Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.929
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Cell Sci ; 136(3)2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36601895

RESUMEN

Cyclic guanosine 3',5'-monophosphate (cGMP) is a ubiquitous important second messenger involved in various physiological functions. Here, intracellular cGMP (cGMPi) was visualized in chemotactic Dictyostelium cells using the fluorescent probe, D-Green cGull. When wild-type cells were stimulated with a chemoattractant, fluorescence transiently increased, but guanylate cyclase-null cells did not show a change in fluorescence, suggesting that D-Green cGull is a reliable indicator of cGMPi. In the aggregation stage, the responses of cGMPi propagated in a wave-like fashion from the aggregation center. The oscillation of the cGMPi wave was synchronized almost in phase with those of other second messengers, such as the intracellular cAMP and Ca2+. The phases of these waves preceded those of the oscillations of actomyosin and cell velocity, suggesting that these second messengers are upstream of the actomyosin and chemotactic migration. An acute increase in cGMPi concentration released from membrane-permeable caged cGMP induced a transient shuttle of myosin II between the cytosol and cell cortex, suggesting a direct link between cGMP signaling and myosin II dynamics.


Asunto(s)
Dictyostelium , Dictyostelium/fisiología , Quimiotaxis/fisiología , Actomiosina , GMP Cíclico/farmacología , GMP Cíclico/fisiología , Miosina Tipo II
2.
Platelets ; 35(1): 2313359, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38353233

RESUMEN

Cyclic guanosine monophosphate (cGMP) is a second messenger produced by the NO-sensitive guanylyl cyclase (NO-GC). The NO-GC/cGMP pathway in platelets has been extensively studied. However, its role in regulating the biomechanical properties of platelets has not yet been addressed and remains unknown. We therefore investigated the stiffness of living platelets after treatment with the NO-GC stimulator riociguat or the NO-GC activator cinaciguat using scanning ion conductance microscopy (SICM). Stimulation of human and murine platelets with cGMP-modulating drugs decreased cellular stiffness and downregulated P-selectin, a marker for platelet activation. We also quantified changes in platelet shape using deep learning-based platelet morphometry, finding that platelets become more circular upon treatment with cGMP-modulating drugs. To test for clinical applicability of NO-GC stimulators in the context of increased thrombogenicity risk, we investigated the effect of riociguat on platelets from human immunodeficiency virus (HIV)-positive patients taking abacavir sulfate (ABC)-containing regimens. Our results corroborate a functional role of the NO-GC/cGMP pathway in platelet biomechanics, indicating that biomechanical properties such as stiffness or shape could be used as novel biomarkers in clinical research.


Increased platelet activation and development of thrombosis has been linked to a dysfunctional NO-GC/cGMP signaling pathway. How this pathway affects platelet stiffness, however, has not been studied yet. For the first time, we used novel microscopy techniques to investigate stiffness and shape of platelets in human and murine blood samples treated with cGMP modifying drugs. Stiffness contains information about biomechanical properties of the cytoskeleton, and shape quantifies the spreading behavior of platelets. We showed that the NO-GC/cGMP signaling pathway affects platelet stiffness, shape, and activation in human and murine blood. HIV-positive patients are often treated with medication that may disrupt the NO-GC/cGMP signaling pathway, leading to increased cardiovascular risk. We showed that treatment with cGMP-modifying drugs altered platelet shape and aggregation in blood from HIV-negative volunteers but not from HIV-positive patients treated with medication. Our study suggests that platelet stiffness and shape can be biomarkers for estimating cardiovascular risk.


Asunto(s)
Plaquetas , Transducción de Señal , Humanos , Ratones , Animales , Fenómenos Biomecánicos , Plaquetas/metabolismo , Guanilato Ciclasa/metabolismo , Guanilato Ciclasa/farmacología , Activación Plaquetaria , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Óxido Nítrico/metabolismo , Agregación Plaquetaria
3.
Toxicol Ind Health ; 40(1-2): 23-32, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37921628

RESUMEN

This toxicology study was conducted to assess the impact of formaldehyde, a common air pollutant found in Chinese gymnasiums, on the brain function of athletes. In this research, a total of 24 Balb/c male mice of SPF-grade were divided into four groups, each consisting of six mice. The mice were exposed to formaldehyde at different concentrations, including 0 mg/m3, 0.5 mg/m3, 3.0 mg/m3, and 3.0 mg/m3 in combination with an injection of L-NMMA (NG-monomethyl-L-arginine), which is a nitric oxide synthase antagonist. Following a one-week test period (8 h per day, over 7 days), measurements of biomarkers related to the nitric oxide (NO)/cGMP-cAMP signaling pathway were carried out on the experimental animals post-treatment. The study found that: (1) Exposure to formaldehyde can lead to brain cell apoptosis and neurotoxicity; (2) Additionally, formaldehyde exposure was found to alter the biomarkers of the NO/cGMP-cAMP signaling pathway, with some changes being statistically significant (p < 0.05 or p < 0.01); (3) The use of L-NMMA, an antagonist of the NO/cGMP-cAMP signaling pathway, was found to prevent these biomarker changes and had a protective effect on brain cells. The study suggests that the negative impact of formaldehyde on the brain function of mice is linked to the regulation of the NO/cGMP-cAMP signaling pathway.


Asunto(s)
GMP Cíclico , Óxido Nítrico , Hipersensibilidad Respiratoria , Humanos , Masculino , Ratones , Animales , omega-N-Metilarginina/farmacología , Óxido Nítrico/metabolismo , Ratones Endogámicos BALB C , GMP Cíclico/farmacología , Formaldehído/toxicidad , Transducción de Señal , Encéfalo/metabolismo , Biomarcadores
4.
Immunity ; 40(3): 329-41, 2014 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-24560620

RESUMEN

Stimulator of interferon genes (STING, also named MITA, MYPS, or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich-repeat-containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP), and DNA viruses. NLRC3 associated with both STING and TBK1 and impeded STING-TBK1 interaction and downstream type I interferon production. By using purified recombinant proteins, we found NLRC3 to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3(-/-) mice exhibited enhanced innate immunity and reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus, and c-di-GMP.


Asunto(s)
ADN/inmunología , Inmunidad Innata , Péptidos y Proteínas de Señalización Intercelular/genética , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Proteínas de la Membrana/metabolismo , Transducción de Señal , Animales , Línea Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Citocinas/biosíntesis , Herpes Simple/inmunología , Herpes Simple/metabolismo , Herpesvirus Humano 1/fisiología , Humanos , Péptidos y Proteínas de Señalización Intercelular/deficiencia , Interferón Tipo I/biosíntesis , Ratones , Ratones Noqueados , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Transporte de Proteínas
5.
PLoS Biol ; 18(10): e3000877, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33048924

RESUMEN

Bacteriophages (phages) are critical players in the dynamics and function of microbial communities and drive processes as diverse as global biogeochemical cycles and human health. Phages tend to be predators finely tuned to attack specific hosts, even down to the strain level, which in turn defend themselves using an array of mechanisms. However, to date, efforts to rapidly and comprehensively identify bacterial host factors important in phage infection and resistance have yet to be fully realized. Here, we globally map the host genetic determinants involved in resistance to 14 phylogenetically diverse double-stranded DNA phages using two model Escherichia coli strains (K-12 and BL21) with known sequence divergence to demonstrate strain-specific differences. Using genome-wide loss-of-function and gain-of-function genetic technologies, we are able to confirm previously described phage receptors as well as uncover a number of previously unknown host factors that confer resistance to one or more of these phages. We uncover differences in resistance factors that strongly align with the susceptibility of K-12 and BL21 to specific phage. We also identify both phage-specific mechanisms, such as the unexpected role of cyclic-di-GMP in host sensitivity to phage N4, and more generic defenses, such as the overproduction of colanic acid capsular polysaccharide that defends against a wide array of phages. Our results indicate that host responses to phages can occur via diverse cellular mechanisms. Our systematic and high-throughput genetic workflow to characterize phage-host interaction determinants can be extended to diverse bacteria to generate datasets that allow predictive models of how phage-mediated selection will shape bacterial phenotype and evolution. The results of this study and future efforts to map the phage resistance landscape will lead to new insights into the coevolution of hosts and their phage, which can ultimately be used to design better phage therapeutic treatments and tools for precision microbiome engineering.


Asunto(s)
Bacteriófagos/fisiología , Escherichia coli/virología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/efectos de los fármacos , Vías Biosintéticas/efectos de los fármacos , Sistemas CRISPR-Cas/genética , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , ADN/genética , Regulación hacia Abajo/efectos de los fármacos , Regulación hacia Abajo/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Genes Esenciales , Genoma Bacteriano , Mutación/genética , Fenotipo , Reproducibilidad de los Resultados , Supresión Genética
6.
Cryobiology ; 110: 18-23, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36649914

RESUMEN

Rewarming from accidental hypothermia could be complicated by acute cardiac dysfunction but providing supportive pharmacotherapy at low core temperatures is challenging. Several pharmacological strategies aim to improve cardiovascular function by increasing cAMP in cardiomyocytes as well as cAMP and cGMP levels in vascular smooth muscle, but it is not clear what effects temperature has on cellular elimination of cAMP and cGMP. We therefore studied the effects of differential temperatures from normothermia to deep hypothermia (37 °C-20 °C) on cAMP levels in embryonic H9c2 cardiac cells and elimination of cAMP and cGMP by PDE-enzymes and ABC-transporter proteins. Our experiments showed significant elevation of intracellular cAMP in H9c2-cells at 30 °C but not 20 °C. Elimination of both cAMP and cGMP through ABC transport-proteins and PDE-enzymes showed a temperature dependent reduction. Accordingly, the increased cardiomyocyte cAMP-levels during moderate hypothermia appears an effect of preserved production and reduced elimination at 30 °C. This correlates with earlier in vivo findings of a positive inotropic effect of moderate hypothermia.


Asunto(s)
Hipotermia , Humanos , AMP Cíclico/metabolismo , Criopreservación/métodos , Recalentamiento , Miocitos Cardíacos/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacología
7.
Gen Physiol Biophys ; 42(6): 469-478, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37855238

RESUMEN

This study aimed to examine the endothelial dependence of vasodilation induced by the phosphodiesterase inhibitor theophylline in isolated rat thoracic aortas and elucidate the underlying mechanism, with emphasis on endothelial nitric oxide (NO). The effects of various inhibitors and endothelial denudation on theophylline-induced vasodilation, and the effect of theophylline on vasodilation induced by NO donor sodium nitroprusside, cyclic guanosine monophosphate (cGMP) analog bromo-cGMP, and ß-agonist isoproterenol in endothelium-denuded aorta were examined. The effects of theophylline and sodium nitroprusside on cGMP formation were also examined. We examined the effect of theophylline on endothelial nitric oxide synthase (eNOS) phosphorylation and intracellular calcium levels. Theophylline-induced vasodilation was greater in endothelium-intact aortas than that in endothelium-denuded aortas. The NOS inhibitor, NW-nitro-L-arginine methyl ester; non-specific guanylate cyclase (GC) inhibitor, methylene blue; and NO-sensitive GC inhibitor, 1H-[1,2,4]oxadiazolo[4,3-a] quinoxalin-1-one inhibited theophylline-induced vasodilation in endothelium-intact aortas. Theophylline increased the vasodilation induced by sodium nitroprusside, bromo-cGMP, and isoproterenol. Theophylline increased cGMP formation in endothelium-intact aortas, and sodium nitroprusside-induced cGMP formation in endothelium-denuded aortas. Moreover, theophylline increased stimulatory eNOS (Ser1177) phosphorylation and endothelial calcium levels, but decreased the phosphorylation of inhibitory eNOS (Thr495). These results suggested that theophylline-induced endothelium-dependent vasodilation was mediated by increased endothelial NO release and phosphodiesterase inhibition.


Asunto(s)
Óxido Nítrico , Vasodilatación , Ratas , Animales , Teofilina/farmacología , Isoproterenol/farmacología , Nitroprusiato/farmacología , Hidrolasas Diéster Fosfóricas/farmacología , Calcio , Aorta Torácica , Aorta , Óxido Nítrico Sintasa de Tipo III , GMP Cíclico/farmacología , GMP Cíclico/fisiología , Endotelio Vascular
8.
J Cell Biochem ; 123(12): 2030-2043, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36125973

RESUMEN

Cilostamide, a phosphodiesterase 3A (Pde3A) inhibitor, is known to increase intraoocyte cyclic adenosine monophosphate (cAMP) level which is involved in sustaining meiotic arrest of the oocytes. To explore the mechanisms involved in the cilostamide-mediated meiotic arrest of the oocytes, the present study describes the effects of cilostamide on cAMP level and related factors involved in maturation of the oocytes at its different meiotic stages; diplotene, metaphase I (MI) and metaphase II (MII). The oocytes from these three stages were collected from rat ovary and incubated with 10 µM cilostamide for 3 h in CO2 incubator. The levels of cAMP, cyclic guanosine monophosphate (cGMP) and the key players of maintaining meiotic arrest during oocyte maturation; Emi2, Apc, Cyclin B1, and Cdk1, were analyzed in diplotene, MI and MII stages. Pde3A was found to be expressed at all three stages but with the lowest level in MI oocyte. As compared to the control sets, the cAMP concentration was found to be highest in MII whereas cGMP was highest in the diplotene stage of cilostamide-treated group. The treated group showed declined reactive oxygen species level as compared with the control counterparts. Relatively increased levels of the Emi2, Cyclin B1, and phosphorylated thr161 of Cdk1 versus declined levels of phosphorylated thr14/tyr15 of Cdk1 in diplotene and MII stage oocytes are known to be involved in maintaining meiotic arrest and all these factors were found to undergo similar pattern of change due to the treatment with cilostamide. The findings thus suggest that cilostamide treatment promotes meiotic arrest by Pde3A inhibition led increase of both cAMP and cGMP level vis-a-vis modulation of the related regulatory factors such as Emi2, CyclinB1, and phosphorylated status of Cdk1 in diplotene and MII stage oocytes. Such a mechanism of meiotic arrest could allow the oocyte to prepare itself for meiotic maturation and thereby to improve oocyte quality.


Asunto(s)
Factor Promotor de Maduración , Inhibidores de Fosfodiesterasa , Femenino , Ratas , Animales , Ciclina B1 , Inhibidores de Fosfodiesterasa/farmacología , Meiosis , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3 , Oocitos , AMP Cíclico/farmacología , GMP Cíclico/farmacología , Adenosina Monofosfato/farmacología
9.
BMC Microbiol ; 22(1): 176, 2022 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804301

RESUMEN

BACKGROUND: Staphylococcus aureus is a leading cause for morbidity and mortality associated with skin and burn wound infections. Therapeutic options for methicillin-resistant S. aureus (MRSA) have dwindled and therefore alternative treatments are urgently needed. In this study, the immuno-stimulating and anti-MRSA effects of cyclic di-guanosine monophosphate (c-di-GMP), a uniquely bacterial second messenger and immuno-modulator, were investigated in HaCaT human epidermal keratinocytes and a murine skin wound infection model. RESULTS: Stimulation of HaCaT cells with 125 µM c-di-GMP for 12 h prior to MRSA challenge resulted in a 20-fold reduction in bacterial colonization compared with untreated control cells, which was not the result of a direct c-di-GMP toxic effect, since bacterial viability was not affected by this dose in the absence of HaCaT cells. C-di-GMP-stimulated or MRSA-challenged HaCaT cells displayed enhanced secretion of the antimicrobial peptides human ß-defensin 1 (hBD-1), hBD-2, hBD-3 and LL-37, but for hBD1 and LL-37 the responses were additive in a c-di-GMP-dose-dependent manner. Secretion of the chemokines CXCL1 and CXCL8 was also elevated after stimulation of HaCaT cells with lower c-di-GMP doses and peaked at a dose of 5 µM. Finally, pre-treatment of mice with a 200 nmol dose of c-di-GMP 24 h before a challenge with MRSA in skin wound infection model resulted in a major reduction (up to 1,100-fold by day 2) in bacterial CFU counts recovered from challenged skin tissue sections compared PBS-treated control animals. Tissue sections displayed inflammatory cell infiltration and enhanced neutrophil influx in the c-di-GMP pre-treated animals, which might account for the reduced ability of MRSA to colonize c-di-GMP pre-treated mice. CONCLUSIONS: These results demonstrate that c-di-GMP is a potent immuno-modulator that can stimulate anti-MRSA immune responses in vivo and might therefore be a suitable alternative prophylactic or therapeutic agent for MRSA skin or burn wound infections.


Asunto(s)
Adyuvantes Inmunológicos , GMP Cíclico/análogos & derivados , Inmunidad Innata , Staphylococcus aureus Resistente a Meticilina , Infecciones Cutáneas Estafilocócicas , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Animales , Quemaduras/complicaciones , GMP Cíclico/farmacología , GMP Cíclico/uso terapéutico , Modelos Animales de Enfermedad , Humanos , Inmunidad Innata/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Ratones , Infecciones Cutáneas Estafilocócicas/tratamiento farmacológico
10.
Prostaglandins Other Lipid Mediat ; 162: 106661, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750298

RESUMEN

AIM: This study aimed to investigate the effects of Rosa damascena Mill. essential oil on the vascular activity of rat thoracic aorta and its underlying mechanisms. METHODS: Experiments were performed using the isolated tissue bath model and Wistar rats. 0.1, 1, 10, and 100 µg/mL concentrations of rose oil were administered in all groups. To determine the vasoactive effects of rose oil, submaximal contractions were conducted by applying 10-5 M PE and 45 mM KCl separately in both endothelium-intact and -denuded segments. Time-matched distilled water groups were formed for control. To evaluate the role of endothelium-derived vasodilative factors, endothelium-intact segments were incubated with nitric oxide synthase inhibitor L-NAME, soluble guanylate cyclase inhibitor ODQ, and a non-selective cyclooxygenase inhibitor INDO. The statistical significance level was considered as p < 0.05. RESULTS: 1, 10, and 100 µg/mL rose oil doses led to vasorelaxation in thoracic aortas precontracted with 10-5 M PE (p: 0.029, p: 0.000, p: 0.000, respectively). In precontracted thoracic aortas with 45 mM KCl, the significant effect of rose oil persisted, albeit slightly diminished. When the endothelium was removed, the relaxant effect of rose oil was partially reduced, but still significant (p: 0.035, p: 0.028, p: 0.000, respectively). Preincubations with L-NAME and ODQ significantly attenuated rose oil-induced relaxation of endothelium-intact aortas precontracted with 10-5 M PE. In contrast, preincubation INDO did not modulate rose oil-induced relaxation. CONCLUSION: In conclusion, it was shown for the first time that rose oil can significantly mediate vasorelaxation in both PE and KCl precontracted rat thoracic aortas. Rose oil induced vasodilation with or without endothelium in a concentration-dependent manner. It was also shown that rose oil-induced vasorelaxant effects were reduced by L-NAME or ODQ pretreatment, but not modulated by INDO. These results demonstrated that rose oil-induced endothelium-dependent vasodilation is mediated by the NO-cGMP-dependent pathway.


Asunto(s)
Aceites Volátiles , Rosa , Animales , Aorta Torácica/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Inhibidores de la Ciclooxigenasa/farmacología , Endotelio Vascular , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Aceites Volátiles/metabolismo , Aceites Volátiles/farmacología , Ratas , Ratas Wistar , Rosa/metabolismo , Guanilil Ciclasa Soluble/metabolismo , Guanilil Ciclasa Soluble/farmacología , Vasodilatación , Vasodilatadores/farmacología
11.
Platelets ; 33(6): 859-868, 2022 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-34845961

RESUMEN

Cyclic nucleotides (cAMP and cGMP) and corresponding protein kinases, protein kinase A (PKA) and protein kinase G (PKG), are the main intracellular mediators of endothelium-derived platelet inhibitors. Pharmacological PKA/PKG inhibitors are often used to discriminate between these two kinase activities and to analyze their underlying mechanisms. Previously we showed that all widely used PKG inhibitors (KT5823, DT3, RP isomers) either did not inhibit PKG or inhibited and even activated platelets independently from PKG. In this study, we examined several PKA inhibitors as well as inhibitors of adenylate and guanylate cyclases to reveal their effects on platelets and establish whether they are mediated by PKA/PKG. The commonly used PKA inhibitor H89 inhibited both PKA and PKG but PKA-independently inhibited thrombin-induced platelet activation. In our experiments, KT5720 did not inhibit PKA and had no effect on platelet activation. PKI inhibited PKA activity in platelets but also strongly PKA-independently activated platelets. Inhibition of adenylate and guanylate cyclases may be an alternative approach to analyze PKA/PKG function. Based on our previous and presented data, we conclude that all results where the mentioned PKA inhibitors were used for the analysis of PKA activity in intact platelets should be considered with caution.


Asunto(s)
AMP Cíclico , Proteínas Quinasas Dependientes de GMP Cíclico , Plaquetas/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular
12.
Acta Biochim Biophys Sin (Shanghai) ; 54(3): 388-399, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35538034

RESUMEN

Although the association of elevated homocysteine level with cardiac hypertrophy has been reported, the molecular mechanisms by which homocysteine induces cardiac hypertrophy remain inadequately understood. In this study we aim to uncover the roles of cyclic nucleotide phosphodiesterase 1 (PDE1) and endoplasmic reticulum (ER) stress and their relationship to advance the mechanistic understanding of homocysteine-induced cardiac cell hypertrophy. H9c2 cells and primary neonatal rat cardiomyocytes are exposed to homocysteine with or without ER stress inhibitor TUDCA or PDE1-specific inhibitor Lu AF58027, or transfected with siRNAs targeting PDE1 isoforms prior to homocysteine-exposure. Cell surface area is measured and ultrastructure is examined by transmission electron microscopy. Hypertrophic markers, PDE1 isoforms, and ER stress molecules are detected by q-PCR and western blot analysis. Intracellular cGMP and cAMP are measured by ELISA. The results show that homocysteine causes the enlargement of H9c2 cells, increases the expressions of hypertrophic markers ß-MHC and ANP, upregulates PDE1A and PDE1C, promotes the expressions of ER stress molecules, and causes ER dilatation and degranulation. TUDCA and Lu AF58027 downregulate ß-MHC and ANP, and alleviate cell enlargement. TUDCA decreases PDE1A and PDE1C levels. Silencing of PDE1C inhibits homocysteine-induced hypertrophy, whereas PDE1A knockdown has minor effect. Both cAMP and cGMP are decreased after homocysteine-exposure, while only cAMP is restored by Lu AF58027 and TUDCA. TUDCA and Lu AF58027 also inhibit cell enlargement, downregulate ANP, ß-MHC and PDE1C, and enhance cAMP level in homocysteine-exposed primary cardiomyocytes. ER stress mediates homocysteine-induced hypertrophy of cardiac cells via upregulating PDE1C expression Cyclic nucleotide, especially cAMP, is the downstream mediator of the ER stress-PDE1C signaling axis in homocysteine-induced cell hypertrophy.


Asunto(s)
Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1 , Estrés del Retículo Endoplásmico , Homocisteína , Animales , Factor Natriurético Atrial/genética , Factor Natriurético Atrial/metabolismo , Cardiomegalia/metabolismo , GMP Cíclico/metabolismo , GMP Cíclico/farmacología , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 1/metabolismo , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Homocisteína/farmacología , Miocitos Cardíacos/metabolismo , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , Ratas , Ácido Tauroquenodesoxicólico/farmacología
13.
Bioorg Med Chem Lett ; 32: 127713, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33271284

RESUMEN

Bacteria can form a biofilm composed of diverse bacterial microorganism, which work as a barrier to protect from threats, such as antibiotics and host immunity system. The formation of biofilms significantly impairs the efficacy of antibiotics against pathogenic bacteria. It is also a serious problem to be solved that the emergence of multidrug-resistant bacteria (such as methicillin-resistant Staphylococcus aureus, MRSA) accelerated by the overuse of antibiotics. Therefore, the usage of biofilm inhibition agents has attracted immense interest as a novel strategy for treatment of diseases related to bacterial infection. From the difference of mode of action against bacterial cells, biofilm inhibition agents are expected to circumvent the emergence of multidrug-resistant bacteria. In this study, we have developed the derivatives of c-di-GMP, a kind of cyclic dinucleotide that is expected to have the effect of inhibiting bacterial biofilm formation. Some of the synthesized derivatives were found to inhibit biofilm formation of Gram-positive bacteria.


Asunto(s)
Aminas/química , Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , GMP Cíclico/análogos & derivados , Antibacterianos/química , GMP Cíclico/química , GMP Cíclico/farmacología , Bacterias Gramnegativas/fisiología , Bacterias Grampositivas/fisiología
14.
Biotechnol Lett ; 43(3): 677-690, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33385252

RESUMEN

OBJECTIVES: Probiotics (Bacillus subtilis 04178) were entrapped in alginate-chitosan microcapsules by high-voltage electrostatic process. The encapsulation pattern was established as entrapped low density cells with culture (ELDCwc). The performance of ELDCwc cells was investigated against stress environments of simulated digestive fluids. RESULTS: After incubation in simulated gastric (pH 2.5) and intestinal fluids (4% bile salt) for 2 h, the survival rate of ELDCwc cells (18.19% and 27.54%) was significantly higher than that of the free cells (0.0000009% and 0.0005%). The reason why B. subtilis embedded in microcapsules can resist the stress environments was that the mass production of extracellular proteins and polysaccharides prompted B. subtilis to form cell aggregates. The production of extracellular proteins and polysaccharides were regulated by the concentration of c-di-GMP and the expression of ydaJKLMN operon, abbA, sinI, slrA, slrB, abrR and sinR. CONCLUSIONS: c-di-GMP is important for the production of extracellular polymer substance to enhance probiotic viability in stress environments.


Asunto(s)
Alginatos/farmacología , Bacillus subtilis , Quitosano/farmacología , GMP Cíclico/análogos & derivados , Probióticos , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/fisiología , Encapsulación Celular , GMP Cíclico/farmacología , Modelos Biológicos , Estrés Fisiológico/efectos de los fármacos
15.
Proc Natl Acad Sci U S A ; 115(13): E2997-E3006, 2018 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-29531030

RESUMEN

Inherited retinal degeneration (RD) is a devastating and currently untreatable neurodegenerative condition that leads to loss of photoreceptor cells and blindness. The vast genetic heterogeneity of RD, the lack of "druggable" targets, and the access-limiting blood-retinal barrier (BRB) present major hurdles toward effective therapy development. Here, we address these challenges (i) by targeting cGMP (cyclic guanosine- 3',5'-monophosphate) signaling, a disease driver common to different types of RD, and (ii) by combining inhibitory cGMP analogs with a nanosized liposomal drug delivery system designed to facilitate transport across the BRB. Based on a screen of several cGMP analogs we identified an inhibitory cGMP analog that interferes with activation of photoreceptor cell death pathways. Moreover, we found liposomal encapsulation of the analog to achieve efficient drug targeting to the neuroretina. This pharmacological treatment markedly preserved in vivo retinal function and counteracted photoreceptor degeneration in three different in vivo RD models. Taken together, we show that a defined class of compounds for RD treatment in combination with an innovative drug delivery method may enable a single type of treatment to address genetically divergent RD-type diseases.


Asunto(s)
Barrera Hematorretinal/metabolismo , GMP Cíclico/análogos & derivados , GMP Cíclico/administración & dosificación , Modelos Animales de Enfermedad , Sistemas de Liberación de Medicamentos , Degeneración Retiniana/tratamiento farmacológico , Animales , Barrera Hematorretinal/efectos de los fármacos , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Liposomas , Ratones , Células Fotorreceptoras/metabolismo , Retina/efectos de los fármacos , Retina/metabolismo , Degeneración Retiniana/metabolismo , Transducción de Señal/efectos de los fármacos
16.
Am J Physiol Lung Cell Mol Physiol ; 318(5): L1074-L1083, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32186399

RESUMEN

Activation of the inflammasome-caspase-1 axis in lung endothelial cells is emerging as a novel arm of the innate immune response to pneumonia and sepsis caused by Pseudomonas aeruginosa. Increased levels of circulating autacoids are hallmarks of pneumonia and sepsis and induce physiological responses via cAMP signaling in targeted cells. However, it is unknown whether cAMP affects other functions, such as P. aeruginosa-induced caspase-1 activation. Herein, we describe the effects of cAMP signaling on caspase-1 activation using a single cell flow cytometry-based assay. P. aeruginosa infection of cultured lung endothelial cells caused caspase-1 activation in a distinct population of cells. Unexpectedly, pharmacological cAMP elevation increased the total number of lung endothelial cells with activated caspase-1. Interestingly, addition of cAMP agonists augmented P. aeruginosa infection of lung endothelial cells as a partial explanation underlying cAMP priming of caspase-1 activation. The cAMP effect(s) appeared to function as a priming signal because addition of cAMP agonists was required either before or early during the onset of infection. However, absolute cAMP levels measured by ELISA were not predictive of cAMP-priming effects. Importantly, inhibition of de novo cAMP synthesis decreased the number of lung endothelial cells with activated caspase-1 during infection. Collectively, our data suggest that lung endothelial cells rely on cAMP signaling to prime caspase-1 activation during P. aeruginosa infection.


Asunto(s)
Caspasa 1/genética , AMP Cíclico/metabolismo , Células Endoteliales/metabolismo , Pseudomonas aeruginosa/metabolismo , Transducción de Señal , 1-Metil-3-Isobutilxantina/farmacología , 8-Bromo Monofosfato de Adenosina Cíclica/farmacología , Adenina/análogos & derivados , Adenina/farmacología , Alprostadil/análogos & derivados , Alprostadil/farmacología , Animales , Caspasa 1/metabolismo , Proliferación Celular/efectos de los fármacos , Colforsina/farmacología , AMP Cíclico/agonistas , AMP Cíclico/antagonistas & inhibidores , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Dinoprostona/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/microbiología , Células Endoteliales/patología , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno/genética , Inflamasomas/efectos de los fármacos , Inflamasomas/genética , Inflamasomas/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Pulmón/metabolismo , Pulmón/microbiología , Pulmón/patología , Cultivo Primario de Células , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/crecimiento & desarrollo , Ratas , Rolipram/farmacología , Análisis de la Célula Individual
17.
Biochem Biophys Res Commun ; 526(1): 225-230, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32201073

RESUMEN

Nitric oxide (NO)-mediated production of cyclic guanosine 3',5'-monophosphate (cGMP) is a crucial signaling pathway that controls a wide array of neuronal functions, including exocytotic neurotransmitter release. A novel nitrated derivative of cGMP, 8-nitro-cGMP, not only activates cGMP-dependent protein kinase (PKG), but also has membrane permeability and redox activity to produce superoxide and S-guanylated protein. To date, no studies have addressed the effects of 8-nitro-cGMP on exocytotic kinetics. Here, we aimed to assess the 8-nitro-cGMP-mediated modulation of the depolarization-evoked catecholamine release from bovine chromaffin cells. 8-Nitro-cGMP was produced in bovine chromaffin cells dependent on NO donor. Amperometric analysis revealed that 8-nitro-cGMP modulated the kinetic parameters of secretory spikes from chromaffin cells, particularly decreased the speed of individual spikes, resulting in a reduced amperometric spike height, slope ß, and absolute value of slope γ. The modulatory effects were independent of the PKG signal and superoxide production. This is the first study to demonstrate that 8-nitro-cGMP modulates exocytosis and provide insights into a novel regulatory mechanism of exocytosis.


Asunto(s)
Glándulas Suprarrenales/citología , Células Cromafines/citología , GMP Cíclico/análogos & derivados , Exocitosis/efectos de los fármacos , Animales , Catecolaminas/metabolismo , Bovinos , Cerebelo/citología , Células Cromafines/efectos de los fármacos , Células Cromafines/metabolismo , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Depuradores de Radicales Libres/farmacología , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Superóxidos/metabolismo
18.
Chembiochem ; 21(16): 2311-2320, 2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32227403

RESUMEN

High-affinity fluorescent derivatives of cyclic adenosine and guanosine monophosphate are powerful tools for investigating their natural targets. Cyclic nucleotide-regulated ion channels belong to these targets and are vital for many signal transduction processes, such as vision and olfaction. The relation of ligand binding to activation gating is still challenging, and there is a need for fluorescent probes that enable the process to be broken down to the single-molecule level. This inspired us to prepare fluorophore-labeled cyclic nucleotides, which are composed of a bright dye and a nucleotide derivative with a thiophenol motif at position 8 that has already been shown to enable superior binding affinity. These bioconjugates were prepared by a novel cross-linking strategy that involves substitution of the nucleobase with a modified thiophenolate in good yield. Both fluorescent nucleotides are potent activators of different cyclic nucleotide-regulated ion channels with respect to the natural ligand and previously reported substances. Molecular docking of the probes excluding the fluorophore reveals that the high potency can be attributed to additional hydrophobic and cation-π interactions between the ligand and the protein. Moreover, the introduced substances have the potential to investigate related target proteins, such as cAMP- and cGMP-dependent protein kinases, exchange proteins directly activated by cAMP or phosphodiesterases.


Asunto(s)
AMP Cíclico/química , AMP Cíclico/farmacología , GMP Cíclico/química , GMP Cíclico/farmacología , Colorantes Fluorescentes/química , Canales Iónicos/agonistas , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Canales Iónicos/química , Canales Iónicos/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Conformación Proteica
19.
J Cell Physiol ; 234(10): 17473-17481, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30825199

RESUMEN

Advanced glycation end products (AGE) and angiotensin II were closely correlated with the progression of diabetic nephopathy (DN). Nitric oxide (NO) is a protective mediator of renal tubular hypertrophy in DN. Here, we examined the molecular mechanisms of angiotensin-converting enzyme inhibitor (ACEI) and NO signaling responsible for diminishing AGE-induced renal tubular hypertrophy. In human renal proximal tubular cells, AGE decreased NO production, inducible NOS activity, guanosine 3',5'-cyclic monophosphate (cGMP) synthesis, and cGMP-dependent protein kinase (PKG) activation. All theses effects of AGE were reversed by treatment with ACEIs (captopril and enalapril), the NO donor S-nitroso-N-acetylpenicillamine (SNAP), and the PKG activator 8-para-chlorophenylthio-cGMPs (8-pCPT-cGMPs). In addition, AGE-enhanced activation of extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and p38 mitogen-activated protein kinase (MAPK) were clearly reduced by captopril, enalapril, SNAP, and 8-pCPT-cGMPs. The abilities of ACEIs and NO/PKG activation to inhibit AGE-induced hypertrophic growth were verified by the observation that captopril, enalapril, SNAP, and 8-pCPT-cGMPs decreased protein levels of fibronectin, p21 Waf1/Cip1 , and receptor for AGE. The results of the present study suggest that ACEIs significantly reduced AGE-increased ERK/JNK/p38 MAPK activation and renal tubular hypertrophy partly through enhancement of the NO/PKG pathway.


Asunto(s)
Inhibidores de la Enzima Convertidora de Angiotensina/farmacología , Productos Finales de Glicación Avanzada/metabolismo , Túbulos Renales Proximales/efectos de los fármacos , Túbulos Renales Proximales/metabolismo , Óxido Nítrico/metabolismo , Captopril/farmacología , Aumento de la Célula/efectos de los fármacos , Línea Celular , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Enalapril/farmacología , Activación Enzimática/efectos de los fármacos , Productos Finales de Glicación Avanzada/toxicidad , Humanos , Hipertrofia/prevención & control , Túbulos Renales Proximales/patología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Donantes de Óxido Nítrico/farmacología , Óxido Nítrico Sintasa de Tipo II/metabolismo , S-Nitroso-N-Acetilpenicilamina/farmacología , Transducción de Señal/efectos de los fármacos , Tionucleótidos/farmacología
20.
Mol Microbiol ; 110(2): 219-238, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30079982

RESUMEN

To permanently attach to surfaces, Caulobacter crescentusproduces a strong adhesive, the holdfast. The timing of holdfast synthesis is developmentally regulated by cell cycle cues. When C. crescentusis grown in a complex medium, holdfast synthesis can also be stimulated by surface sensing, in which swarmer cells rapidly synthesize holdfast in direct response to surface contact. In contrast to growth in complex medium, here we show that when cells are grown in a defined medium, surface contact does not trigger holdfast synthesis. Moreover, we show that in a defined medium, flagellum synthesis and regulation of holdfast production are linked. In these conditions, mutants lacking a flagellum attach to surfaces over time more efficiently than either wild-type strains or strains harboring a paralyzed flagellum. Enhanced adhesion in mutants lacking flagellar components is due to premature holdfast synthesis during the cell cycle and is regulated by the holdfast synthesis inhibitor HfiA. hfiA transcription is reduced in flagellar mutants and this reduction is modulated by the diguanylate cyclase developmental regulator PleD. We also show that, in contrast to previous predictions, flagella are not necessarily required for C. crescentus surface sensing in the absence of flow, and that arrest of flagellar rotation does not stimulate holdfast synthesis. Rather, our data support a model in which flagellum assembly feeds back to control holdfast synthesis via HfiA expression in a c-di-GMP-dependent manner under defined nutrient conditions.


Asunto(s)
Biopelículas/efectos de los fármacos , Caulobacter crescentus/efectos de los fármacos , Flagelos/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Adhesión Bacteriana/efectos de los fármacos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Caulobacter crescentus/genética , Caulobacter crescentus/crecimiento & desarrollo , Ciclo Celular/efectos de los fármacos , Medios de Cultivo/farmacología , GMP Cíclico/análogos & derivados , GMP Cíclico/farmacología , Retroalimentación Fisiológica , Mutación , Estadísticas no Paramétricas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA