Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 999
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 168(6): 1028-1040.e19, 2017 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-28283059

RESUMEN

In eukaryotic cells, diverse stresses trigger coalescence of RNA-binding proteins into stress granules. In vitro, stress-granule-associated proteins can demix to form liquids, hydrogels, and other assemblies lacking fixed stoichiometry. Observing these phenomena has generally required conditions far removed from physiological stresses. We show that poly(A)-binding protein (Pab1 in yeast), a defining marker of stress granules, phase separates and forms hydrogels in vitro upon exposure to physiological stress conditions. Other RNA-binding proteins depend upon low-complexity regions (LCRs) or RNA for phase separation, whereas Pab1's LCR is not required for demixing, and RNA inhibits it. Based on unique evolutionary patterns, we create LCR mutations, which systematically tune its biophysical properties and Pab1 phase separation in vitro and in vivo. Mutations that impede phase separation reduce organism fitness during prolonged stress. Poly(A)-binding protein thus acts as a physiological stress sensor, exploiting phase separation to precisely mark stress onset, a broadly generalizable mechanism.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/fisiología , Secuencia de Aminoácidos , Gránulos Citoplasmáticos/química , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Mutagénesis , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Prolina/análisis , Prolina/metabolismo , Dominios Proteicos , Ribonucleasas/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Alineación de Secuencia , Estrés Fisiológico
2.
Cell ; 165(2): 488-96, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-26997482

RESUMEN

RNA-programmed genome editing using CRISPR/Cas9 from Streptococcus pyogenes has enabled rapid and accessible alteration of specific genomic loci in many organisms. A flexible means to target RNA would allow alteration and imaging of endogenous RNA transcripts analogous to CRISPR/Cas-based genomic tools, but most RNA targeting methods rely on incorporation of exogenous tags. Here, we demonstrate that nuclease-inactive S. pyogenes CRISPR/Cas9 can bind RNA in a nucleic-acid-programmed manner and allow endogenous RNA tracking in living cells. We show that nuclear-localized RNA-targeting Cas9 (RCas9) is exported to the cytoplasm only in the presence of sgRNAs targeting mRNA and observe accumulation of ACTB, CCNA2, and TFRC mRNAs in RNA granules that correlate with fluorescence in situ hybridization. We also demonstrate time-resolved measurements of ACTB mRNA trafficking to stress granules. Our results establish RCas9 as a means to track RNA in living cells in a programmable manner without genetically encoded tags.


Asunto(s)
ARN/análisis , Sistemas CRISPR-Cas , Gránulos Citoplasmáticos/química , Endonucleasas/metabolismo , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Proteínas Fluorescentes Verdes/análisis , Humanos , ARN Guía de Kinetoplastida/análisis , ARN Mensajero/análisis
3.
Cell ; 164(3): 487-98, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26777405

RESUMEN

Stress granules are mRNA-protein granules that form when translation initiation is limited, and they are related to pathological granules in various neurodegenerative diseases. Super-resolution microscopy reveals stable substructures, referred to as cores, within stress granules that can be purified. Proteomic analysis of stress granule cores reveals a dense network of protein-protein interactions and links between stress granules and human diseases and identifies ATP-dependent helicases and protein remodelers as conserved stress granule components. ATP is required for stress granule assembly and dynamics. Moreover, multiple ATP-driven machines affect stress granules differently, with the CCT complex inhibiting stress granule assembly, while the MCM and RVB complexes promote stress granule persistence. Our observations suggest that stress granules contain a stable core structure surrounded by a dynamic shell with assembly, disassembly, and transitions between the core and shell modulated by numerous protein and RNA remodeling complexes.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Gránulos Citoplasmáticos/química , Proteoma/análisis , Ribonucleoproteínas/metabolismo , Animales , Proteínas Reguladoras de la Apoptosis/análisis , Línea Celular Tumoral , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/análisis , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Proteoma/efectos de los fármacos , ARN Mensajero/metabolismo , Proteínas Represoras/análisis , Proteínas de Saccharomyces cerevisiae/análisis , Azida Sódica/farmacología , Levaduras/citología
4.
Cell ; 163(1): 123-33, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406374

RESUMEN

Stress granules are membrane-less organelles composed of RNA-binding proteins (RBPs) and RNA. Functional impairment of stress granules has been implicated in amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy-diseases that are characterized by fibrillar inclusions of RBPs. Genetic evidence suggests a link between persistent stress granules and the accumulation of pathological inclusions. Here, we demonstrate that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD). While the LCD of hnRNPA1 is sufficient to mediate LLPS, the RNA recognition motifs contribute to LLPS in the presence of RNA, giving rise to several mechanisms for regulating assembly. Importantly, while not required for LLPS, fibrillization is enhanced in protein-rich droplets. We suggest that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties and provides a mechanistic link between persistent stress granules and fibrillar protein pathology in disease.


Asunto(s)
Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Amiloide/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos
5.
Cell ; 149(4): 753-67, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22579281

RESUMEN

Eukaryotic cells contain assemblies of RNAs and proteins termed RNA granules. Many proteins within these bodies contain KH or RRM RNA-binding domains as well as low complexity (LC) sequences of unknown function. We discovered that exposure of cell or tissue lysates to a biotinylated isoxazole (b-isox) chemical precipitated hundreds of RNA-binding proteins with significant overlap to the constituents of RNA granules. The LC sequences within these proteins are both necessary and sufficient for b-isox-mediated aggregation, and these domains can undergo a concentration-dependent phase transition to a hydrogel-like state in the absence of the chemical. X-ray diffraction and EM studies revealed the hydrogels to be composed of uniformly polymerized amyloid-like fibers. Unlike pathogenic fibers, the LC sequence-based polymers described here are dynamic and accommodate heterotypic polymerization. These observations offer a framework for understanding the function of LC sequences as well as an organizing principle for cellular structures that are not membrane bound.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , Hidrogel de Polietilenoglicol-Dimetacrilato/metabolismo , Proteínas de Unión al ARN/análisis , ARN/metabolismo , Animales , Encéfalo/citología , Encéfalo/metabolismo , Caenorhabditis elegans/citología , Caenorhabditis elegans/metabolismo , Sistema Libre de Células , Gránulos Citoplasmáticos/química , Células Madre Embrionarias/metabolismo , Masculino , Ratones , Modelos Moleculares , Células 3T3 NIH , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Testículo/citología , Testículo/metabolismo , Difracción de Rayos X
6.
Mol Cell ; 75(1): 66-75.e5, 2019 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-31175012

RESUMEN

Liquid granules rich in intrinsically disordered proteins and RNA play key roles in critical cellular functions such as RNA processing and translation. Many details of the mechanism via which this occurs remain to be elucidated. Motivated by the lacuna in the field and by the prospects of developing de novo artificial granules that provide extrinsic control of translation, we report a bottom-up approach to engineer ribonucleoprotein granules composed of a recombinant RNA-binding IDP that exhibits phase behavior in water. We developed a kinetic model to illustrate that these granules inhibit translation through reversible or irreversible sequestration of mRNA. Within monodisperse droplets capable of transcription and translation, we experimentally demonstrate temporal inhibition of translation by using designer IDPs that exhibit tunable phase behavior. This work lays the foundation for developing artificial granules that promise to further our mechanistic understanding of their naturally occurring counterparts.


Asunto(s)
Células Artificiales/metabolismo , Gránulos Citoplasmáticos/genética , Proteínas Intrínsecamente Desordenadas/genética , Peptidomiméticos/metabolismo , ARN Mensajero/genética , Ribonucleoproteínas/genética , Secuencia de Aminoácidos , Células Artificiales/citología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Elastina/química , Elastina/genética , Elastina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Peptidomiméticos/química , Transición de Fase , Plásmidos/genética , Plásmidos/metabolismo , Biosíntesis de Proteínas , Ingeniería de Proteínas/métodos , ARN/genética , ARN/metabolismo , ARN Mensajero/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo
7.
Nature ; 581(7807): 209-214, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32405004

RESUMEN

Intracellular bodies such as nucleoli, Cajal bodies and various signalling assemblies represent membraneless organelles, or condensates, that form via liquid-liquid phase separation (LLPS)1,2. Biomolecular interactions-particularly homotypic interactions mediated by self-associating intrinsically disordered protein regions-are thought to underlie the thermodynamic driving forces for LLPS, forming condensates that can facilitate the assembly and processing of biochemically active complexes, such as ribosomal subunits within the nucleolus. Simplified model systems3-6 have led to the concept that a single fixed saturation concentration is a defining feature of endogenous LLPS7-9, and has been suggested as a mechanism for intracellular concentration buffering2,7,8,10. However, the assumption of a fixed saturation concentration remains largely untested within living cells, in which the richly multicomponent nature of condensates could complicate this simple picture. Here we show that heterotypic multicomponent interactions dominate endogenous LLPS, and give rise to nucleoli and other condensates that do not exhibit a fixed saturation concentration. As the concentration of individual components is varied, their partition coefficients change in a manner that can be used to determine the thermodynamic free energies that underlie LLPS. We find that heterotypic interactions among protein and RNA components stabilize various archetypal intracellular condensates-including the nucleolus, Cajal bodies, stress granules and P-bodies-implying that the composition of condensates is finely tuned by the thermodynamics of the underlying biomolecular interaction network. In the context of RNA-processing condensates such as the nucleolus, this manifests in the selective exclusion of fully assembled ribonucleoprotein complexes, providing a thermodynamic basis for vectorial ribosomal RNA flux out of the nucleolus. This methodology is conceptually straightforward and readily implemented, and can be broadly used to extract thermodynamic parameters from microscopy images. These approaches pave the way for a deeper understanding of the thermodynamics of multicomponent intracellular phase behaviour and its interplay with the nonequilibrium activity that is characteristic of endogenous condensates.


Asunto(s)
Espacio Intracelular/química , Espacio Intracelular/metabolismo , Orgánulos/química , Orgánulos/metabolismo , Termodinámica , Proteínas Adaptadoras Transductoras de Señales/deficiencia , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Cuerpos Enrollados/química , Cuerpos Enrollados/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/deficiencia , Células HeLa , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Nucleofosmina , Transición de Fase , Proteínas de Unión a Poli-ADP-Ribosa/deficiencia , ARN Helicasas/deficiencia , Proteínas con Motivos de Reconocimiento de ARN/deficiencia , ARN Ribosómico/química , ARN Ribosómico/metabolismo , Proteínas de Unión al ARN , Ribosomas/química , Ribosomas/metabolismo
8.
Immunity ; 45(6): 1258-1269, 2016 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-27939674

RESUMEN

Programmed death and shedding of epithelial cells is a powerful defense mechanism to reduce bacterial burden during infection but this activity cannot be indiscriminate because of the critical barrier function of the epithelium. We report that during cystitis, shedding of infected bladder epithelial cells (BECs) was preceded by the recruitment of mast cells (MCs) directly underneath the superficial epithelium where they docked and extruded their granules. MCs were responding to interleukin-1ß (IL-1ß) secreted by BECs after inflammasome and caspase-1 signaling. Upon uptake of granule-associated chymase (mouse MC protease 4 [mMCPT4]), BECs underwent caspase-1-associated cytolysis and exfoliation. Thus, infected epithelial cells require a specific cue for cytolysis from recruited sentinel inflammatory cells before shedding.


Asunto(s)
Quimasas/inmunología , Citotoxinas/inmunología , Células Epiteliales/microbiología , Mastocitos/inmunología , Infecciones Urinarias/inmunología , Animales , Degranulación de la Célula/inmunología , Línea Celular , Gránulos Citoplasmáticos/química , Femenino , Técnica del Anticuerpo Fluorescente , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
9.
Nature ; 571(7765): 424-428, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31292544

RESUMEN

N6-methyladenosine (m6A) is the most prevalent modified nucleotide in mRNA1,2, with around 25% of mRNAs containing at least one m6A. Methylation of mRNA to form m6A is required for diverse cellular and physiological processes3. Although the presence of m6A in an mRNA can affect its fate in different ways, it is unclear how m6A directs this process and why the effects of m6A can vary in different cellular contexts. Here we show that the cytosolic m6A-binding proteins-YTHDF1, YTHDF2 and YTHDF3-undergo liquid-liquid phase separation in vitro and in cells. This phase separation is markedly enhanced by mRNAs that contain multiple, but not single, m6A residues. Polymethylated mRNAs act as a multivalent scaffold for the binding of YTHDF proteins, juxtaposing their low-complexity domains and thereby leading to phase separation. The resulting mRNA-YTHDF complexes then partition into different endogenous phase-separated compartments, such as P-bodies, stress granules or neuronal RNA granules. m6A-mRNA is subject to compartment-specific regulation, including a reduction in the stability and translation of mRNA. These studies reveal that the number and distribution of m6A sites in cellular mRNAs can regulate and influence the composition of the phase-separated transcriptome, and suggest that the cellular properties of m6A-modified mRNAs are governed by liquid-liquid phase separation principles.


Asunto(s)
Adenosina/análogos & derivados , Compartimento Celular , ARN Mensajero/química , ARN Mensajero/metabolismo , Adenosina/metabolismo , Animales , Transporte Biológico , Línea Celular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Humanos , Metilación , Metiltransferasas/deficiencia , Ratones , Transición de Fase , ARN Mensajero/análisis , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Estrés Fisiológico
10.
Mol Cell ; 68(1): 144-157.e5, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28965817

RESUMEN

Within cells, soluble RNPs can switch states to coassemble and condense into liquid or solid bodies. Although these phase transitions have been reconstituted in vitro, for endogenous bodies the diversity of the components, the specificity of the interaction networks, and the function of the coassemblies remain to be characterized. Here, by developing a fluorescence-activated particle sorting (FAPS) method to purify cytosolic processing bodies (P-bodies) from human epithelial cells, we identified hundreds of proteins and thousands of mRNAs that structure a dense network of interactions, separating P-body from non-P-body RNPs. mRNAs segregating into P-bodies are translationally repressed, but not decayed, and this repression explains part of the poor genome-wide correlation between RNA and protein abundance. P-bodies condense thousands of mRNAs that strikingly encode regulatory processes. Thus, we uncovered how P-bodies, by condensing and segregating repressed mRNAs, provide a physical substrate for the coordinated regulation of posttranscriptional mRNA regulons.


Asunto(s)
Regulación de la Expresión Génica , Proteoma/genética , ARN Mensajero/genética , Regulón , Ribonucleoproteínas/genética , Fraccionamiento Celular , Citoplasma/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Ontología de Genes , Células HEK293 , Células HeLa , Humanos , Anotación de Secuencia Molecular , Transición de Fase , Biosíntesis de Proteínas , Proteoma/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo
11.
Immunity ; 42(5): 864-76, 2015 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-25992860

RESUMEN

Cytotoxic T lymphocytes (CTLs) use polarized secretion to rapidly destroy virally infected and tumor cells. To understand the temporal relationships between key events leading to secretion, we used high-resolution 4D imaging. CTLs approached targets with actin-rich projections at the leading edge, creating an initially actin-enriched contact with rearward-flowing actin. Within 1 min, cortical actin reduced across the synapse, T cell receptors (TCRs) clustered centrally to form the central supramolecular activation cluster (cSMAC), and centrosome polarization began. Granules clustered around the moving centrosome within 2.5 min and reached the synapse after 6 min. TCR-bearing intracellular vesicles were delivered to the cSMAC as the centrosome docked. We found that the centrosome and granules were delivered to an area of membrane with reduced cortical actin density and phospholipid PIP2. These data resolve the temporal order of events during synapse maturation in 4D and reveal a critical role for actin depletion in regulating secretion.


Asunto(s)
Actinas/metabolismo , Gránulos Citoplasmáticos/metabolismo , Sinapsis Inmunológicas/metabolismo , Linfocitos T Citotóxicos/citología , Membrana Celular/química , Células Cultivadas , Gránulos Citoplasmáticos/química , Técnica del Anticuerpo Fluorescente , Humanos , Modelos Inmunológicos , Fosfolípidos/metabolismo , Linfocitos T Citotóxicos/metabolismo
12.
Immunity ; 43(4): 776-87, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26384546

RESUMEN

Emerging evidence suggests that immunological mechanisms underlie metabolic control of adipose tissue. Here, we have shown the regulatory impact of a rare subpopulation of dendritic cells, rich in perforin-containing granules (perf-DCs). Using bone marrow transplantation to generate animals selectively lacking perf-DCs, we found that these chimeras progressively gained weight and exhibited features of metabolic syndrome. This phenotype was associated with an altered repertoire of T cells residing in adipose tissue and could be completely prevented by T cell depletion in vivo. A similar impact of perf-DCs on inflammatory T cells was also found in a well-defined model of multiple sclerosis, experimental autoimmune encephlalomyelitis (EAE). Thus, perf-DCs probably represent a regulatory cell subpopulation critical for protection from metabolic syndrome and autoimmunity.


Asunto(s)
Autoinmunidad/inmunología , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/inmunología , Inflamación/inmunología , Síndrome Metabólico/inmunología , Proteínas Citotóxicas Formadoras de Poros/análisis , Tejido Adiposo/inmunología , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Traslado Adoptivo , Animales , Antígenos de Diferenciación/análisis , Antígeno CD11c/análisis , Linfocitos T CD8-positivos/patología , Linfocitos T CD8-positivos/trasplante , Células Clonales/inmunología , Gránulos Citoplasmáticos/química , Células Dendríticas/clasificación , Células Dendríticas/ultraestructura , Dieta Alta en Grasa/efectos adversos , Encefalomielitis Autoinmune Experimental/inmunología , Encefalomielitis Autoinmune Experimental/patología , Femenino , Inflamación/patología , Depleción Linfocítica , Masculino , Síndrome Metabólico/etiología , Síndrome Metabólico/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Obesidad/inmunología , Obesidad/patología , Fenotipo , Proteínas Citotóxicas Formadoras de Poros/deficiencia , Proteínas Citotóxicas Formadoras de Poros/genética , Quimera por Radiación , Autotolerancia/inmunología
13.
Nature ; 560(7716): 107-111, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30022165

RESUMEN

Tissue-specific autoimmunity occurs when selected antigens presented by susceptible alleles of the major histocompatibility complex are recognized by T cells. However, the reason why certain specific self-antigens dominate the response and are indispensable for triggering autoreactivity is unclear. Spontaneous presentation of insulin is essential for initiating autoimmune type 1 diabetes in non-obese diabetic mice1,2. A major set of pathogenic CD4 T cells specifically recognizes the 12-20 segment of the insulin B-chain (B:12-20), an epitope that is generated from direct presentation of insulin peptides by antigen-presenting cells3,4. These T cells do not respond to antigen-presenting cells that have taken up insulin that, after processing, leads to presentation of a different segment representing a one-residue shift, B:13-214. CD4 T cells that recognize B:12-20 escape negative selection in the thymus and cause diabetes, whereas those that recognize B:13-21 have only a minor role in autoimmunity3-5. Although presentation of B:12-20 is evident in the islets3,6, insulin-specific germinal centres can be formed in various lymphoid tissues, suggesting that insulin presentation is widespread7,8. Here we use live imaging to document the distribution of insulin recognition by CD4 T cells throughout various lymph nodes. Furthermore, we identify catabolized insulin peptide fragments containing defined pathogenic epitopes in ß-cell granules from mice and humans. Upon glucose challenge, these fragments are released into the circulation and are recognized by CD4 T cells, leading to an activation state that results in transcriptional reprogramming and enhanced diabetogenicity. Therefore, a tissue such as pancreatic islets, by releasing catabolized products, imposes a constant threat to self-tolerance. These findings reveal a self-recognition pathway underlying a primary autoantigen and provide a foundation for assessing antigenic targets that precipitate pathogenic outcomes by systemically sensitizing lymphoid tissues.


Asunto(s)
Exocitosis , Insulina/metabolismo , Islotes Pancreáticos/citología , Islotes Pancreáticos/metabolismo , Tejido Linfoide/metabolismo , Fragmentos de Péptidos/metabolismo , Adulto , Animales , Presentación de Antígeno/inmunología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/efectos de los fármacos , Gránulos Citoplasmáticos/metabolismo , Epítopos/inmunología , Exocitosis/efectos de los fármacos , Femenino , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Insulina/sangre , Insulina/química , Insulina/inmunología , Islotes Pancreáticos/efectos de los fármacos , Tejido Linfoide/citología , Tejido Linfoide/efectos de los fármacos , Tejido Linfoide/inmunología , Masculino , Ratones Endogámicos NOD , Persona de Mediana Edad , Fragmentos de Péptidos/sangre , Fragmentos de Péptidos/química , Fragmentos de Péptidos/inmunología , Fenotipo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
14.
Mol Cell ; 63(5): 796-810, 2016 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-27570075

RESUMEN

Stress granules (SGs) are ribonucleoprotein complexes induced by stress. They sequester mRNAs and disassemble when the stress subsides, allowing translation restoration. In amyotrophic lateral sclerosis (ALS), aberrant SGs cannot disassemble and therefore accumulate and are degraded by autophagy. However, the molecular events causing aberrant SG formation and the molecular players regulating this transition are largely unknown. We report that defective ribosomal products (DRiPs) accumulate in SGs and promote a transition into an aberrant state that renders SGs resistant to RNase. We show that only a minor fraction of aberrant SGs is targeted by autophagy, whereas the majority disassembles in a process that requires assistance by the HSPB8-BAG3-HSP70 chaperone complex. We further demonstrate that HSPB8-BAG3-HSP70 ensures the functionality of SGs and restores proteostasis by targeting DRiPs for degradation. We propose a system of chaperone-mediated SG surveillance, or granulostasis, which regulates SG composition and dynamics and thus may play an important role in ALS.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Autofagia/genética , Gránulos Citoplasmáticos/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Ribosomas/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Reguladoras de la Apoptosis/genética , Arsenitos/farmacología , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/efectos de los fármacos , Expresión Génica , Proteínas HSP70 de Choque Térmico/genética , Células HeLa , Proteínas de Choque Térmico/genética , Homeostasis , Humanos , Leupeptinas/farmacología , Chaperonas Moleculares , Estrés Oxidativo , Inhibidores de Proteasoma/farmacología , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ribonucleasas/metabolismo , Ribosomas/genética
15.
Annu Rev Microbiol ; 72: 255-271, 2018 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-30200855

RESUMEN

RNA localization mechanisms have been intensively studied and include localized protection of mRNA from degradation, diffusion-coupled local entrapment of mRNA, and directed transport of mRNAs along the cytoskeleton. While it is well understood how cells utilize these three mechanisms to organize mRNAs within the cytoplasm, a newly appreciated mechanism of RNA localization has emerged in recent years in which mRNAs phase-separate and form liquid-like droplets. mRNAs both contribute to condensation of proteins into liquid-like structures and are themselves regulated by being incorporated into membraneless organelles. This ability to condense into droplets is in many instances contributing to previously appreciated mRNA localization phenomena. Here we review how phase separation enables mRNAs to selectively and efficiently colocalize and be coregulated, allowing control of gene expression in time and space.


Asunto(s)
Citoplasma/metabolismo , Gránulos Citoplasmáticos/metabolismo , Células Eucariotas/metabolismo , Células Procariotas/metabolismo , Proteínas/metabolismo , ARN Mensajero/metabolismo , Citoplasma/química , Gránulos Citoplasmáticos/química , Células Eucariotas/química , Células Procariotas/química , ARN Mensajero/análisis
16.
Nat Chem Biol ; 17(5): 615-623, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33767388

RESUMEN

Cells organize biochemical processes into biological condensates. P-bodies are cytoplasmic condensates that are enriched in enzymes important for mRNA degradation and have been identified as sites of both storage and decay. How these opposing outcomes can be achieved in condensates remains unresolved. mRNA decapping immediately precedes degradation, and the Dcp1/Dcp2 decapping complex is enriched in P-bodies. Here, we show that Dcp1/Dcp2 activity is modulated in condensates and depends on the interactions promoting phase separation. We find that Dcp1/Dcp2 phase separation stabilizes an inactive conformation in Dcp2 to inhibit decapping. The activator Edc3 causes a conformational change in Dcp2 and rewires the protein-protein interactions to stimulate decapping in condensates. Disruption of the inactive conformation dysregulates decapping in condensates. Our results indicate that the regulation of enzymatic activity in condensates relies on a coupling across length scales ranging from microns to ångstroms. We propose that this regulatory mechanism may control the functional state of P-bodies and related phase-separated compartments.


Asunto(s)
Caperuzas de ARN/química , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Sitios de Unión , Clonación Molecular , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Modelos Moleculares , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Caperuzas de ARN/genética , Caperuzas de ARN/metabolismo , Estabilidad del ARN , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Coloración y Etiquetado/métodos , Especificidad por Sustrato
17.
Mol Cell ; 57(5): 936-947, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25747659

RESUMEN

Cells chemically isolate molecules in compartments to both facilitate and regulate their interactions. In addition to membrane-encapsulated compartments, cells can form proteinaceous and membraneless organelles, including nucleoli, Cajal and PML bodies, and stress granules. The principles that determine when and why these structures form have remained elusive. Here, we demonstrate that the disordered tails of Ddx4, a primary constituent of nuage or germ granules, form phase-separated organelles both in live cells and in vitro. These bodies are stabilized by patterned electrostatic interactions that are highly sensitive to temperature, ionic strength, arginine methylation, and splicing. Sequence determinants are used to identify proteins found in both membraneless organelles and cell adhesion. Moreover, the bodies provide an alternative solvent environment that can concentrate single-stranded DNA but largely exclude double-stranded DNA. We propose that phase separation of disordered proteins containing weakly interacting blocks is a general mechanism for forming regulated, membraneless organelles.


Asunto(s)
Gránulos Citoplasmáticos/química , ARN Helicasas DEAD-box/química , Orgánulos/química , Transición de Fase , Secuencia de Aminoácidos , Núcleo Celular/química , Núcleo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN/química , ADN/metabolismo , Células HeLa , Humanos , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Metilación , Microscopía Confocal , Microscopía Fluorescente , Datos de Secuencia Molecular , Mutación , Orgánulos/metabolismo , Concentración Osmolar , Homología de Secuencia de Aminoácido , Electricidad Estática , Imagen de Lapso de Tiempo , Temperatura de Transición
18.
Mol Cell ; 60(2): 231-41, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26455390

RESUMEN

Phase-separated states of proteins underlie ribonucleoprotein (RNP) granules and nuclear RNA-binding protein assemblies that may nucleate protein inclusions associated with neurodegenerative diseases. We report that the N-terminal low-complexity domain of the RNA-binding protein Fused in Sarcoma (FUS LC) is structurally disordered and forms a liquid-like phase-separated state resembling RNP granules. This state directly binds the C-terminal domain of RNA polymerase II. Phase-separated FUS lacks static structures as probed by fluorescence microscopy, indicating they are distinct from both protein inclusions and hydrogels. We use solution nuclear magnetic resonance spectroscopy to directly probe the dynamic architecture within FUS liquid phase-separated assemblies. Importantly, we find that FUS LC retains disordered secondary structure even in the liquid phase-separated state. Therefore, we propose that disordered protein granules, even those made of aggregation-prone prion-like domains, are dynamic and disordered molecular assemblies with transiently formed protein-protein contacts.


Asunto(s)
Gránulos Citoplasmáticos/química , Proteínas Intrínsecamente Desordenadas/química , ARN Polimerasa II/química , Proteína FUS de Unión a ARN/química , Proteínas de Unión al ARN/química , ARN/química , Secuencias de Aminoácidos , Sitios de Unión , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Imitación Molecular , Datos de Secuencia Molecular , Transición de Fase , Priones/química , Priones/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteína FUS de Unión a ARN/genética , Proteína FUS de Unión a ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Reología
19.
Mol Cell ; 60(2): 208-19, 2015 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-26412307

RESUMEN

Eukaryotic cells possess numerous dynamic membrane-less organelles, RNP granules, enriched in RNA and RNA-binding proteins containing disordered regions. We demonstrate that the disordered regions of key RNP granule components and the full-length granule protein hnRNPA1 can phase separate in vitro, producing dynamic liquid droplets. Phase separation is promoted by low salt concentrations or RNA. Over time, the droplets mature to more stable states, as assessed by slowed fluorescence recovery after photobleaching and resistance to salt. Maturation often coincides with formation of fibrous structures. Different disordered domains can co-assemble into phase-separated droplets. These biophysical properties demonstrate a plausible mechanism by which interactions between disordered regions, coupled with RNA binding, could contribute to RNP granule assembly in vivo through promoting phase separation. Progression from dynamic liquids to stable fibers may be regulated to produce cellular structures with diverse physiochemical properties and functions. Misregulation could contribute to diseases involving aberrant RNA granules.


Asunto(s)
Amiloide/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Proteínas Intrínsecamente Desordenadas/química , Orgánulos/química , ARN/química , Amiloide/genética , Amiloide/metabolismo , Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Recuperación de Fluorescencia tras Fotoblanqueo , Expresión Génica , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Imitación Molecular , Orgánulos/metabolismo , Polietilenglicoles/química , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/patología , Unión Proteica , Estructura Terciaria de Proteína , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Cloruro de Sodio/química , Soluciones
20.
J Virol ; 95(14): e0015121, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33952639

RESUMEN

RNA helicase A/DHX9 is required for diverse RNA-related essential cellular functions and antiviral responses and is hijacked by RNA viruses to support their replication. Here, we show that during the late replication stage in human cancer cells of myxoma virus (MYXV), a member of the double-stranded DNA (dsDNA) poxvirus family that is being developed as an oncolytic virus, DHX9, forms unique granular cytoplasmic structures, which we named "DHX9 antiviral granules." These DHX9 antiviral granules are not formed if MYXV DNA replication and/or late protein synthesis is blocked. When formed, DHX9 antiviral granules significantly reduced nascent protein synthesis in the MYXV-infected cancer cells. MYXV late gene transcription and translation were also significantly compromised, particularly in nonpermissive or semipermissive human cancer cells where MYXV replication is partly or completely restricted. Directed knockdown of DHX9 significantly enhanced viral late protein synthesis and progeny virus formation in normally restrictive cancer cells. We further demonstrate that DHX9 is not a component of the canonical cellular stress granules. DHX9 antiviral granules are induced by MYXV, and other poxviruses, in human cells and are associated with other known cellular components of stress granules, dsRNA and virus encoded dsRNA-binding protein M029, a known interactor with DHX9. Thus, DHX9 antiviral granules function by hijacking poxviral elements needed for the cytoplasmic viral replication factories. These results demonstrate a novel antiviral function for DHX9 that is recruited from the nucleus into the cytoplasm, and this step can be exploited to enhance oncolytic virotherapy against the subset of human cancer cells that normally restrict MYXV. IMPORTANCE The cellular DHX9 has both proviral and antiviral roles against diverse RNA and DNA viruses. In this article, we demonstrate that DHX9 can form unique antiviral granules in the cytoplasm during myxoma virus (MYXV) replication in human cancer cells. These antiviral granules sequester viral proteins and reduce viral late protein synthesis and thus regulate MYXV, and other poxviruses, that replicate in the cytoplasm. In addition, we show that in the absence of DHX9, the formation of DHX9 antiviral granules can be inhibited, which significantly enhanced oncolytic MYXV replication in human cancer cell lines where the virus is normally restricted. Our results also show that DHX9 antiviral granules are formed after viral infection but not by common nonviral cellular stress inducers. Thus, our study suggests that DHX9 has antiviral activity in human cancer cells, and this pathway can be targeted for enhanced activity of oncolytic poxviruses against even restrictive cancer cells.


Asunto(s)
Gránulos Citoplasmáticos/fisiología , ARN Helicasas DEAD-box/fisiología , Myxoma virus/fisiología , Proteínas de Neoplasias/fisiología , Animales , Antivirales , Línea Celular Tumoral , Gránulos Citoplasmáticos/química , ARN Helicasas DEAD-box/genética , Células HeLa , Humanos , Proteínas de Neoplasias/genética , Biosíntesis de Proteínas , Conejos , Estrés Fisiológico , Proteínas Virales/metabolismo , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA