Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.346
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 166(1): 222-33, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27264605

RESUMEN

How mechanical and biological processes are coordinated across cells, tissues, and organs to produce complex traits is a key question in biology. Cardamine hirsuta, a relative of Arabidopsis thaliana, uses an explosive mechanism to disperse its seeds. We show that this trait evolved through morphomechanical innovations at different spatial scales. At the organ scale, tension within the fruit wall generates the elastic energy required for explosion. This tension is produced by differential contraction of fruit wall tissues through an active mechanism involving turgor pressure, cell geometry, and wall properties of the epidermis. Explosive release of this tension is controlled at the cellular scale by asymmetric lignin deposition within endocarp b cells-a striking pattern that is strictly associated with explosive pod shatter across the Brassicaceae plant family. By bridging these different scales, we present an integrated mechanism for explosive seed dispersal that links evolutionary novelty with complex trait innovation. VIDEO ABSTRACT.


Asunto(s)
Cardamine/citología , Cardamine/fisiología , Dispersión de Semillas , Arabidopsis , Evolución Biológica , Fenómenos Biomecánicos , Cardamine/genética , Pared Celular/fisiología , Frutas/citología , Frutas/fisiología , Lignina/química , Lignina/metabolismo , Modelos Biológicos
2.
Plant Cell ; 36(7): 2465-2490, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38513609

RESUMEN

Plants in habitats with unpredictable conditions often have diversified bet-hedging strategies that ensure fitness over a wider range of variable environmental factors. A striking example is the diaspore (seed and fruit) heteromorphism that evolved to maximize species survival in Aethionema arabicum (Brassicaceae) in which external and endogenous triggers allow the production of two distinct diaspores on the same plant. Using this dimorphic diaspore model, we identified contrasting molecular, biophysical, and ecophysiological mechanisms in the germination responses to different temperatures of the mucilaginous seeds (M+ seed morphs), the dispersed indehiscent fruits (IND fruit morphs), and the bare non-mucilaginous M- seeds obtained by pericarp (fruit coat) removal from IND fruits. Large-scale comparative transcriptome and hormone analyses of M+ seeds, IND fruits, and M- seeds provided comprehensive datasets for their distinct thermal responses. Morph-specific differences in co-expressed gene modules in seeds, as well as in seed and pericarp hormone contents, identified a role of the IND pericarp in imposing coat dormancy by generating hypoxia affecting abscisic acid (ABA) sensitivity. This involved expression of morph-specific transcription factors, hypoxia response, and cell wall remodeling genes, as well as altered ABA metabolism, transport, and signaling. Parental temperature affected ABA contents and ABA-related gene expression and altered IND pericarp biomechanical properties. Elucidating the molecular framework underlying the diaspore heteromorphism can provide insight into developmental responses to globally changing temperatures.


Asunto(s)
Brassicaceae , Frutas , Regulación de la Expresión Génica de las Plantas , Germinación , Semillas , Temperatura , Germinación/genética , Germinación/fisiología , Semillas/genética , Semillas/fisiología , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Brassicaceae/genética , Brassicaceae/fisiología , Brassicaceae/metabolismo , Frutas/genética , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transcriptoma/genética , Latencia en las Plantas/genética , Latencia en las Plantas/fisiología , Ácido Abscísico/metabolismo
3.
Plant J ; 119(1): 100-114, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38600835

RESUMEN

As global climate change persists, ongoing warming exposes plants, including kiwifruit, to repeated cycles of drought stress and rewatering, necessitating the identification of drought-resistant genotypes for breeding purposes. To better understand the physiological mechanisms underlying drought resistance and recovery in kiwifruit, moderate (40-45% field capacity) and severe (25-30% field capacity) drought stresses were applied, followed by rewatering (80-85% field capacity) to eight kiwifruit rootstocks in this study. We then conducted a multivariate analysis of 20 indices for the assessment of drought resistance and recovery capabilities. Additionally, we identified four principal components, each playing a vital role in coping with diverse water conditions. Three optimal indicator groups were pinpointed, enhancing precision in kiwifruit drought resistance and recovery assessment and simplifying the evaluation system. Finally, MX-1 and HW were identified as representative rootstocks for future research on kiwifruit's responses to moderate and severe drought stresses. This study not only enhances our understanding of the response mechanisms of kiwifruit rootstocks to progressive drought stress and recovery but also provides theoretical guidance for reliable screening of drought-adaptive kiwifruit genotypes.


Asunto(s)
Actinidia , Resistencia a la Sequía , Actinidia/genética , Actinidia/fisiología , Resistencia a la Sequía/genética , Frutas/genética , Frutas/fisiología , Genotipo , Análisis Multivariante , Raíces de Plantas/fisiología , Raíces de Plantas/genética , Estrés Fisiológico/genética
4.
Plant J ; 118(6): 1937-1954, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38491870

RESUMEN

Chilling stress causes banana fruit softening disorder and severely impairs fruit quality. Various factors, such as transcription factors, regulate fruit softening. Herein, we identified a novel regulator, MaC2H2-IDD, whose expression is closely associated with fruit ripening and softening disorder. MaC2H2-IDD is a transcriptional activator located in the nucleus. The transient and ectopic overexpression of MaC2H2-IDD promoted "Fenjiao" banana and tomato fruit ripening. However, transient silencing of MaC2H2-IDD repressed "Fenjiao" banana fruit ripening. MaC2H2-IDD modulates fruit softening by activating the promoter activity of starch (MaBAM3, MaBAM6, MaBAM8, MaAMY3, and MaISA2) and cell wall (MaEXP-A2, MaEXP-A8, MaSUR14-like, and MaGLU22-like) degradation genes. DLR, Y1H, EMSA, and ChIP-qPCR assays validated the expression regulation. MaC2H2-IDD interacts with MaEBF1, enhancing the regulation of MaC2H2-IDD to MaAMY3, MaEXP-A2, and MaGLU22-like. Overexpressing/silencing MaC2H2-IDD in banana and tomato fruit altered the transcript levels of the cell wall and starch (CWS) degradation genes. Several differentially expressed genes (DEGs) were authenticated between the overexpression and control fruit. The DEGs mainly enriched biosynthesis of secondary metabolism, amino sugar and nucleotide sugar metabolism, fructose and mannose metabolism, starch and sucrose metabolism, and plant hormones signal transduction. Overexpressing MaC2H2-IDD also upregulated protein levels of MaEBF1. MaEBF1 does not ubiquitinate or degrade MaC2H2-IDD. These data indicate that MaC2H2-IDD is a new regulator of CWS degradation in "Fenjiao" banana and cooperates with MaEBF1 to modulate fruit softening, which also involves the cold softening disorder.


Asunto(s)
Respuesta al Choque por Frío , Frutas , Regulación de la Expresión Génica de las Plantas , Musa , Proteínas de Plantas , Musa/genética , Musa/metabolismo , Musa/fisiología , Frutas/genética , Frutas/metabolismo , Frutas/fisiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío/genética , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Plantas Modificadas Genéticamente , Pared Celular/metabolismo , Almidón/metabolismo
5.
Plant Physiol ; 195(3): 1893-1905, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546393

RESUMEN

Respiration provides energy, substrates, and precursors to support physiological changes of the fruit during climacteric ripening. A key substrate of respiration is oxygen that needs to be supplied to the fruit in a passive way by gas transfer from the environment. Oxygen gradients may develop within the fruit due to its bulky size and the dense fruit tissues, potentially creating hypoxia that may have a role in the spatial development of ripening. This study presents a 3D reaction-diffusion model using tomato (Solanum lycopersicum) fruit as a test subject, combining the multiscale fruit geometry generated from magnetic resonance imaging and microcomputed tomography with varying respiration kinetics and contrasting boundary resistances obtained through independent experiments. The model predicted low oxygen levels in locular tissue under atmospheric conditions, and the oxygen level was markedly lower upon scar occlusion, aligning with microsensor profiling results. The locular region was in a hypoxic state, leading to its low aerobic respiration with high CO2 accumulation by fermentative respiration, while the rest of the tissues remained well oxygenated. The model further revealed that the hypoxia is caused by a combination of diffusion resistances and respiration rates of the tissue. Collectively, this study reveals the existence of the respiratory gas gradients and its biophysical causes during tomato fruit ripening, providing richer information for future studies on localized endogenous ethylene biosynthesis and fruit ripening.


Asunto(s)
Frutas , Oxígeno , Solanum lycopersicum , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Frutas/crecimiento & desarrollo , Frutas/fisiología , Oxígeno/metabolismo , Difusión , Modelos Biológicos , Respiración de la Célula , Imagen por Resonancia Magnética/métodos , Microtomografía por Rayos X
6.
Plant Physiol ; 195(2): 924-939, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38366641

RESUMEN

Far-red radiation affects many plant processes, including reproductive organ abortion. Our research aimed to determine the role of apical dominance in far-red light-induced flower and fruit abortion in sweet pepper (Capsicum annuum L.). We conducted several climate room experiments where plants were grown under white- or red-rich LED light, with or without additional far-red light. Additional far-red light enhanced apical dominance: it increased auxin levels in the apices of dominant shoots, and caused a greater difference in internode length and apical auxin levels between dominant and subordinate shoots. Additional far-red light stimulated fruit abortion in intact plants but not in decapitated plants, suggesting a crucial role of shoot apices in this effect. However, reducing basipetal auxin transport in the stems with N-1-naphthylphthalamic acid did not influence far-red light-stimulated fruit abortion, although auxin levels in the stem were largely reduced. Applying the synthetic auxin 1-naphthaleneacetic acid on decapitated apices did not influence fruit abortion. However, applying the auxin biosynthesis inhibitor yucasin to shoot apices reduced fruit abortion regardless of the light conditions, accompanied by slight shoot growth retardation. These findings suggest that the basipetal auxin stream does not mediate far-red light-stimulated fruit abortion. Far-red light-stimulated fruit abortion was associated with reduced sucrose accumulation and lower invertase activities in flowers. We suggest that under additional far-red light conditions, increased auxin levels in shoot apices promote fruit abortion probably through enhanced competition for assimilates between apices and flowers, which limits assimilate import into flowers.


Asunto(s)
Capsicum , Flores , Frutas , Ácidos Indolacéticos , Luz , Capsicum/crecimiento & desarrollo , Capsicum/fisiología , Capsicum/efectos de la radiación , Capsicum/metabolismo , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/efectos de la radiación , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Frutas/efectos de la radiación , Frutas/fisiología , Ácidos Indolacéticos/metabolismo , Luz Roja
7.
Ecol Lett ; 27(9): e14514, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39354913

RESUMEN

The efficient conversion of tissues into reproductive success is a crucial aspect affecting the evolution of life histories. Masting, the interannually variable and synchronous seed production in perennial plants, is a strategy that can enhance reproductive efficiency by mitigating seed predation and pollen limitation. However, evaluating benefits is insufficient to establish whether efficiency has improved, as such assessments neglect the associated costs of masting, particularly during the critical seed-to-seedling stage. We conducted a parentage analysis of seedlings and adults in a population of 209 Sorbus aucuparia trees, monitored over 23 years, providing pioneering documentation of the effects of masting on the fitness of individual trees beyond the seed stage. Our results show high costs of interannual variation that can be mitigated by high synchrony and reveal the existence of phenotypes that appear to reap the benefits of masting while avoiding its costs through regular reproduction.


Asunto(s)
Plantones , Sorbus , Plantones/crecimiento & desarrollo , Plantones/fisiología , Sorbus/fisiología , Reproducción , Semillas/crecimiento & desarrollo , Semillas/fisiología , Frutas/crecimiento & desarrollo , Frutas/fisiología
8.
BMC Plant Biol ; 24(1): 533, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38862876

RESUMEN

Dragon fruit (Selenicereus undatus), known for its captivating appearance and remarkable nutritional profile, has garnered considerable attention in recent years. Despite its popularity, there's a dearth of research on optimal conditions for seed germination and early growth stages such as seedling shoot length, which are crucial for optimal crop yield. This study aims to bridge this gap by evaluating various growing media's performance on dragon fruit germination and early growth stages. Dragon fruit seeds were obtained from local markets in Pakistan and evaluated in five different growing media: cocopeat, peat moss, sand, vermiculite, and compost. Germination parameters were observed for 45 days, including seed germination percentage, mean germination time, and mean daily germination percentage, among others while early growth was monitored for 240 days. Statistical analysis was conducted using ANOVA and Tukey's HSD test. Significant differences were found among the growing media regarding germination percentage, mean germination time, and mean daily germination. Vermiculite exhibited the highest germination rate (93.33%), while compost showed the least (70%). Peat moss and sand media facilitated rapid germination, while compost showed slower rates. Stem length was significantly influenced by the growth media, with compost supporting the longest stems. Vermiculite emerged as the most effective medium for dragon fruit seed germination, while compost showed slower but steady growth. These findings provide valuable insights for optimizing dragon fruit cultivation, aiding commercial growers and enthusiasts in achieving higher yields and quality. Further research could explore additional factors influencing dragon fruit growth and development.


Asunto(s)
Medios de Cultivo , Frutas , Germinación , Frutas/crecimiento & desarrollo , Frutas/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , Plantones/crecimiento & desarrollo , Cactaceae
9.
BMC Plant Biol ; 24(1): 441, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38778301

RESUMEN

BACKGROUND: Goji (Lycium barbarum L.) is a perennial deciduous shrub widely distributed in arid and semiarid regions of Northwest China. It is highly valued for its medicinal and functional properties. Most goji varieties are naturally self-incompatible, posing challenges in breeding and cultivation. Self-incompatibility is a complex genetic trait, with ongoing debates regarding the number of self-incompatible loci. To date, no genetic mappings has been conducted for S loci or other loci related to self-incompatibility in goji. RESULTS: We used genome resequencing to create a high-resolution map for detecting de novo single-nucleotide polymorphisms (SNP) in goji. We focused on 229 F1 individuals from self-compatible '13-19' and self-incompatible 'new 9' varieties. Subsequently, we conducted a quantitative trait locus (QTL) analysis on traits associated with self-compatibility in goji berries. The genetic map consisted of 249,327 SNPs distributed across 12 linkage groups (LGs), spanning a total distance of 1243.74 cM, with an average interval of 0.002 cM. Phenotypic data related to self-incompatibility, such as average fruit weight, fruit rate, compatibility index, and comparable compatibility index after self-pollination and geitonogamy, were collected for the years 2021-2022, as well as for an extra year representing the mean data from 2021 to 2022 (2021/22). A total of 43 significant QTL, corresponding to multiple traits were identified, accounting for more than 11% of the observed phenotypic variation. Notably, a specific QTL on chromosome 2 consistently appeared across different years, irrespective of the relationship between self-pollination and geitonogamy. Within the localization interval, 1180 genes were annotated, including Lba02g01102 (annotated as an S-RNase gene), which showed pistil-specific expression. Cloning of S-RNase genes revealed that the parents had two different S-RNase alleles, namely S1S11 and S2S8. S-genotype identification of the F1 population indicated segregation of the four S-alleles from the parents in the offspring, with the type of S-RNase gene significantly associated with self-compatibility. CONCLUSIONS: In summary, our study provides valuable insights into the genetic mechanism underlying self-compatibility in goji berries. This highlights the importance of further positional cloning investigations and emphasizes the importance of integration of marker-assisted selection in goji breeding programs.


Asunto(s)
Mapeo Cromosómico , Frutas , Lycium , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo , Lycium/genética , Lycium/fisiología , Frutas/genética , Frutas/fisiología , Autoincompatibilidad en las Plantas con Flores/genética , Fenotipo , China
10.
BMC Plant Biol ; 24(1): 486, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38822268

RESUMEN

BACKGROUND: Horsfieldia hainanensis Merr., an indicator species of China's humid tropical rainforests, is endangered due to difficulties with population regeneration. In this study, the biological characteristics and germination adaptability of the seeds were studied for the first time, in order to provide a basis for analyzing the causes of endangerment and strategies for the artificial cultivation of H. hainanensis. The effects of biological characteristics (population, arils, seed coat, seed weight, seed moisture content) and environmental factors (temperature, light, drought, substrate, burial depth) on seed germination and seedling growth of H. hainanensis were studied. RESULTS AND DISCUSSION: The fruits were found to be capsules containing seeds wrapped in a pericarp and fleshy aril, which provide protection and assist in seed dispersal, but also pose risks to the seeds, as the peel and fleshy aril can become moldy under high temperature and humidity conditions. There were significant differences in fruit morphology and germination characteristics among different populations, and the seed quality of populations in Niandian village, Daxin County, Chongzuo City, Guangxi Zhuang Autonomous Region was better. The arils significantly inhibited seed germination, the germination of large seeds was better, and seedling growth from medium seeds was superior. H. hainanensis seeds were sensitive to dehydration, and intolerant to drought and low temperature, which is typical of recalcitrant seeds. The seeds are suitable for germination on a moist substrate surface with good water retention and breathability at 30-35℃.


Asunto(s)
Especies en Peligro de Extinción , Germinación , Semillas , Germinación/fisiología , Semillas/crecimiento & desarrollo , Semillas/fisiología , China , Frutas/crecimiento & desarrollo , Frutas/fisiología , Plantones/crecimiento & desarrollo , Plantones/fisiología , Temperatura
11.
BMC Plant Biol ; 24(1): 814, 2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39210281

RESUMEN

BACKGROUND: Pollination is crucial to obtaining optimal blueberry yield and fruit quality. Despite substantial investments in seasonal beekeeping services, blueberry producers consistently report suboptimal pollinator visitation and fruit set in some cultivars. Flower morphology and floral rewards are among the key factors that have shown to contribute to pollinator attraction, however little is known about their relative importance for improving yield in the context of plant breeding. Clarifying the relationships between flower morphology, nectar reward content, pollinator recruitment, and pollination outcomes, as well as their genetic components, can inform breeding priorities for enhancing blueberry production. In the present study, we measured ten flower and nectar traits and indices of successful pollination, including fruit set, seed count, and fruit weight in 38 southern highbush blueberry genotypes. Additionally, we assessed pollinator visitation frequency and foraging behavior over two growing seasons. Several statistical models were tested to optimize the prediction of pollinator visitation and pollination success, including partial least squares, BayesB, ridge-regression, and random forest. RESULTS: Random forest models obtained high predictive abilities for pollinator visitation frequency, with values of 0.54, 0.52, and 0.66 for honey bee, bumble bee, and total pollinator visits, respectively. The BayesB model provided the most consistent prediction of fruit set, fruit weight, and seed set, with predictive abilities of 0.07, -0.08, and 0.42, respectively. Variable importance analysis revealed that genotypic differences in nectar volume had the greatest impact on honey bee and bumble bee visitation, although preferences for flower morphological traits varied depending on the foraging task. Flower density was a major driving factor attracting nectar-foraging honey bees and bumble bees, while pollen-foraging bumble bees were most influenced by flower accessibility, specifically corolla length and the length-to-width ratio. CONCLUSIONS: Honey bees comprised the majority of pollinator visits, and were primarily influenced by nectar volume and flower density. Corolla length and the length-to-width ratio were also identified as the main predictors of fruit set, fruit weight, seed count, as well as pollen-foraging bumble bee visits, suggesting that these bees and their foraging preferences may play a pivotal role in fruit production. Moderate to high narrow-sense heritability values (ranging from 0.30 to 0.77) were obtained for all floral traits, indicating that selective breeding efforts may enhance cultivar attractiveness to pollinators.


Asunto(s)
Arándanos Azules (Planta) , Flores , Genotipo , Néctar de las Plantas , Polinización , Polinización/fisiología , Animales , Arándanos Azules (Planta)/fisiología , Arándanos Azules (Planta)/genética , Flores/fisiología , Flores/anatomía & histología , Flores/genética , Abejas/fisiología , Variación Genética , Fitomejoramiento , Frutas/fisiología , Frutas/genética
12.
BMC Plant Biol ; 24(1): 574, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890583

RESUMEN

BACKGROUND: Fruit cracking impacts the quality of sweet cherry, significantly affecting its marketability due to increased susceptibility to injury, aesthetic flaws, and susceptibility to pathogens. The effect of 1% biofilm (Parka™) application regimes on fruit cracking and other quality parameters in the '0900 Ziraat' cherry cultivar was investigated in this study. Fruit sprayed with water were served as control (U1). Fruit treated only once with biofilm three, two and one week before the commercial harvest were considered as U2, U3 and U4, respectively. Fruit treated with biofilm three, two, and one week before harvest were considered as U5; three and two week before harvest as U6; two and one week before harvest as U7; and fruit treated three and one week before harvest as U8. RESULTS: In both measurement periods, the lower cracking index was obtained in biofilm-treated sweet cherry fruit. However, the firmness of biofilm-treated fruit was higher than that of the control fruit. The lowest respiration rate was observed in U7, while the highest weight was recorded in U4 and U5 than the control. The biofilm application decreased fruit coloration. The biofilm application also increased the soluble solids content of the fruit. The U2, U3 and U4 applications at harvest showed higher titratable acidity than the control. In both measurement periods, the vitamin C content of the U2, U5, U6, U7 and U8 applications was found to be higher than that of the control. The total monomeric anthocyanin of the U3 and U8 applications was higher than that of the control. Furthermore, the antioxidant activity of the U2, U3 and U5 in the DPPH, and the U7 and U8 in FRAP were measured higher thanthat of the control. CONCLUSIONS: The application of biofilms has the potential to mitigate fruit cracking, prolong postharvest life of sweet cherries, and enhance fruit firmness.


Asunto(s)
Biopelículas , Frutas , Prunus avium , Frutas/microbiología , Frutas/fisiología , Biopelículas/efectos de los fármacos , Prunus avium/fisiología , Prunus avium/efectos de los fármacos , Ácido Ascórbico/metabolismo
13.
Planta ; 260(3): 64, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073466

RESUMEN

MAIN CONCLUSION: We identified tomato leaf cuticle and root suberin monomers that play a role in the response to nitrogen deficiency and salinity stress and discuss their potential agronomic value for breeding. The plant cuticle plays a key role in plant-water relations, and cuticle's agronomic value in plant breeding programs is currently under investigation. In this study, the tomato cutin mutant cd1, with altered fruit cuticle, was physiologically characterized under two nitrogen treatments and three salinity levels. We evaluated leaf wax and cutin load and composition, root suberin, stomatal conductance, photosynthetic rate, partial factor productivity from applied N, flower and fruit number, fruit size and cuticular transpiration, and shoot and root biomass. Both nitrogen and salinity treatments altered leaf cuticle and root suberin composition, regardless of genotype (cd1 or M82). Compared with M82, the cd1 mutant showed lower shoot biomass and reduced partial factor productivity from applied N under all treatments. Under N depletion, cd1 showed altered leaf wax composition, but was comparable to the WT under sufficient N. Under salt treatment, cd1 showed an increase in leaf wax and cutin monomers. Root suberin content of cd1 was lower than M82 under control conditions but comparable under higher salinity levels. The tomato mutant cd1 had a higher fruit cuticular transpiration rate, and lower fruit surface area compared to M82. These results show that the cd1 mutation has complex effects on plant physiology, and growth and development beyond cutin deficiency, and offer new insights on the potential agronomic value of leaf cuticle and root suberin for tomato breeding.


Asunto(s)
Lípidos de la Membrana , Mutación , Nitrógeno , Hojas de la Planta , Raíces de Plantas , Salinidad , Solanum lycopersicum , Solanum lycopersicum/genética , Solanum lycopersicum/fisiología , Solanum lycopersicum/metabolismo , Nitrógeno/metabolismo , Lípidos de la Membrana/metabolismo , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Lípidos , Frutas/genética , Frutas/crecimiento & desarrollo , Frutas/efectos de los fármacos , Frutas/fisiología , Fotosíntesis , Transpiración de Plantas , Estrés Salino/genética , Ceras/metabolismo , Biomasa , Flores/genética , Flores/fisiología , Flores/crecimiento & desarrollo , Flores/efectos de los fármacos
14.
New Phytol ; 241(6): 2540-2557, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38263687

RESUMEN

Some essential components of fleshy fruits are dependent on photosynthetic activity and carbohydrate metabolism. Nevertheless, the regulatory mechanisms linking chlorophyll and carbohydrate metabolism remain partially understood. Here, we uncovered the role of SlGRAS9 and SlZHD17 transcription factors in controlling chlorophyll and carbohydrate accumulation in tomato fruit. Knockout or knockdown of SlGRAS9 or SlZHD17 resulted in marked increase in chlorophyll content, reprogrammed chloroplast biogenesis and enhanced accumulation of starch and soluble sugars. Combined genome-wide transcriptomic profiling and promoter-binding experiments unveiled a complex mechanism in which the SlGRAS9/SlZHD17 regulatory module modulates the expression of chloroplast and sugar metabolism either via a sequential transcriptional cascade or through binding of both TFs to the same gene promoters, or, alternatively, via parallel pathways where each of the TFs act on different target genes. For instance, the regulation of SlAGPaseS1 and SlSUS1 is mediated by SlZHD17 whereas that of SlVI and SlGLK1 occurs only through SlGRAS9 without the intervention of SlZHD17. Both SlGRAS9 and SlZHD17 can also directly bind the promoter of SlPOR-B to regulate its expression. Taken together, our findings uncover two important regulators acting synergistically to manipulate chlorophyll and carbohydrate accumulation and provide new potential breeding targets for improving fruit quality in fleshy fruits.


Asunto(s)
Clorofila , Solanum lycopersicum , Clorofila/metabolismo , Solanum lycopersicum/genética , Frutas/fisiología , Fitomejoramiento , Metabolismo de los Hidratos de Carbono/genética , Carbohidratos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas
15.
Plant Physiol ; 193(1): 855-873, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37279567

RESUMEN

Banana (Musa spp.) fruits, as typical tropical fruits, are cold sensitive, and lower temperatures can disrupt cellular compartmentalization and lead to severe browning. How tropical fruits respond to low temperature compared to the cold response mechanisms of model plants remains unknown. Here, we systematically characterized the changes in chromatin accessibility, histone modifications, distal cis-regulatory elements, transcription factor binding, and gene expression levels in banana peels in response to low temperature. Dynamic patterns of cold-induced transcripts were generally accompanied by concordant chromatin accessibility and histone modification changes. These upregulated genes were enriched for WRKY binding sites in their promoters and/or active enhancers. Compared to banana peel at room temperature, large amounts of banana WRKYs were specifically induced by cold and mediated enhancer-promoter interactions regulating critical browning pathways, including phospholipid degradation, oxidation, and cold tolerance. This hypothesis was supported by DNA affinity purification sequencing, luciferase reporter assays, and transient expression assay. Together, our findings highlight widespread transcriptional reprogramming via WRKYs during banana peel browning at low temperature and provide an extensive resource for studying gene regulation in tropical plants in response to cold stress, as well as potential targets for improving cold tolerance and shelf life of tropical fruits.


Asunto(s)
Conservación de Alimentos , Frutas , Musa , Musa/genética , Musa/fisiología , Frutas/fisiología , Frío , Histonas/metabolismo , Cromatina , Proteínas de Plantas/metabolismo , Elementos de Facilitación Genéticos , Código de Histonas , Factores de Transcripción/metabolismo , Lípidos de la Membrana/metabolismo
16.
J Exp Bot ; 75(14): 4300-4313, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38660967

RESUMEN

Olive (Olea europaea L.) is an important Mediterranean tree species with a longstanding history of cultivation, boasting a diverse array of local cultivars. While traditional olive orchards are valued for their cultural and aesthetic significance, they often face economic sustainability challenges in the modern context. The success of both traditional and newly introduced cultivars (e.g. those obtained by cross-breeding) is hindered by self-incompatibility, a prevalent issue for this species that results in low fruit set when limited genetic diversity is present. Further, biological, environmental, and agronomic factors have been shown to interlink in shaping fertilization patterns, hence impacting on the final yield. Climatic conditions during pollination, such as excessive rainfall or high temperatures, can further exacerbate the problem. In this work, we provide an overview of the various factors that trigger the phenomenon of suboptimal fruit set in olive trees. This work provides a comprehensive understanding of the interplay among these factors, shedding light on potential mechanisms and pathways that contribute to the observed outcomes in the context of self-incompatibility in olive.


Asunto(s)
Olea , Olea/fisiología , Polinización , Reproducción , Frutas/fisiología , Frutas/crecimiento & desarrollo , Frutas/genética , Ambiente , Autoincompatibilidad en las Plantas con Flores
17.
Ann Bot ; 134(2): 311-324, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38712800

RESUMEN

BACKGROUND AND AIMS: The deceptive strategies by which orchids are pollinated and how these are capable of attracting pollinators remain understudied with regard to their implications for plant fitness. Despite their ecological importance, limited investigations have been conducted on sexual deception and shelter mimicry in orchid species, making this a compelling avenue in orchid biology research. To expand the knowledge of these reproductive mechanisms, we studied the pollination of Serapias lingua and S. parviflora in co-occurring and isolated sites in the Balearic Islands (Spain), further accentuated by the presence of a hybrid, indicating shared pollinators. METHODS: We employed bagging and hand pollination experiments to examine the reproductive biology of the two species. Furthermore, we evaluated the influence of phenotypical and ecological factors on reproductive success, including biometric measurements, reproductive performance and neighbourhood diversity (co-flowering and pollinator communities). KEY RESULTS: Reproductive mechanisms between these two orchid species exhibit substantial disparities. Serapias lingua relies primarily on insect-mediated pollination, while S. parviflora demonstrates self-reproduction capacity. Although events of open pollination are rare, hybridization occurs predominantly when S. lingua is the pollen donor. Fruit set in S. parviflora was positively correlated with plant height, while in S. lingua it was negatively associated with flower size. The coexistence of the two species positively affected pollinium removal in S. parviflora, but did not exert an influence on reproductive traits in S. lingua. Overall, biometric parameters were diminished in isolated compared with co-occurring sites. At the community level, the increased diversity of co-flowering species in the vicinity exhibited an inhibitory effect on pollinium removal in S. parviflora. CONCLUSIONS: Under a context of pollinator loss or phenological mismatch between pollinator presence and flowering, the selfing capacity of S. parviflora would guarantee reproduction whereas S. lingua survival would be compromised. Furthers studies are needed to assess the effects of phenotypical and ecological factors on reproductive success of S. lingua in pollinator-decline scenarios.


Asunto(s)
Flores , Orchidaceae , Polinización , Reproducción , Polinización/fisiología , Orchidaceae/fisiología , Reproducción/fisiología , Animales , Flores/fisiología , España , Insectos/fisiología , Frutas/fisiología , Ecosistema , Especificidad de la Especie , Polen/fisiología
18.
Ann Bot ; 134(2): 325-336, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38720433

RESUMEN

BACKGROUND AND AIMS: There are intrinsic conflicts between signalling to mutualists and concealing (camouflaging) from antagonists. Like animals, plants also use camouflage as a defence against herbivores. However, this can potentially reduce their attractiveness to pollinators. METHODS: Using Fritillaria delavayi, an alpine camouflaged plant with inter-population floral colour divergence, we tested the influence of floral trait differences on reproduction. We conducted pollination experiments, measured floral morphological characteristics, estimated floral colours perceived by pollinators, analysed floral scent and investigated reproductive success in five populations. KEY RESULTS: We found that the reproduction of F. delavayi depends on pollinators. Under natural conditions, a flower-camouflaged population had 100 % fruit set and similar seed set to three out of four yellow-flowered populations. Bumblebees are important pollinators in the visually conspicuous yellow-flowered populations, whereas flies are the only pollinator in the flower-camouflaged population, visiting flowers more frequently than bumblebees. The camouflaged flowers cannot be discriminated from the rock background as perceived by pollinators, but may be located by flies through olfactory cues. CONCLUSIONS: Collectively, our results demonstrate that the flower-camouflaged population has different reproductive traits from the visually conspicuous yellow-flowered populations. A pollinator shift from bumblebees to flies, combined with high visitation frequency, compensates for the attractiveness disadvantage in camouflaged plants.


Asunto(s)
Flores , Fritillaria , Polinización , Reproducción , Polinización/fisiología , Animales , Flores/fisiología , Flores/anatomía & histología , Reproducción/fisiología , Abejas/fisiología , Fritillaria/fisiología , Dípteros/fisiología , Color , Frutas/fisiología , Mimetismo Biológico/fisiología , Pigmentación/fisiología
19.
Ann Bot ; 133(7): 969-982, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38366557

RESUMEN

BACKGROUND AND AIMS: Plant water status is important for fruit development, because many fleshy fruits contain large amounts of water. However, there is no information on vascular flows of Persea americana 'Hass' avocado. The aims of this research were to explore the impact of drought stress on the water relationships of the 'Hass' avocado plant and its fruit growth. METHODS: Well-watered and water-stressed 'Hass' avocado plants were compared. Over 4 weeks, water flows through the shoot and fruit pedicel were monitored using external sap flow gauges. Fruit diameter was monitored using linear transducers, and stomatal conductance (gs), photosynthesis (A) and leaf and stem water potentials (Ñ°leaf and Ñ°stem) were measured to assess the response of the plants to water supply. KEY RESULTS: In well-watered conditions, the average water inflow to the shoot was 72 g day-1. Fruit water inflow was 2.72 g day-1, but there was water loss of 0.37 g day-1 caused by the outflow (loss back into the tree) through the vascular tissues and 1.06 g day-1 from the fruit skin. Overall, fruit volume increased by 1.4 cm3 day-1. In contrast, water flow into fruit of water-stressed plants decreased to 1.88 g day-1, with the outflow increasing to 0.61 g day-1. As a result, increases in fruit volume were reduced to 0.4 cm3 day-1. The values of A, gs and sap flow to shoots were also reduced during drought conditions. Changes in the hourly time-courses of pedicel sap flow, fruit volume and stem water potential during drought suggest that the stomatal response prevented larger increases in outflow from the fruit. Following re-watering, a substantial recovery in growth rate was observed. CONCLUSIONS: In summary, a reduction in growth of avocado fruit was observed with induced water deficit, but the isohydric stomatal behaviour of the leaves helped to minimize negative changes in water balance. Also, there was substantial recovery after re-watering, hence the short-term water stress did not decrease avocado fruit size. Negative impacts might appear if the drought treatment were prolonged.


Asunto(s)
Sequías , Frutas , Persea , Fotosíntesis , Estomas de Plantas , Agua , Persea/fisiología , Persea/crecimiento & desarrollo , Estomas de Plantas/fisiología , Frutas/fisiología , Frutas/crecimiento & desarrollo , Agua/fisiología , Agua/metabolismo , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Transpiración de Plantas/fisiología , Tallos de la Planta/fisiología , Tallos de la Planta/crecimiento & desarrollo , Tallos de la Planta/anatomía & histología , Brotes de la Planta/fisiología , Brotes de la Planta/crecimiento & desarrollo , Estrés Fisiológico/fisiología , Deshidratación
20.
Am J Bot ; 111(5): e16329, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38708705

RESUMEN

PREMISE: Gynodioecy is a rare sexual system in which two genders (sensu Lloyd, 1980), cosexuals and females, coexist. To survive, female plants must compensate for their lack of siring capacity and male attractiveness. In European chestnut (Castanea sativa), an outcrossing tree, self-pollination reduces fruit set in cosexual individuals because of late-acting self-incompatibility and early inbreeding depression. Could this negative sexual interaction explain the presence of females in this species? METHODS: We studied gender variation in wild populations of European chestnut. In addition, we compared fruit set (the proportion of flowers giving fruits) and other key female fitness components as well as reproductive allocation between genders. We then performed emasculation experiments in cosexual trees, by removing nectar-producing fertile male inflorescences. We also removed sterile but nectar-producing male inflorescences from female trees, as a control. RESULTS: We found a highly variable proportion of male-sterile individuals in the wild in European chestnut. In the experimental plot, trees from each gender had similar size, flower density, and burr set, but different fruit set. Removing nectar-producing male inflorescences from branches or entire trees increased fruit set in cosexual but not in female trees. CONCLUSIONS: These results show that self-pollination impairs fruit set in cosexual trees. Female trees avoid these problems as they do not produce pollen but continue to attract pollinators thanks to their rewarding male-sterile inflorescences, resulting in a much higher fruit set than in cosexuals. This demonstrates that even outcrossed plants can benefit from the cessation of self-pollination, to the point that unisexuality can evolve.


Asunto(s)
Fagaceae , Frutas , Polinización , Fagaceae/fisiología , Frutas/fisiología , Flores/fisiología , Árboles/fisiología , Autoincompatibilidad en las Plantas con Flores , Reproducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA