhibidores , Quinasas p21 Activadas/metabolismo , Fosforilación , Ensayos Antitumor por Modelo de Xenoinjerto
2.
Proc Natl Acad Sci U S A ; 121(20): e2318119121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38709930

RESUMEN

Brain metastasis of advanced breast cancer often results in deleterious consequences. Metastases to the brain lead to significant challenges in treatment options, as the blood-brain barrier (BBB) prevents conventional therapy. Thus, we hypothesized that creation of a nanoparticle (NP) that distributes to both primary tumor site and across the BBB for secondary brain tumor can be extremely beneficial. Here, we report a simple targeting strategy to attack both the primary breast and secondary brain tumors utilizing a single NP platform. The nature of these mitochondrion-targeted, BBB-penetrating NPs allow for simultaneous targeting and drug delivery to the hyperpolarized mitochondrial membrane of the extracranial primary tumor site in addition to tumors at the brain. By utilizing a combination of such dual anatomical distributing NPs loaded with therapeutics, we demonstrate a proof-of-concept idea to combat the increased metabolic plasticity of brain metastases by lowering two major energy sources, oxidative phosphorylation (OXPHOS) and glycolysis. By utilizing complementary studies and genomic analyses, we demonstrate the utility of a chemotherapeutic prodrug to decrease OXPHOS and glycolysis by pairing with a NP loaded with pyruvate dehydrogenase kinase 1 inhibitor. Decreasing glycolysis aims to combat the metabolic flexibility of both primary and secondary tumors for therapeutic outcome. We also address the in vivo safety parameters by addressing peripheral neuropathy and neurobehavior outcomes. Our results also demonstrate that this combination therapeutic approach utilizes mitochondrial genome targeting strategy to overcome DNA repair-based chemoresistance mechanisms.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Neoplasias de la Mama , Nanopartículas , Fosforilación Oxidativa , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/secundario , Neoplasias Encefálicas/patología , Animales , Humanos , Femenino , Nanopartículas/química , Ratones , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Fosforilación Oxidativa/efectos de los fármacos , Línea Celular Tumoral , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Sistemas de Liberación de Medicamentos/métodos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico
3.
Proc Natl Acad Sci U S A ; 121(30): e2321972121, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39008677

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.


Asunto(s)
Antioxidantes , COVID-19 , Ratones Transgénicos , Mitocondrias , Fosforilación Oxidativa , SARS-CoV-2 , Animales , Ratones , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , COVID-19/patología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , SARS-CoV-2/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Humanos , Enzima Convertidora de Angiotensina 2/metabolismo , Enzima Convertidora de Angiotensina 2/genética , Pulmón/virología , Pulmón/patología , Pulmón/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Catalasa/metabolismo , Catalasa/genética , Tratamiento Farmacológico de COVID-19 , Modelos Animales de Enfermedad , Inmunidad Innata
4.
Nano Lett ; 24(27): 8257-8267, 2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920296

RESUMEN

Osseointegration is the most important factor determining implant success. The surface modification of TiO2 nanotubes prepared by anodic oxidation has remarkable advantages in promoting bone formation. However, the mechanism behind this phenomenon is still unintelligible. Here we show that the nanomorphology exhibited open and clean nanotube structure and strong hydrophilicity, and the nanomorphology significantly facilitated the adhesion, proliferation, and osteogenesis differentiation of stem cells. Exploring the mechanism, we found that the nanomorphology can enhance mitochondrial oxidative phosphorylation (OxPhos) by activating Piezo1 and increasing intracellular Ca2+. The increase in OxPhos can significantly uplift the level of acetyl-CoA in the cytoplasm but not significantly raise the level of acetyl-CoA in the nucleus, which was beneficial for the acetylation and stability of ß-catenin and ultimately promoted osteogenesis. This study provides a new interpretation for the regulatory mechanism of stem cell osteogenesis by nanomorphology.


Asunto(s)
Diferenciación Celular , Canales Iónicos , Osteogénesis , Propiedades de Superficie , Titanio , beta Catenina , Osteogénesis/efectos de los fármacos , Titanio/química , Titanio/farmacología , beta Catenina/metabolismo , Canales Iónicos/metabolismo , Diferenciación Celular/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Oseointegración/efectos de los fármacos , Ratones , Nanoporos , Nanotubos/química , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Prótesis e Implantes , Adhesión Celular/efectos de los fármacos
5.
Neurobiol Dis ; 199: 106573, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901783

RESUMEN

Arketamine, the (R)-enantiomer of ketamine, exhibits antidepressant-like effects in mice, though the precise molecular mechanisms remain elusive. It has been shown to reduce splenomegaly and depression-like behaviors in the chronic social defeat stress (CSDS) model of depression. This study investigated whether the spleen contributes to the antidepressant-like effects of arketamine in the CSDS model. We found that splenectomy significantly inhibited arketamine's antidepressant-like effects in CSDS-susceptible mice. RNA-sequencing analysis identified the oxidative phosphorylation (OXPHOS) pathway in the prefrontal cortex (PFC) as a key mediator of splenectomy's impact on arketamine's effects. Furthermore, oligomycin A, an inhibitor of the OXPHOS pathway, reversed the suppressive effects of splenectomy on arketamine's antidepressant-like effects. Specific genes within the OXPHOS pathways, such as COX11, UQCR11 and ATP5e, may contribute to these inhibitory effects. Notably, transforming growth factor (TGF)-ß1, along with COX11, appears to modulate the suppressive effects of splenectomy and contribute to arketamine's antidepressant-like effects. Additionally, SRI-01138, an agonist of the TGF-ß1 receptor, alleviated the inhibitory effects of splenectomy on arketamine's antidepressant-like effects. Subdiaphragmatic vagotomy also counteracted the inhibitory effects of splenectomy on arketamine's antidepressant-like effects in CSDS-susceptible mice. These findings suggest that the OXPHOS pathway and TGF-ß1 in the PFC play significant roles in the antidepressant-like effects of arketamine, mediated through the spleen-brain axis via the vagus nerve.


Asunto(s)
Antidepresivos , Ketamina , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Bazo , Esplenectomía , Nervio Vago , Animales , Ketamina/farmacología , Antidepresivos/farmacología , Bazo/efectos de los fármacos , Bazo/metabolismo , Ratones , Masculino , Nervio Vago/efectos de los fármacos , Nervio Vago/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/metabolismo , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Estrés Psicológico/metabolismo , Estrés Psicológico/tratamiento farmacológico , Derrota Social
6.
Mol Med ; 30(1): 56, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671369

RESUMEN

BACKGROUND: Ginsenoside Rh2 (G-Rh2), a steroidal compound extracted from roots of ginseng, has been extensively studied in tumor therapy. However, its specific regulatory mechanism in non-small cell lung cancer (NSCLC) is not well understood. Pyruvate dehydrogenase kinase 4 (PDK4), a central regulator of cellular energy metabolism, is highly expressed in various malignant tumors. We investigated the impact of G-Rh2 on the malignant progression of NSCLC and how it regulated PDK4 to influence tumor aerobic glycolysis and mitochondrial function. METHOD: We examined the inhibitory effect of G-Rh2 on NSCLC through I proliferation assay, migration assay and flow cytometry in vitro. Subsequently, we verified the ability of G-Rh2 to inhibit tumor growth and metastasis by constructing subcutaneous tumor and metastasis models in nude mice. Proteomics analysis was conducted to analyze the action pathways of G-Rh2. Additionally, we assessed glycolysis and mitochondrial function using seahorse, PET-CT, Western blot, and RT-qPCR. RESULT: Treatment with G-Rh2 significantly inhibited tumor proliferation and migration ability both in vitro and in vivo. Furthermore, G-Rh2 inhibited the tumor's aerobic glycolytic capacity, including glucose uptake and lactate production, through the HIF1-α/PDK4 pathway. Overexpression of PDK4 demonstrated that G-Rh2 targeted the inhibition of PDK4 expression, thereby restoring mitochondrial function, promoting reactive oxygen species (ROS) accumulation, and inducing apoptosis. When combined with sodium dichloroacetate, a PDK inhibitor, it complemented the inhibitory capacity of PDKs, acting synergistically as a detoxifier. CONCLUSION: G-Rh2 could target and down-regulate the expression of HIF-1α, resulting in decreased expression of glycolytic enzymes and inhibition of aerobic glycolysis in tumors. Additionally, by directly targeting mitochondrial PDK, it elevated mitochondrial oxidative phosphorylation and enhanced ROS accumulation, thereby promoting tumor cells to undergo normal apoptotic processes.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Ginsenósidos , Subunidad alfa del Factor 1 Inducible por Hipoxia , Neoplasias Pulmonares , Fosforilación Oxidativa , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Ginsenósidos/farmacología , Ginsenósidos/uso terapéutico , Humanos , Animales , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/patología , Carcinoma de Pulmón de Células no Pequeñas/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Ratones , Línea Celular Tumoral , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Ratones Desnudos , Movimiento Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos
7.
Cell Physiol Biochem ; 58(3): 226-249, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38857359

RESUMEN

BACKGROUND/AIMS: Important benefits of intermittent hypoxic training (IHT) have emerged as an effective tool for enhancing adaptive potential in different pathological states, among which acute hypoxia dominates. Therefore, the aim of our study was to evaluate the mechanisms related to the effects of the nitric oxide system (nitrites, nitrates, carbamide, and total polyamine content) on ADP-stimulated oxygen consumption and oxidative phosphorylation in heart and liver mitochondria and biomarkers of oxidative stress in the blood, heart, and liver of rats exposed to the IHT method and acute hypoxia and treated with the amino acid L-arginine (600 mg/kg, 30 min) or the NO synthase inhibitor L-NNA (35 mg/kg, 30 min) prior to each IHT session. METHODS: We analysed the modulation of the system of oxygen-dependent processes (mitochondrial respiration with the oxygraphic method, microsomal oxidation, and lipoperoxidation processes using biochemical methods) in tissues during IHT in the formation of short-term and long-term effects (30, 60, and 180 days after the last IHT session) with simultaneous administration of L-arginine. In particular, we investigated how mitochondrial functions are modulated during intermittent hypoxia with the use of oxidation substrates (succinate or α-ketoglutarate) in bioenergetic mechanisms of cellular stability and adaptation. RESULTS: The IHT method is associated with a significant increase in the production of endogenous nitric oxide measured by the levels of its stable metabolite, nitrite anion, in both plasma (almost 7-fold) and erythrocytes (more than 7-fold) of rats. The intensification of nitric oxide-dependent pathways of metabolic transformations in the energy supply processes in the heart and liver, accompanied by oscillatory mechanisms of adaptation in the interval mode, causes a probable decrease in the production of urea and polyamines in plasma and liver, but not in erythrocytes. The administration of L-arginine prior to the IHT sessions increased the level of the nitrite-reducing component of the nitric oxide cycle, which persisted for up to 180 days of the experiment. CONCLUSION: Thus, the efficacy of IHT and its nitrite-dependent component shown in this study is associated with the formation of long-term adaptive responses by preventing the intensification of lipoperoxidation processes in tissues due to pronounced changes in the main enzymes of antioxidant defence and stabilisation of erythrocyte membranes, which has a pronounced protective effect on the system of regulation of oxygen-dependent processes as a whole.


Asunto(s)
Arginina , Hipoxia , Consumo de Oxígeno , Ratas Wistar , Animales , Masculino , Hipoxia/metabolismo , Ratas , Arginina/farmacología , Arginina/análogos & derivados , Arginina/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Adaptación Fisiológica , Mitocondrias Hepáticas/metabolismo , Mitocondrias Hepáticas/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Mitocondrias Cardíacas/metabolismo , Mitocondrias Cardíacas/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Nitritos/metabolismo
8.
Biol Reprod ; 111(1): 76-91, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38501817

RESUMEN

Metabolism regulates the phenotype and function of macrophages. After recruitment to local tissues, monocytes are influenced by the local microenvironment and differentiate into various macrophages depending on different metabolic pathways. However, the metabolic mechanisms underlying decidual macrophage differentiation remain unknown. Interleukin-10 (IL-10) is an important decidual macrophage inducer and promotes oxidative phosphorylation (OXPHOS) of bone marrow-derived macrophages. In this study, we mainly investigate the metabolic changes involved in IL-10-generated macrophages from monocytes using in vitro models. We demonstrate that exposure of monocytes (either peripheral or THP-1) to IL-10 altered the phenotype and function of resultant macrophages that are linked with OXPHOS changes. Interleukin-10 enhanced the mitochondrial complex I and III activity of THP-1 cell-differentiated macrophages and increased the mitochondrial membrane potential, intracellular adenosine triphosphate, and reactive oxygen species levels. Oxidative phosphorylation blockage with oligomycin changed the cell morphology of IL-10-generated macrophages and the expression levels of cytokines, such as transforming growth factor beta, tumor necrosis factor-alpha, interferon gamma, and IL-10, apart from changes in the expression level of the surface markers CD206, CD209, and CD163. Moreover, in vivo IL-10 administration reduced the lipopolysaccharide (LPS)-induced embryo resorption rate, and this effect was diminished when OXPHOS was inhibited, demonstrating that OXPHOS is important for the improved pregnancy outcomes of IL-10 in LPS-induced abortion-prone mice. Our findings provide deep insights into the roles of IL-10 in macrophage biology and pregnancy maintenance. Nevertheless, the direct evidence that OXPHOS is involved in decidual macrophage differentiation needs further investigations.


Asunto(s)
Diferenciación Celular , Interleucina-10 , Macrófagos , Fosforilación Oxidativa , Femenino , Animales , Interleucina-10/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Ratones , Embarazo , Diferenciación Celular/efectos de los fármacos , Resultado del Embarazo , Humanos
9.
J Transl Med ; 22(1): 431, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38715059

RESUMEN

BACKGROUND: In humans, two ubiquitously expressed N-myristoyltransferases, NMT1 and NMT2, catalyze myristate transfer to proteins to facilitate membrane targeting and signaling. We investigated the expression of NMTs in numerous cancers and found that NMT2 levels are dysregulated by epigenetic suppression, particularly so in hematologic malignancies. This suggests that pharmacological inhibition of the remaining NMT1 could allow for the selective killing of these cells, sparing normal cells with both NMTs. METHODS AND RESULTS: Transcriptomic analysis of 1200 NMT inhibitor (NMTI)-treated cancer cell lines revealed that NMTI sensitivity relates not only to NMT2 loss or NMT1 dependency, but also correlates with a myristoylation inhibition sensitivity signature comprising 54 genes (MISS-54) enriched in hematologic cancers as well as testis, brain, lung, ovary, and colon cancers. Because non-myristoylated proteins are degraded by a glycine-specific N-degron, differential proteomics revealed the major impact of abrogating NMT1 genetically using CRISPR/Cas9 in cancer cells was surprisingly to reduce mitochondrial respiratory complex I proteins rather than cell signaling proteins, some of which were also reduced, albeit to a lesser extent. Cancer cell treatments with the first-in-class NMTI PCLX-001 (zelenirstat), which is undergoing human phase 1/2a trials in advanced lymphoma and solid tumors, recapitulated these effects. The most downregulated myristoylated mitochondrial protein was NDUFAF4, a complex I assembly factor. Knockout of NDUFAF4 or in vitro cell treatment with zelenirstat resulted in loss of complex I, oxidative phosphorylation and respiration, which impacted metabolomes. CONCLUSIONS: Targeting of both, oxidative phosphorylation and cell signaling partly explains the lethal effects of zelenirstat in select cancer types. While the prognostic value of the sensitivity score MISS-54 remains to be validated in patients, our findings continue to warrant the clinical development of zelenirstat as cancer treatment.


Asunto(s)
Aciltransferasas , Neoplasias , Fosforilación Oxidativa , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/genética , Línea Celular Tumoral , Fosforilación Oxidativa/efectos de los fármacos , Aciltransferasas/metabolismo , Ácido Mirístico/metabolismo , Proteómica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Perfilación de la Expresión Génica , Multiómica
10.
J Transl Med ; 22(1): 757, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135106

RESUMEN

BACKGROUND: Multi-drug resistance of poly(morpho)nuclear giant cells (PGCs) determines their cytoprotective and generative potential in cancer ecosystems. However, mechanisms underlying the involvement of PGCs in glioblastoma multiforme (GBM) adaptation to chemotherapeutic regimes remain largely obscure. In particular, metabolic reprogramming of PGCs has not yet been considered in terms of GBM recovery from doxorubicin (DOX)-induced stress. METHODS: Long-term proteomic and metabolic cell profiling was applied to trace the phenotypic dynamics of GBM populations subjected to pulse DOX treatment in vitro, with a particular focus on PGC formation and its metabolic background. The links between metabolic reprogramming, drug resistance and drug retention capacity of PGCs were assessed, along with their significance for GBM recovery from DOX-induced stress. RESULTS: Pulse DOX treatment triggered the transient formation of PGCs, followed by the appearance of small expanding cell (SEC) clusters. Development of PGCs was accompanied by the mobilization of their metabolic proteome, transient induction of oxidative phosphorylation (OXPHOS), and differential intracellular accumulation of NADH, NADPH, and ATP. The metabolic background of PGC formation was confirmed by the attenuation of GBM recovery from DOX-induced stress following the chemical inhibition of GSK-3ß, OXPHOS, and the pentose phosphate pathway. Concurrently, the mobilization of reactive oxygen species (ROS) scavenging systems and fine-tuning of NADPH-dependent ROS production systems in PGCs was observed. These processes were accompanied by perinuclear mobilization of ABCB1 and ABCG2 transporters and DOX retention in the perinuclear PGC compartments. CONCLUSIONS: These data demonstrate the cooperative pattern of GBM recovery from DOX-induced stress and the crucial role of metabolic reprogramming of PGCs in this process. Metabolic reprogramming enhances the efficiency of self-defense systems and increases the DOX retention capacity of PGCs, potentially reducing DOX bioavailability in the proximity of SECs. Consequently, the modulation of PGC metabolism is highlighted as a potential target for intervention in glioblastoma treatment.


Asunto(s)
Doxorrubicina , Glioblastoma , Glioblastoma/patología , Glioblastoma/metabolismo , Humanos , Doxorrubicina/farmacología , Línea Celular Tumoral , Estrés Fisiológico/efectos de los fármacos , Reprogramación Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de los fármacos , Proteómica , Resistencia a Antineoplásicos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Reprogramación Metabólica
11.
J Transl Med ; 22(1): 437, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38720345

RESUMEN

BACKGROUND: Biological-derived hydroxyapatite is widely used as a bone substitute for addressing bone defects, but its limited osteoconductive properties necessitate further improvement. The osteo-immunomodulatory properties hold crucial promise in maintaining bone homeostasis, and precise modulation of macrophage polarization is essential in this process. Metabolism serves as a guiding force for immunity, and fluoride modification represents a promising strategy for modulating the osteoimmunological environment by regulating immunometabolism. In this context, we synthesized fluorinated porcine hydroxyapatite (FPHA), and has demonstrated its enhanced biological properties and osteogenic capacity. However, it remains unknown whether and how FPHA affects the immune microenvironment of the bone defects. METHODS: FPHA was synthesized and its composition and structural properties were confirmed. Macrophages were cultured with FPHA extract to investigate the effects of FPHA on their polarization and the related osteo-immune microenvironment. Furthermore, total RNA of these macrophages was extracted, and RNA-seq analysis was performed to explore the underlying mechanisms associated with the observed changes in macrophages. The metabolic states were evaluated with a Seahorse analyzer. Additionally, immunohistochemical staining was performed to evaluate the macrophages response after implantation of the novel bone substitutes in critical size calvarial defects in SD rats. RESULTS: The incorporation of fluoride ions in FPHA was validated. FPHA promoted macrophage proliferation and enhanced the expression of M2 markers while suppressing the expression of M1 markers. Additionally, FPHA inhibited the expression of inflammatory factors and upregulated the expression of osteogenic factors, thereby enhancing the osteogenic differentiation capacity of the rBMSCs. RNA-seq analysis suggested that the polarization-regulating function of FPHA may be related to changes in cellular metabolism. Further experiments confirmed that FPHA enhanced mitochondrial function and promoted the metabolic shift of macrophages from glycolysis to oxidative phosphorylation. Moreover, in vivo experiments validated the above results in the calvarial defect model in SD rats. CONCLUSION: In summary, our study reveals that FPHA induces a metabolic shift in macrophages from glycolysis to oxidative phosphorylation. This shift leads to an increased tendency toward M2 polarization in macrophages, consequently creating a favorable osteo-immune microenvironment. These findings provide valuable insights into the impact of incorporating an appropriate concentration of fluoride on immunometabolism and macrophage mitochondrial function, which have important implications for the development of fluoride-modified immunometabolism-based bone regenerative biomaterials and the clinical application of FPHA or other fluoride-containing materials.


Asunto(s)
Durapatita , Glucólisis , Macrófagos , Fosforilación Oxidativa , Ratas Sprague-Dawley , Animales , Durapatita/química , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Ratas , Porcinos , Proliferación Celular/efectos de los fármacos , Masculino , Osteogénesis/efectos de los fármacos , Cráneo/patología , Cráneo/efectos de los fármacos , Ratones , Microambiente Celular/efectos de los fármacos , Células RAW 264.7 , Huesos/metabolismo , Huesos/efectos de los fármacos
12.
J Transl Med ; 22(1): 535, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38840216

RESUMEN

BACKGROUND: Inflammation and endothelial barrier dysfunction are the major pathophysiological changes in acute respiratory distress syndrome (ARDS). Sphingosine-1-phosphate receptor 3 (S1PR3), a G protein-coupled receptor, has been found to mediate inflammation and endothelial cell (EC) integrity. However, the function of S1PR3 in ARDS has not been fully elucidated. METHODS: We used a murine lipopolysaccharide (LPS)-induced ARDS model and an LPS- stimulated ECs model to investigate the role of S1PR3 in anti-inflammatory effects and endothelial barrier protection during ARDS. RESULTS: We found that S1PR3 expression was increased in the lung tissues of mice with LPS-induced ARDS. TY-52156, a selective S1PR3 inhibitor, effectively attenuated LPS-induced inflammation by suppressing the expression of proinflammatory cytokines and restored the endothelial barrier by repairing adherens junctions and reducing vascular leakage. S1PR3 inhibition was achieved by an adeno-associated virus in vivo and a small interfering RNA in vitro. Both the in vivo and in vitro studies demonstrated that pharmacological or genetic inhibition of S1PR3 protected against ARDS by inhibiting the NF-κB pathway and improving mitochondrial oxidative phosphorylation. CONCLUSIONS: S1PR3 inhibition protects against LPS-induced ARDS via suppression of pulmonary inflammation and promotion of the endothelial barrier by inhibiting NF-κB and improving mitochondrial oxidative phosphorylation, indicating that S1PR3 is a potential therapeutic target for ARDS.


Asunto(s)
Lipopolisacáridos , Ratones Endogámicos C57BL , Mitocondrias , FN-kappa B , Fosforilación Oxidativa , Síndrome de Dificultad Respiratoria , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Masculino , Ratones , Citocinas/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Inflamación/patología , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , FN-kappa B/metabolismo , Fosforilación Oxidativa/efectos de los fármacos , Sustancias Protectoras/farmacología , Receptores de Lisoesfingolípidos/metabolismo , Receptores de Lisoesfingolípidos/antagonistas & inhibidores , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/antagonistas & inhibidores
13.
Eur J Clin Invest ; 54(6): e14195, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38519718

RESUMEN

BACKGROUND: Oestrogen deficiency increases bone resorption, contributing to osteoporosis development. Yet, the mechanisms mediating the effects of oestrogen on osteoclasts remain unclear. This study aimed to elucidate the early metabolic alteration induced by RANKL, the essential cytokine in osteoclastogenesis and 17-beta-oestradiol (E2) on osteoclast progenitor cells, using RAW 264.7 macrophage cell line and primary bone marrow-derived macrophages as biological models. RESULTS: This research demonstrated that, in osteoclast precursors, RANKL stimulates complex I activity, oxidative phosphorylation (OXPHOS) and mitochondria-derived ATP production as early as 3 h of exposure. This effect on mitochondrial bioenergetics is associated with an increased capacity to oxidize TCA cycle substrates, fatty acids and amino acids. E2 inhibited all effects of RANKL on mitochondria metabolism. In the presence of RANKL, E2 also decreased cell number and stimulated the mitochondrial-mediated apoptotic pathway, detected as early as 3 h. Further, the pro-apoptotic effects of E2 during osteoclast differentiation were associated with an accumulation of p392S-p53 in mitochondria. CONCLUSIONS: These findings elucidate the early effects of RANKL on osteoclast progenitor metabolism and suggest novel p53-mediated mechanisms that contribute to postmenopausal osteoporosis.


Asunto(s)
Diferenciación Celular , Estradiol , Mitocondrias , Osteoclastos , Proteína p53 Supresora de Tumor , Animales , Ratones , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Estradiol/farmacología , Macrófagos/metabolismo , Mitocondrias/metabolismo , Osteoclastos/metabolismo , Osteoclastos/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Ligando RANK/metabolismo , Células RAW 264.7 , Proteína p53 Supresora de Tumor/metabolismo
14.
Cell Commun Signal ; 22(1): 336, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898530

RESUMEN

Excessive scar formation such as hypertrophic scars and keloids, resulting from trauma or surgical procedures, present a widespread concern for causing disfigurement, discomfort, and functional limitations. Macrophages play pivotal roles in maintaining tissue homeostasis, orchestrating tissue development, repair, and immune responses, and its transition of function and phenotype plays a critical role in regulating the balance between inflammation and tissue regeneration, which is central to cutaneous scar formation. Recent evidence suggests the involvement of Sonic Hedgehog (SHH) in the induction of anti-inflammatory M2-like macrophage phenotypes within tumor microenvironments. In our study, we observed increased SHH expression in human hypertrophic scars, prompting an investigation into its influence on macrophage polarization, efferocytosis, and cutaneous scar formation. Our findings reveal that SHH can enhance oxidative phosphorylation (OXPHOS) in macrophages, augment macrophage efferocytosis, and promote M2 polarization, finally contributing to the progression of cutaneous scar formation. Notably, targeting SHH signaling with vismodegib exhibited promising potential in mitigating scar formation by reversing the effects of enhanced OXPHOS and M2 polarization in macrophages. In conclusion, this study underscores the critical roles of macrophage metabolism, particularly OXPHOS, efferocytosis and SHH signaling in cutaneous scar formation. Understanding these mechanisms provides new avenues for potential interventions and scar prevention strategies.


Asunto(s)
Proteínas Hedgehog , Macrófagos , Fosforilación Oxidativa , Fagocitosis , Proteínas Hedgehog/metabolismo , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Humanos , Fosforilación Oxidativa/efectos de los fármacos , Animales , Fagocitosis/efectos de los fármacos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Ratones , Transducción de Señal/efectos de los fármacos , Cicatriz/patología , Cicatriz/metabolismo , Ratones Endogámicos C57BL , Anilidas/farmacología , Piridinas/farmacología , Eferocitosis
15.
Cell Biol Int ; 48(8): 1185-1197, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38773713

RESUMEN

Lactate is an oncometabolite that play important role in tumor aggressiveness. Lactate from the tumor microenvironment (TME) is taken up by cancer cells as an energy resource via mitochondrial oxidative phosphorylation (or OXPHOS). In the present study, by using an online meta-analysis tool we demonstrated that in oral squamous cancer cells (OSCCs) glycolytic and OXPHOS governing genes are overexpressed, like in breast cancer. For experimental demonstration, we treated the OSCC cell line (SCC4) and breast cancer cells (MDA-MB-231) with sodium L-lactate and analyzed its effects on changes in EMT and migration. For the therapeutic intervention of lactate metabolism, we used AZD3965 (an MCT1 inhibitor), and 7ACC2 (an MPC inhibitor). Like breast cancer, oral cancer tissues showed increased transcripts of 12 genes that were previously shown to be associated with glycolysis and OXPHOS. We experimentally demonstrated that L-lactate treatment induced mesenchymal markers and migration of cancer cells, which was significantly neutralized by MPC inhibitor that is, 7ACC2. Such an effect on EMT status was not observed with AZD3965. Furthermore, we showed that lactate treatment increases the MPC1 expression in both cancer cells, and this might be the reason why cancer cells in the high lactate environment are more sensitive to 7ACC2. Overall, our present findings demonstrate that extracellular lactate positively regulates the MPC1 protein expression in cancer cells, thereby putting forward the notion of using 7ACC2 as a potential therapeutic alternative to inhibit malignant oxidative cancers. Future preclinical studies are warranted to validate the present findings.


Asunto(s)
Neoplasias de la Mama , Movimiento Celular , Transición Epitelial-Mesenquimal , Ácido Láctico , Transportadores de Ácidos Monocarboxílicos , Neoplasias de la Boca , Humanos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Línea Celular Tumoral , Transportadores de Ácidos Monocarboxílicos/metabolismo , Transportadores de Ácidos Monocarboxílicos/genética , Femenino , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/patología , Neoplasias de la Boca/tratamiento farmacológico , Ácido Láctico/metabolismo , Movimiento Celular/efectos de los fármacos , Cumarinas/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Simportadores/metabolismo , Simportadores/genética , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Microambiente Tumoral/efectos de los fármacos , Pirimidinonas , Tiofenos
16.
J Cardiovasc Pharmacol ; 83(5): 433-445, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38422186

RESUMEN

ABSTRACT: We previously reported a novel compound called S-nitroso- N -pivaloyl- d -penicillamine (SNPiP), which was screened from a group of nitric oxide donor compounds with a basic chemical structure of S-nitroso- N -acetylpenicillamine, to activate the nonneuronal acetylcholine system. SNPiP-treated mice exhibited improved cardiac output and enhanced diastolic function, without an increase in heart rate. The nonneuronal acetylcholine-activating effects included increased resilience to ischemia, modulation of energy metabolism preference, and activation of angiogenesis. Here, we performed transcriptome analysis of SNPiP-treated mice ventricles to elucidate how SNPiP exerts beneficial effects on cardiac function. A time-course study (24 and 48 hours after SNPiP administration) revealed that SNPiP initially induced Wnt and cyclic guanosine monophosphate-protein kinase G signaling pathways, along with upregulation of genes involved in cardiac muscle tissue development and oxytocin signaling pathway. We also observed enrichment of glycolysis-related genes in response to SNPiP treatment, resulting in a metabolic shift from oxidative phosphorylation to glycolysis, which was suggested by reduced cardiac glucose contents while maintaining adenosine tri-phosphate levels. In addition, SNPiP significantly upregulated atrial natriuretic peptide and sarcolipin, which play crucial roles in calcium handling and cardiac performance. These findings suggest that SNPiP may have therapeutic potential based on the pleiotropic mechanisms elucidated in this study.


Asunto(s)
Diástole , Perfilación de la Expresión Génica , Ratones Endogámicos C57BL , Donantes de Óxido Nítrico , Transducción de Señal , Función Ventricular Izquierda , Animales , Transducción de Señal/efectos de los fármacos , Masculino , Donantes de Óxido Nítrico/farmacología , Función Ventricular Izquierda/efectos de los fármacos , Diástole/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Glucólisis/efectos de los fármacos , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Vía de Señalización Wnt/efectos de los fármacos , Factores de Tiempo , Penicilamina/farmacología , Penicilamina/análogos & derivados , Ratones , Fosforilación Oxidativa/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos
17.
J Pineal Res ; 76(5): e12991, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39039850

RESUMEN

Although rapid progression and a poor prognosis in influenza A virus (IAV) infection-induced acute exacerbation of chronic obstructive pulmonary disease (AECOPD) are frequently associated with metabolic energy disorders, the underlying mechanisms and rescue strategies remain unknown. We herein demonstrated that the level of resting energy expenditure increased significantly in IAV-induced AECOPD patients and that cellular energy exhaustion emerged earlier and more significantly in IAV-infected primary COPD bronchial epithelial (pDHBE) cells. The differentially expressed genes were enriched in the oxidative phosphorylation (OXPHOS) pathway; additionally, we consistently uncovered much earlier ATP exhaustion, more severe mitochondrial structural destruction and dysfunction, and OXPHOS impairment in IAV-inoculated pDHBE cells, and these changes were rescued by melatonin. The level of OMA1-dependent cleavage of OPA1 in the mitochondrial inner membrane and the shift in energy metabolism from OXPHOS to glycolysis were significantly increased in IAV-infected pDHBE cells; however, these changes were rescued by OMA1-siRNA or melatonin further treatment. Collectively, our data revealed that melatonin rescued IAV-induced cellular energy exhaustion via OMA1-OPA1-S to improve the clinical prognosis in COPD. This treatment may serve as a potential therapeutic agent for patients in which AECOPD is induced by IAV.


Asunto(s)
Metabolismo Energético , GTP Fosfohidrolasas , Virus de la Influenza A , Melatonina , Enfermedad Pulmonar Obstructiva Crónica , Humanos , Metabolismo Energético/efectos de los fármacos , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/genética , Virus de la Influenza A/efectos de los fármacos , Gripe Humana/metabolismo , Gripe Humana/tratamiento farmacológico , Melatonina/farmacología , Metaloendopeptidasas , Fosforilación Oxidativa/efectos de los fármacos , Enfermedad Pulmonar Obstructiva Crónica/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico
18.
Bioorg Chem ; 147: 107325, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38583247

RESUMEN

Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.


Asunto(s)
Antineoplásicos , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Glucólisis , Fosforilación Oxidativa , Humanos , Fosforilación Oxidativa/efectos de los fármacos , Glucólisis/efectos de los fármacos , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Proliferación Celular/efectos de los fármacos , Estructura Molecular , Animales , Iridio/química , Iridio/farmacología , Relación Estructura-Actividad , Especies Reactivas de Oxígeno/metabolismo , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Ratones , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Complejos de Coordinación/síntesis química , Ratones Endogámicos BALB C , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología
19.
Int J Mol Sci ; 25(13)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39000550

RESUMEN

The effect of the modulators of the mitochondrial ATP-dependent potassium channel (mitoKATP) on the structural and biochemical alterations in the substantia nigra and brain tissues was studied in a rat model of Parkinson's disease induced by rotenone. It was found that, in experimental parkinsonism accompanied by characteristic motor deficits, both neurons and the myelin sheath of nerve fibers in the substantia nigra were affected. Changes in energy and ion exchange in brain mitochondria were also revealed. The nucleoside uridine, which is a source for the synthesis of the mitoKATP channel opener uridine diphosphate, was able to dose-dependently decrease behavioral disorders and prevent the death of animals, which occurred for about 50% of animals in the model. Uridine prevented disturbances in redox, energy, and ion exchanges in brain mitochondria, and eliminated alterations in their structure and the myelin sheath in the substantia nigra. Cytochemical examination showed that uridine restored the indicators of oxidative phosphorylation and glycolysis in peripheral blood lymphocytes. The specific blocker of the mitoKATP channel, 5-hydroxydecanoate, eliminated the positive effects of uridine, suggesting that this channel is involved in neuroprotection. Taken together, these findings indicate the promise of using the natural metabolite uridine as a new drug to prevent and, possibly, stop the progression of Parkinson's disease.


Asunto(s)
Mitocondrias , Canales de Potasio , Rotenona , Uridina , Animales , Uridina/farmacología , Uridina/metabolismo , Ratas , Canales de Potasio/metabolismo , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Masculino , Modelos Animales de Enfermedad , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/etiología , Enfermedad de Parkinson/patología , Sustancia Negra/metabolismo , Sustancia Negra/efectos de los fármacos , Sustancia Negra/patología , Fármacos Neuroprotectores/farmacología , Fosforilación Oxidativa/efectos de los fármacos , Ratas Wistar , Ácidos Decanoicos/farmacología , Hidroxiácidos/farmacología
20.
Int J Mol Sci ; 25(15)2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39126062

RESUMEN

Little is known about the effects of statins, which are cholesterol-lowering drugs, on the bioenergetic functions of mitochondria in the brain. This study aimed to elucidate the direct effects of atorvastatin and simvastatin on the bioenergetics of isolated rat brain mitochondria by measuring the statin-induced changes in respiratory chain activity, ATP synthesis efficiency, and the production of reactive oxygen species (ROS). Our results in isolated brain mitochondria are the first to demonstrate that atorvastatin and simvastatin dose-dependently significantly inhibit the activity of the mitochondrial respiratory chain, resulting in a decreased respiratory rate, a decreased membrane potential, and increased ROS formation. Moreover, the tested statins reduced mitochondrial coupling parameters, the ADP/O ratio, the respiratory control ratio, and thus, the oxidative phosphorylation efficiency in brain mitochondria. Among the oxidative phosphorylation complexes, statin-induced mitochondrial impairment concerned complex I, complex III, and ATP synthase activity. The calcium-containing atorvastatin had a significantly more substantial effect on isolated brain mitochondria than simvastatin. The higher inhibitory effect of atorvastatin was dependent on calcium ions, which may lead to the disruption of calcium homeostasis in mitochondria. These findings suggest that while statins are effective in their primary role as cholesterol-lowering agents, their use may impair mitochondrial function, which may have consequences for brain health, particularly when mitochondrial energy efficiency is critical.


Asunto(s)
Atorvastatina , Encéfalo , Metabolismo Energético , Mitocondrias , Especies Reactivas de Oxígeno , Simvastatina , Animales , Atorvastatina/farmacología , Simvastatina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Ratas , Metabolismo Energético/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Masculino , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Fosforilación Oxidativa/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Calcio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA