Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 264
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell Mol Life Sci ; 81(1): 369, 2024 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-39182194

RESUMEN

Calcium-containing stones represent the most common form of kidney calculi, frequently linked to idiopathic hypercalciuria, though their precise pathogenesis remains elusive. This research aimed to elucidate the molecular mechanisms involved by employing urinary exosomal microRNAs as proxies for renal tissue analysis. Elevated miR-148b-5p levels were observed in exosomes derived from patients with kidney stones. Systemic administration of miR-148b-5p in rat models resulted in heightened urinary calcium excretion, whereas its inhibition reduced stone formation. RNA immunoprecipitation combined with deep sequencing identified miR-148b-5p as a suppressor of calcitonin receptor (Calcr) expression, thereby promoting urinary calcium excretion and stone formation. Mice deficient in Calcr in distal epithelial cells demonstrated elevated urinary calcium excretion and renal calcification. Mechanistically, miR-148b-5p regulated Calcr through the circRNA-83536/miR-24-3p signaling pathway. Human kidney tissue samples corroborated these results. In summary, miR-148b-5p regulates the formation of calcium-containing kidney stones via the circRNA-83536/miR-24-3p/Calcr axis, presenting a potential target for novel therapeutic interventions to prevent calcium nephrolithiasis.


Asunto(s)
Calcio , Hipercalciuria , MicroARNs , Nefrolitiasis , Animales , Humanos , Masculino , Ratones , Ratas , Calcio/metabolismo , Exosomas/metabolismo , Exosomas/genética , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/patología , Riñón/metabolismo , Riñón/patología , Cálculos Renales/metabolismo , Cálculos Renales/genética , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , MicroARNs/metabolismo , Nefrolitiasis/metabolismo , Nefrolitiasis/genética , Nefrolitiasis/patología , Ratas Sprague-Dawley , Transducción de Señal
2.
J Physiol ; 602(13): 3207-3224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38367250

RESUMEN

High concentrations of urinary calcium counteract vasopressin action via the activation of the Calcium-Sensing Receptor (CaSR) expressed in the luminal membrane of the collecting duct cells, which impairs the trafficking of aquaporin-2 (AQP2). In line with these findings, we provide evidence that, with respect to wild-type mice, CaSR knock-in (KI) mice mimicking autosomal dominant hypocalcaemia, display a significant decrease in the total content of AQP2 associated with significantly higher levels of AQP2 phosphorylation at Ser261, a phosphorylation site involved in AQP2 degradation. Interestingly, KI mice also had significantly higher levels of phosphorylated p38MAPK, a downstream effector of CaSR and known to phosphorylate AQP2 at Ser261. Moreover, ATF1 phosphorylated at Ser63, a transcription factor downstream of p38MAPK, was significantly higher in KI. In addition, KI mice had significantly higher levels of AQP2-targeting miRNA137 consistent with a post-transcriptional downregulation of AQP2. In vivo treatment of KI mice with the calcilytic JTT-305, a CaSR antagonist, increased AQP2 expression and reduced AQP2-targeting miRNA137 levels in KI mice. Together, these results provide direct evidence for a critical role of CaSR in impairing both short-term vasopressin response by increasing AQP2-pS261, as well as AQP2 abundance, via the p38MAPK-ATF1-miR137 pathway. KEY POINTS: Calcium-Sensing Receptor (CaSR) activating mutations are the main cause of autosomal dominant hypocalcaemia (ADH) characterized by inappropriate renal calcium excretion leading to hypocalcaemia and hypercalciuria. Current treatments of ADH patients with parathyroid hormone, although improving hypocalcaemia, do not improve hypercalciuria or nephrocalcinosis. In vivo treatment with calcilytic JTT-305/MK-5442 ameliorates most of the ADH phenotypes of the CaSR knock-in mice including hypercalciuria or nephrocalcinosis and reverses the downregulation of the vasopressin-sensitive aquaporin-2 (AQP2) expression, providing direct evidence for a critical role of CaSR in impairing vasopressin response. The beneficial effect of calcilytic in reducing the risk of renal calcification may occur in a parathyroid hormone-independent action through vasopressin-dependent inhibition of cAMP synthesis in the thick ascending limb and in the collecting duct. The amelioration of most of the abnormalities in calcium metabolism including hypercalciuria, renal calcification, and AQP2-mediated osmotic water reabsorption makes calcilytic a good candidate as a novel therapeutic agent for ADH.


Asunto(s)
Acuaporina 2 , Regulación hacia Abajo , Receptores Sensibles al Calcio , Vasopresinas , Animales , Acuaporina 2/metabolismo , Acuaporina 2/genética , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Ratones , Vasopresinas/metabolismo , Técnicas de Sustitución del Gen , Riñón/metabolismo , Riñón/efectos de los fármacos , Ratones Endogámicos C57BL , Masculino , Transducción de Señal , Fenotipo , Hipercalciuria/genética , Hipercalciuria/metabolismo , Hipercalciuria/tratamiento farmacológico , Calcio/metabolismo , Fosforilación , Hipocalcemia , Hipoparatiroidismo/congénito
3.
Kidney Int ; 105(5): 927-929, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38642991

RESUMEN

Hereditary hypophosphatemic rickets with hypercalciuria is an autosomal recessive phosphate-wasting disorder, associated with kidney and skeletal pathologies, which is caused by pathogenic variants of SLC34A3. In this issue, Zhu et al. describe a pooled analysis of 304 individuals carrying SLC34A3 variants. Their study underscores the complexity of hereditary hypophosphatemic rickets with hypercalciuria, as kidney and bone phenotypes generally do not coexist, heterozygous carriers of SLC34A3 variants also can be affected, and the response to oral phosphate supplementation is dependent on the genetic status.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/genética , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Medicina de Precisión , Mutación , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Fosfatos
4.
Kidney Int ; 105(5): 1058-1076, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38364990

RESUMEN

Pathogenic variants in solute carrier family 34, member 3 (SLC34A3), the gene encoding the sodium-dependent phosphate cotransporter 2c (NPT2c), cause hereditary hypophosphatemic rickets with hypercalciuria (HHRH). Here, we report a pooled analysis of clinical and laboratory records of 304 individuals from 145 kindreds, including 20 previously unreported HHRH kindreds, in which two novel SLC34A3 pathogenic variants were identified. Compound heterozygous/homozygous carriers show above 90% penetrance for kidney and bone phenotypes. The biochemical phenotype for heterozygous carriers is intermediate with decreased serum phosphate, tubular reabsorption of phosphate (TRP (%)), fibroblast growth factor 23, and intact parathyroid hormone, but increased serum 1,25-dihydroxy vitamin D, and urine calcium excretion causing idiopathic hypercalciuria in 38%, with bone phenotypes still observed in 23% of patients. Oral phosphate supplementation is the current standard of care, which typically normalizes serum phosphate. However, although in more than half of individuals this therapy achieves correction of hypophosphatemia it fails to resolve the other outcomes. The American College of Medical Genetics and Genomics score correlated with functional analysis of frequent SLC34A3 pathogenic variants in vitro and baseline disease severity. The number of mutant alleles and baseline TRP (%) were identified as predictors for kidney and bone phenotypes, baseline TRP (%) furthermore predicted response to therapy. Certain SLC34A3/NPT2c pathogenic variants can be identified with partial responses to therapy, whereas with some overlap, others present only with kidney phenotypes and a third group present only with bone phenotypes. Thus, our report highlights important novel clinical aspects of HHRH and heterozygous carriers, raises awareness to this rare group of disorders and can be a foundation for future studies urgently needed to guide therapy of HHRH.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/tratamiento farmacológico , Hipercalciuria/diagnóstico , Hipercalciuria/tratamiento farmacológico , Hipercalciuria/genética , Riñón/metabolismo , Fosfatos , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/genética , Proteínas Cotransportadoras de Sodio-Fosfato de Tipo IIc/metabolismo
5.
Curr Opin Nephrol Hypertens ; 33(4): 433-440, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38690798

RESUMEN

PURPOSE OF REVIEW: Activation of the calcium-sensing receptor (CASR) in the parathyroid gland suppresses the release of parathyroid hormone (PTH). Furthermore, activation of the renal CASR directly increases the urinary excretion of calcium, by inhibiting transepithelial calcium transport in the nephron. Gain-of-function mutations in the CASR gene lead to autosomal dominant hypocalcemia 1 (ADH1), with inappropriately low PTH levels and hypocalcemia, indicative of excessive activation of the parathyroid CASR. However, hypercalciuria is not always observed. The reason why the manifestation of hypercalciuria is not uniform among ADH1 patients is not well understood. RECENT FINDINGS: Direct activation of the CASR in the kidney has been cumbersome to study, and an indirect measure to effectively estimate the degree of CASR activation following chronic hypercalcemia or genetic gain-of-function CASR activation has been lacking. Studies have shown that expression of the pore-blocking claudin-14 is strongly stimulated by the CASR in a dose-dependent manner. This stimulatory effect is abolished after renal Casr ablation in hypercalcemic mice, suggesting that claudin-14 abundance may gauge renal CASR activation. Using this marker has led to unexpected discoveries regarding renal CASR activation. SUMMARY: These new studies have informed on renal CASR activation thresholds and the downstream CASR-regulated calcium transport mechanisms.


Asunto(s)
Riñón , Receptores Sensibles al Calcio , Receptores Sensibles al Calcio/metabolismo , Receptores Sensibles al Calcio/genética , Humanos , Animales , Riñón/metabolismo , Hipercalciuria/metabolismo , Hipercalciuria/genética , Calcio/metabolismo , Hipercalcemia/metabolismo , Hipercalcemia/genética , Claudinas/metabolismo , Claudinas/genética , Hipocalcemia , Hipoparatiroidismo/congénito
6.
Calcif Tissue Int ; 114(2): 110-118, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38078932

RESUMEN

Familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHNNC) is a rare autosomal recessive renal tubulopathy disorder characterized by excessive urinary loss of calcium and magnesium, polyuria, polydipsia, bilateral nephrocalcinosis, progressive chronic kidney disease, and renal failure. Also, sometimes amelogenesis imperfecta and severe ocular abnormalities are involved. The CLDN-16 and CLDN-19 genes encode the tight junction proteins claudin-16 and claudin-19, respectively, in the thick ascending loop of Henle in the kidney, epithelial cells of the retina, dental enamel, etc. Loss of function of the CLDN-16 and/or CLDN-19 genes leads to FHHNC. We present a case of FHHNC type 1, which was first confused with autosomal dominant hypocalcaemia (ADH) due to the presence of a very low serum parathyroid hormone (PTH) concentration and other similar clinical features before the genetic investigations. After the exome sequencing, FHHNC type 1 was confirmed by uncovering a novel homozygous missense mutation in the CLDN-16 gene (Exon 2, c.374 T > C) which causes, altered protein structure with F55S. Associated clinical, biochemical, and imaging findings also corroborate final diagnosis. Our findings expand the spectrum of the CLDN-16 mutation, which will further help in the genetic diagnosis and management of FHNNC.


Asunto(s)
Hipocalcemia , Hipoparatiroidismo/congénito , Nefrocalcinosis , Humanos , Magnesio , Mutación Missense , Nefrocalcinosis/complicaciones , Nefrocalcinosis/diagnóstico , Nefrocalcinosis/genética , Hipercalciuria/complicaciones , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Hipocalcemia/complicaciones , Hipocalcemia/diagnóstico , Hipocalcemia/genética , Mutación , Claudinas/genética
7.
Calcif Tissue Int ; 114(2): 137-146, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37981601

RESUMEN

Hereditary hypophosphatemic rickets with hypercalciuria (HHRH) is a rare disorder of phosphate homeostasis. We describe a single-center experience of genetically proven HHRH families and perform systematic review phenotype-genotype correlation in reported biallelic probands and their monoallelic relatives. Detailed clinical, biochemical, radiological, and genetic data were retrieved from our center and a systematic review of Pub-Med and Embase databases for patients and relatives who were genetically proven. Total of nine subjects (probands:5) carrying biallelic SLC34A3 mutations (novel:2) from our center had a spectrum from rickets/osteomalacia to normal BMD, with hypophosphatemia and hypercalciuria in all. We describe the first case of genetically proven HHRH with enthesopathy. Elevated FGF23 in another patient with hypophosphatemia, iron deficiency anemia, and noncirrhotic periportal fibrosis led to initial misdiagnosis as tumoral osteomalacia. On systematic review of 58 probands (with biallelic SLC34A3 mutations; 35 males), early-onset HHRH and renal calcification were present in ~ 70% and late-onset HHRH in 10%. c.575C > T p.(Ser192Leu) variant occurred in 53% of probands without skeletal involvement. Among 110 relatives harboring monoallelic SLC34A3 mutation at median age 38 years, renal calcification, hypophosphatemia, high 1,25(OH)2D, and hypercalciuria were observed in ~30%, 22.3%, 40%, and 38.8%, respectively. Renal calcifications correlated with age but were similar across truncating and non-truncating variants. Although most relatives were asymptomatic for bone involvement, 6/12(50%) had low bone mineral density. We describe the first monocentric HHRH case series from India with varied phenotypes. In a systematic review, frequent renal calcifications and low BMD in relatives with monoallelic variants (HHRH trait) merit identification.


Asunto(s)
Entesopatía , Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Enfermedades Renales Quísticas , Nefrocalcinosis , Osteomalacia , Masculino , Humanos , Adulto , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/genética , Hipercalciuria/complicaciones , Hipercalciuria/genética , Osteomalacia/complicaciones , Osteomalacia/genética
8.
Pediatr Nephrol ; 39(4): 1301-1313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38165475

RESUMEN

A 3-year-old female patient with no significant medical history presented to her pediatrician with foamy urine. Initial testing revealed moderate proteinuria on qualitative testing, although she was incidentally noted to have severe hypertension (240/200 mmHg). Physical examination of the carotid and femoral areas revealed significant systolic vascular murmurs. Labs showed elevated serum creatinine, hypokalemia, metabolic alkalosis, elevated renin and aldosterone and hypercalciuria. Echocardiography identified ventricular hypertrophy. Computed tomography (CT) of the abdomen and magnetic resonance angiography of the head showed multiple tortuous or interrupted arteries and multiple calcifications in the renal sinus area. B-mode ultrasonography suggested thickening of the carotid and femoral artery walls, with numerous spotted calcifications. Genetic testing revealed that ABCC6 had a complex heterozygous mutation (exon 24: c.3340C > T and intron 30: c.4404-1G > A). Our panel of experts reviewed the evaluation of this patient with hypertension, proteinuria, hypercalciuria, and vascular abnormalities as well as the diagnosis and appropriate management of a rare disease.


Asunto(s)
Hipertensión , Hipopotasemia , Femenino , Humanos , Preescolar , Hipercalciuria/complicaciones , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Hipertensión/complicaciones , Hipertensión/diagnóstico , Hipopotasemia/genética , Pruebas Genéticas , Proteinuria/etiología , Proteinuria/genética
9.
Intern Med J ; 54(6): 852-860, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38665051

RESUMEN

Calcium-sensing receptors (CaSRs) are G protein-coupled receptors that help maintain Ca2+ concentrations, modulating calciotropic hormone release (parathyroid hormone (PTH), calcitonin and 1,25-dihydroxyvitamin D) by direct actions in the kidneys, gastrointestinal tract and bone. Variability in population calcium levels has been attributed to single nucleotide polymorphisms in CaSR genes, and several conditions affecting calcium and phosphate homeostasis have been attributed to gain- or loss-of-function mutations. An example is autosomal dominant hypercalciuric hypocalcaemia, because of a missense mutation at codon 128 of chromosome 3, as reported in our specific case and her family. As a consequence of treating symptomatic hypocalcaemia as a child, this female subject slowly developed progressive end-stage kidney failure because of nephrocalcinosis and nephrolithiasis. After kidney transplantation, she remains asymptomatic, with decreased vitamin D and elemental calcium requirements, stable fluid and electrolyte homeostasis during intercurrent illnesses and has normalised urinary calcium and phosphate excretion, reducing the likelihood of hypercalciuria-induced graft impairment. We review the actions of the CaSR, its role in regulating renal Ca2+ homeostasis along with the impact of a proven gain-of-function mutation in the CaSR gene resulting in autosomal dominant hypercalciuric hypocalcaemia before and after kidney transplantation.


Asunto(s)
Calcio , Homeostasis , Trasplante de Riñón , Receptores Sensibles al Calcio , Humanos , Receptores Sensibles al Calcio/genética , Femenino , Calcio/metabolismo , Hipocalcemia/genética , Hipocalcemia/etiología , Hipercalciuria/genética , Hipercalcemia/genética , Riñón/metabolismo , Mutación Missense , Nefrocalcinosis/genética , Fallo Renal Crónico/cirugía , Hipoparatiroidismo/congénito
10.
BMC Pediatr ; 24(1): 121, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38355430

RESUMEN

BACKGROUND: Hereditary hypophosphatemia rickets with hypercalciuria (HHRH) is a rare autosomal recessive disorder characterised by reduced renal phosphate reabsorption leading to hypophosphataemia, rickets and bone pain. Here, we present a case of HHRH in a Chinese boy. CASE PRESENTATION: We report a 11-year-old female proband, who was admitted to our hospital with bilateral genuvarum deformity and short stature. Computed Tomography (CT) showed kidney stones, blood tests showed hypophosphatemia, For a clear diagnosis, we employed high-throughput sequencing technology to screen for variants. Our gene sequencing approach encompassed whole exome sequencing, detection of exon and intron junction regions, and examination of a 20 bp region of adjacent introns. Flanking sequences are defined as ±50 bp upstream and downstream of the 5' and 3' ends of the coding region.The raw sequence data were compared to the known gene sequence data in publicly available sequence data bases using Burrows-Wheeler Aligner software (BWA, 0.7.12-r1039), and the pathogenic variant sites were annotated using Annovar. Subsequently, the suspected pathogenic variants were classified according to ACMG's gene variation classification system. Simultaneously, unreported or clinically ambiguous pathogenic variants were predicted and annotated based on population databases. Any suspected pathogenic variants identified through this analysis were then validated using Sanger sequencing technology. At last, the proband and her affected sister carried pathogenic homozygous variant in the geneSLC34A3(exon 13, c.1402C > T; p.R468W). Their parents were both heterozygous carriers of the variant. Genetic testing revealed that the patient has anLRP5(exon 18, c.3917C > T; p.A1306V) variant of Uncertain significance, which is a rare homozygous variant. CONCLUSION: This case report aims to raise awareness of the presenting characteristics of HHRH. The paper describes a unique case involving variants in both theSLC34A3andLRP5genes, which are inherited in an autosomal recessive manner. This combination of gene variants has not been previously reported in the literature. It is uncertain whether the presence of these two mutated genes in the same individual will result in more severe clinical symptoms. This report shows that an accurate diagnosis is critical, and with early diagnosis and correct treatment, patients will have a better prognosis.


Asunto(s)
Raquitismo Hipofosfatémico Familiar , Hipofosfatemia , Trastornos del Metabolismo del Fósforo , Niño , Femenino , Humanos , Raquitismo Hipofosfatémico Familiar/complicaciones , Raquitismo Hipofosfatémico Familiar/diagnóstico , Raquitismo Hipofosfatémico Familiar/genética , Heterocigoto , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Hipofosfatemia/genética , Intrones , Mutación , Trastornos del Metabolismo del Fósforo/genética
11.
Ren Fail ; 46(1): 2349133, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38726999

RESUMEN

OBJECTIVE:  The clinical characteristics, genetic mutation spectrum, treatment strategies and prognoses of 15 children with Dent disease were retrospectively analyzed to improve pediatricians' awareness of and attention to this disease. METHODS:  We analyzed the clinical and laboratory data of 15 Chinese children with Dent disease who were diagnosed and treated at our hospital between January 2017 and May 2023 and evaluated the expression of the CLCN5 and OCRL1 genes. RESULTS:  All 15 patients were male and complained of proteinuria, and the incidence of low-molecular-weight proteinuria (LMWP) was 100.0% in both Dent disease 1 (DD1) and Dent disease 2 (DD2) patients. The incidence of hypercalciuria was 58.3% (7/12) and 66.7% (2/3) in DD1 and DD2 patients, respectively. Nephrocalcinosis and nephrolithiasis were found in 16.7% (2/12) and 8.3% (1/12) of DD1 patients, respectively. Renal biopsy revealed focal segmental glomerulosclerosis (FSGS) in 1 patient, minimal change lesion in 5 patients, and small focal acute tubular injury in 1 patient. A total of 11 mutations in the CLCN5 gene were detected, including 3 missense mutations (25.0%, c.1756C > T, c.1166T > G, and c.1618G > A), 5 frameshift mutations (41.7%, c.407delT, c.1702_c.1703insC, c.137delC, c.665_666delGGinsC, and c.2200delG), and 3 nonsense mutations (25.0%, c.776G > A, c.1609C > T, and c.1152G > A). There was no significant difference in age or clinical phenotype among patients with different mutation types (p > 0.05). All three mutations in the OCRL1 gene were missense mutations (c.1477C > T, c.952C > T, and c.198A > G). CONCLUSION:  Pediatric Dent disease is often misdiagnosed. Protein electrophoresis and genetic testing can help to provide an early and correct diagnosis.


Asunto(s)
Canales de Cloruro , Enfermedad de Dent , Monoéster Fosfórico Hidrolasas , Adolescente , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , China/epidemiología , Canales de Cloruro/genética , Enfermedad de Dent/genética , Enfermedad de Dent/diagnóstico , Pueblos del Este de Asia , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Pruebas Genéticas , Glomeruloesclerosis Focal y Segmentaria/genética , Hipercalciuria/genética , Riñón/patología , Mutación , Mutación Missense , Nefrocalcinosis/genética , Nefrolitiasis/genética , Monoéster Fosfórico Hidrolasas/genética , Proteinuria/genética , Estudios Retrospectivos
12.
Int J Mol Sci ; 25(3)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38339056

RESUMEN

Patients with mutations in Cldn16 suffer from familial hypomagnesaemia with hypercalciuria and nephrocalcinosis (FHHNC) which can lead to renal insufficiency. Mice lacking claudin-16 show hypomagnesemia and hypercalciuria, but no nephrocalcinosis. Calcium oxalate and calcium phosphate are the most common insoluble calcium salts that accumulate in the kidney in the case of nephrocalcinosis, however, the formation of these salts is less favored in acidic conditions. Therefore, urine acidification has been suggested to limit the formation of calcium deposits in the kidney. Assuming that urine acidification is causative for the absence of nephrocalcinosis in the claudin-16-deficient mouse model, we aimed to alkalinize the urine of these mice by the ablation of the subunit B1 of the vesicular ATPase in addition to claudin-16. In spite of an increased urinary pH in mice lacking claudin-16 and the B1 subunit, nephrocalcinosis did not develop. Thus, urinary acidification is not the only factor preventing nephrocalcinosis in claudin-16 deficient mice.


Asunto(s)
Hipercalciuria , Nefrocalcinosis , Humanos , Animales , Ratones , Hipercalciuria/genética , Nefrocalcinosis/genética , Calcio , Sales (Química) , Magnesio , Concentración de Iones de Hidrógeno , Claudinas/genética
13.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38732005

RESUMEN

In calcium nephrolithiasis (CaNL), most calcium kidney stones are identified as calcium oxalate (CaOx) with variable amounts of calcium phosphate (CaP), where CaP is found as the core component. The nucleation of CaP could be the first step of CaP+CaOx (mixed) stone formation. High urinary supersaturation of CaP due to hypercalciuria and an elevated urine pH have been described as the two main factors in the nucleation of CaP crystals. Our previous in vivo findings (in mice) show that transient receptor potential canonical type 3 (TRPC3)-mediated Ca2+ entry triggers a transepithelial Ca2+ flux to regulate proximal tubular (PT) luminal [Ca2+], and TRPC3-knockout (KO; -/-) mice exhibited moderate hypercalciuria and microcrystal formation at the loop of Henle (LOH). Therefore, we utilized TRPC3 KO mice and exposed them to both hypercalciuric [2% calcium gluconate (CaG) treatment] and alkalineuric conditions [0.08% acetazolamide (ACZ) treatment] to generate a CaNL phenotype. Our results revealed a significant CaP and mixed crystal formation in those treated KO mice (KOT) compared to their WT counterparts (WTT). Importantly, prolonged exposure to CaG and ACZ resulted in a further increase in crystal size for both treated groups (WTT and KOT), but the KOT mice crystal sizes were markedly larger. Moreover, kidney tissue sections of the KOT mice displayed a greater CaP and mixed microcrystal formation than the kidney sections of the WTT group, specifically in the outer and inner medullary and calyceal region; thus, a higher degree of calcifications and mixed calcium lithiasis in the kidneys of the KOT group was displayed. In our effort to find the Ca2+ signaling pathophysiology of PT cells, we found that PT cells from both treated groups (WTT and KOT) elicited a larger Ca2+ entry compared to the WT counterparts because of significant inhibition by the store-operated Ca2+ entry (SOCE) inhibitor, Pyr6. In the presence of both SOCE (Pyr6) and ROCE (receptor-operated Ca2+ entry) inhibitors (Pyr10), Ca2+ entry by WTT cells was moderately inhibited, suggesting that the Ca2+ and pH levels exerted sensitivity changes in response to ROCE and SOCE. An assessment of the gene expression profiles in the PT cells of WTT and KOT mice revealed a safeguarding effect of TRPC3 against detrimental processes (calcification, fibrosis, inflammation, and apoptosis) in the presence of higher pH and hypercalciuric conditions in mice. Together, these findings show that compromise in both the ROCE and SOCE mechanisms in the absence of TRPC3 under hypercalciuric plus higher tubular pH conditions results in higher CaP and mixed crystal formation and that TRPC3 is protective against those adverse effects.


Asunto(s)
Oxalato de Calcio , Hipercalciuria , Cálculos Renales , Ratones Noqueados , Animales , Hipercalciuria/metabolismo , Hipercalciuria/genética , Concentración de Iones de Hidrógeno , Ratones , Oxalato de Calcio/metabolismo , Cálculos Renales/metabolismo , Cálculos Renales/etiología , Cálculos Renales/patología , Fosfatos de Calcio/metabolismo , Nefrolitiasis/metabolismo , Nefrolitiasis/genética , Nefrolitiasis/patología , Calcio/metabolismo , Canales Catiónicos TRPC/metabolismo , Canales Catiónicos TRPC/genética , Túbulos Renales Proximales/metabolismo , Túbulos Renales Proximales/patología , Masculino , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Acetazolamida/farmacología
14.
Zhonghua Yi Xue Za Zhi ; 104(34): 3256-3259, 2024 Sep 03.
Artículo en Zh | MEDLINE | ID: mdl-39193613

RESUMEN

The clinical presentation, treatment, and follow-up of two boys with type 1 Dent disease who exhibited a Bartter-like phenotype were retropectively analysed. The related literature of pediatric patients with type 1 Dent disease who had hypokalemia and metabolic alkalosis was screened through databases such as PubMed, CNKI, and Wanfang until February 1, 2024, and common features among these patients were summarized through literature review. A total of 7 literatures were included, and 9 children were included in the analysis. All patients were male, presenting with significant low molecular weight proteinuria and hypercalciuria. Other prominent characteristic phenotypes included short stature (7/8), hypophosphatemia (8/9), and rickets (6/8). Seven previously reported patients had missense or nonsense mutations, while 2 patients in this study carried possible pathogenic mutations in the CLCN5 gene, c.315+2T>A (p.?) and c.584dupT (p.I196Yfs*6), respectively. Five patients were able to maintain blood potassium levels around 3 mmol/L with oral potassium chloride solution combined with non-steroidal anti-inflammatory drugs (ibuprofen or indomethacin). The follow-up showed that 2 patients developed chronic kidney disease stage 4 and stage 3 at the age of 13 and 21 years, respectively. The phenotypic overlap between Dent disease and Batter syndrome is considerable,with the distinguishing feature being the presence of significant low molecular weight proteinuria. Patients with type 1 Dent disease presenting with the Bartter-like phenotype have a high prevalence of short stature, hypophosphatemia, and rickets. Non-steroidal anti-inflammatory drugs can be used to correct hypokalemia in patients under periodic renal function assessment.


Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X , Nefrolitiasis , Niño , Humanos , Masculino , Síndrome de Bartter/genética , Síndrome de Bartter/diagnóstico , Canales de Cloruro/genética , Enfermedades Genéticas Ligadas al Cromosoma X/diagnóstico , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Hipopotasemia/diagnóstico , Hipopotasemia/genética , Hipofosfatemia/diagnóstico , Hipofosfatemia/genética , Mutación , Nefrolitiasis/diagnóstico , Nefrolitiasis/genética , Fenotipo , Proteinuria/diagnóstico , Proteinuria/genética , Raquitismo/diagnóstico
15.
Hum Mol Genet ; 30(15): 1413-1428, 2021 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-33987651

RESUMEN

Dent disease 1 (DD1) is a rare X-linked renal proximal tubulopathy characterized by low molecular weight proteinuria and variable degree of hypercalciuria, nephrocalcinosis and/or nephrolithiasis, progressing to chronic kidney disease. Although mutations in the electrogenic Cl-/H+ antiporter ClC-5, which impair endocytic uptake in proximal tubule cells, cause the disease, there is poor genotype-phenotype correlation and their contribution to proximal tubule dysfunction remains unclear. To further discover the mechanisms linking ClC-5 loss-of-function to proximal tubule dysfunction, we have generated novel DD1 cellular models depleted of ClC-5 and carrying ClC-5 mutants p.(Val523del), p.(Glu527Asp) and p.(Ile524Lys) using the human proximal tubule-derived RPTEC/TERT1 cell line. Our DD1 cellular models exhibit impaired albumin endocytosis, increased substrate adhesion and decreased collective migration, correlating with a less differentiated epithelial phenotype. Despite sharing functional features, these DD1 cell models exhibit different gene expression profiles, being p.(Val523del) ClC-5 the mutation showing the largest differences. Gene set enrichment analysis pointed to kidney development, anion homeostasis, organic acid transport, extracellular matrix organization and cell-migration biological processes as the most likely involved in DD1 pathophysiology. In conclusion, our results revealed the pathways linking ClC-5 mutations with tubular dysfunction and, importantly, provide new cellular models to further study DD1 pathophysiology.


Asunto(s)
Canales de Cloruro/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Nefrolitiasis/genética , Nefrolitiasis/metabolismo , Animales , Fenómenos Biológicos , Línea Celular , Canales de Cloruro/metabolismo , Enfermedad de Dent/genética , Endocitosis/fisiología , Estudios de Asociación Genética , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Humanos , Hipercalciuria/genética , Túbulos Renales Proximales/metabolismo , Mutación , Nefrocalcinosis/genética , Nefrolitiasis/fisiopatología , Proteinuria/genética
16.
Curr Opin Nephrol Hypertens ; 32(4): 359-365, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37074688

RESUMEN

PURPOSE OF REVIEW: Most kidney stones are composed of calcium, and the greatest risk factor for kidney stone formation is hypercalciuria. Patients who form kidney stones often have reduced calcium reabsorption from the proximal tubule, and increasing this reabsorption is a goal of some dietary and pharmacological treatment strategies to prevent kidney stone recurrence. However, until recently, little was known about the molecular mechanism that mediates calcium reabsorption from the proximal tubule. This review summarizes newly uncovered key insights and discusses how they may inform the treatment of kidney stone formers. RECENT FINDINGS: Studies examining claudin-2 and claudin-12 single and double knockout mice, combined with cell culture models, support complementary independent roles for these tight junction proteins in contributing paracellular calcium permeability to the proximal tubule. Moreover, a family with a coding variation in claudin-2 causing hypercalciuria and kidney stones have been reported, and reanalysis of Genome Wide Association Study (GWAS) data demonstrates an association between noncoding variations in CLDN2 and kidney stone formation. SUMMARY: The current work begins to delineate the molecular mechanisms whereby calcium is reabsorbed from the proximal tubule and suggests a role for altered claudin-2 mediated calcium reabsorption in the pathogenesis of hypercalciuria and kidney stone formation.


Asunto(s)
Calcio , Hipercalciuria , Cálculos Renales , Cálculos Renales/genética , Cálculos Renales/fisiopatología , Cálculos Renales/prevención & control , Cálculos Renales/terapia , Hipercalciuria/genética , Hipercalciuria/fisiopatología , Hipercalciuria/prevención & control , Hipercalciuria/terapia , Calcio/metabolismo , Humanos , Animales , Claudina-2/genética , Claudina-2/metabolismo , Claudinas/genética , Claudinas/metabolismo , Estudio de Asociación del Genoma Completo , Túbulos Renales Proximales/fisiopatología
17.
Nephrol Dial Transplant ; 38(6): 1497-1507, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36441012

RESUMEN

BACKGROUND: Dent's disease type 1 (DD1) is a rare X-linked nephropathy caused by CLCN5 mutations, characterized by proximal tubule dysfunction, including low molecular weight proteinuria (LMWP), hypercalciuria, nephrolithiasis-nephrocalcinosis, progressive chronic kidney disease (CKD) and kidney failure (KF). Current management is symptomatic and does not prevent disease progression. Here we describe the contemporary DD1 picture across Europe to highlight its unmet needs. METHODS: A physician-based anonymous international e-survey supported by several European nephrology networks/societies was conducted. Questions focused on DD1 clinical features, diagnostic procedure and mutation spectra. RESULTS: A total of 207 DD1 male patients were reported; clinical data were available for 163 with confirmed CLCN5 mutations. Proteinuria was the most common manifestation (49.1%). During follow-up, all patients showed LMWP, 66.4% nephrocalcinosis, 44.4% hypercalciuria and 26.4% nephrolithiasis. After 5.5 years, ≈50% of patients presented with renal dysfunction, 20.7% developed CKD stage ≥3 and 11.1% developed KF. At the last visit, hypercalciuria was more frequent in paediatric patients than in adults (73.4% versus 19.0%). Conversely, nephrolithiasis, nephrocalcinosis and renal dysfunction were more prominent in adults. Furthermore, CKD progressed with age. Despite no clear phenotype/genotype correlation, decreased glomerular filtration rate was more frequent in subjects with CLCN5 mutations affecting the pore or CBS domains compared with those with early-stop mutations. CONCLUSIONS: Results from this large DD1 cohort confirm previous findings and provide new insights regarding age and genotype impact on CKD progression. Our data strongly support that DD1 should be considered in male patients with CKD, nephrocalcinosis/hypercalciuria and non-nephrotic proteinuria and provide additional support for new research opportunities.


Asunto(s)
Enfermedad de Dent , Cálculos Renales , Nefrocalcinosis , Insuficiencia Renal Crónica , Insuficiencia Renal , Masculino , Humanos , Nefrocalcinosis/etiología , Nefrocalcinosis/genética , Enfermedad de Dent/diagnóstico , Enfermedad de Dent/genética , Hipercalciuria/epidemiología , Hipercalciuria/genética , Mutación , Europa (Continente)/epidemiología , Insuficiencia Renal Crónica/etiología , Insuficiencia Renal Crónica/genética , Proteinuria/genética , Canales de Cloruro/genética
18.
Pediatr Nephrol ; 38(4): 1067-1073, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36156733

RESUMEN

BACKGROUND: Idiopathic infantile hypercalcemia (IIH) etiologies include pathogenic variants in CYP24A1, leading to increased 1,25(OH)2 D, hypercalciuria and suppressed parathyroid hormone (PTH), and in SLC34A1 and SLC34A3, leading to the same metabolic profile via increased phosphaturia. IIH has not been previously described in CKD due to kidney hypodysplasia (KHD). METHODS: Retrospective study of children with bilateral KHD and simultaneously tested PTH and 1,25(OH)2D, followed in a tertiary care center between 2015 and 2021. RESULTS: Of 295 screened patients, 139 had KHD, of them 16 (11.5%) had IIH (study group), 26 with normal PTH and any 1,25(OH)2D were controls. There were no differences between groups' gender, obstructive uropathy rate and baseline eGFR. Study patients were younger [median (IQR) age: 5.2 (3.2-11.3) vs. 61 (13.9-158.3) months, p < 0.001], had higher 1,25(OH)2D (259.1 ± 91.7 vs. 156.5 ± 46.4 pmol/l, p < 0.001), total calcium (11.1 ± 0.4 vs. 10.7 ± 0.3 mg/dl, p < 0.001), and lower phosphate standard deviation score (P-SDS) [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.8, - 0.1), p = 0.03]. During 12 months of follow-up, PTH increased among the study group (8.8 ± 2.8 to 22.7 ± 12.4 pg/ml, p < 0.001), calcium decreased (11 ± 0.5 to 10.3 ± 0.6 mg/dl, p = 0.004), 1,25(OH)2D decreased (259.5 ± 91.7 to 188.2 ± 42.6 pmol/l, p = 0.1), P-SDS increased [median (IQR): - 1.4 (- 1.9, - 0.4) vs. - 0.3 (- 0.9, 0.4), p = 0.04], while eGFR increased. Five of 9 study group patients with available urine calcium had hypercalciuria. Five patients had nephrocalcinosis/lithiasis. Genetic analysis for pathogenic variants in CYP24A1, SLC34A1 and SLC34A3 had not been performed. CONCLUSIONS: Transient IIH was observed in infants with KHD, in association with hypophosphatemia, resembling SLC34A1 and SLC34A3 pathogenic variants' metabolic profile. A higher resolution version of the Graphical abstract is available as Supplementary information.


Asunto(s)
Hipercalcemia , Insuficiencia Renal Crónica , Lactante , Humanos , Niño , Preescolar , Hipercalcemia/genética , Calcio/metabolismo , Hipercalciuria/complicaciones , Hipercalciuria/genética , Vitamina D3 24-Hidroxilasa/genética , Vitamina D3 24-Hidroxilasa/metabolismo , Estudios Retrospectivos , Mutación , Hormona Paratiroidea , Insuficiencia Renal Crónica/complicaciones , Fosfatos , Riñón/metabolismo
19.
Zhejiang Da Xue Xue Bao Yi Xue Ban ; 52(2): 169-177, 2023 Apr 25.
Artículo en Inglés, Zh | MEDLINE | ID: mdl-37283101

RESUMEN

Renal calculus is a common disease with complex etiology and high recurrence rate. Recent studies have revealed that gene mutations may lead to metabolic defects which are associated with the formation of renal calculus, and single gene mutation is involved in relative high proportion of renal calculus. Gene mutations cause changes in enzyme function, metabolic pathway, ion transport, and receptor sensitivity, causing defects in oxalic acid metabolism, cystine metabolism, calcium ion metabolism, or purine metabolism, which may lead to the formation of renal calculus. The hereditary conditions associated with renal calculus include primary hyperoxaluria, cystinuria, Dent disease, familial hypomagnesemia with hypercalciuria and nephrocalcinosis, Bartter syndrome, primary distal renal tubular acidosis, infant hypercalcemia, hereditary hypophosphatemic rickets with hypercalciuria, adenine phosphoribosyltransferase deficiency, hypoxanthine-guanine phosphoribosyltransferase deficiency, and hereditary xanthinuria. This article reviews the research progress on renal calculus associated with inborn error of metabolism, to provide reference for early screening, diagnosis, treatment, prevention and recurrence of renal calculus.


Asunto(s)
Cálculos Renales , Errores Innatos del Metabolismo , Nefrocalcinosis , Urolitiasis , Lactante , Humanos , Hipercalciuria/genética , Cálculos Renales/diagnóstico , Cálculos Renales/genética , Urolitiasis/genética , Nefrocalcinosis/genética , Errores Innatos del Metabolismo/complicaciones , Errores Innatos del Metabolismo/genética
20.
Calcif Tissue Int ; 110(4): 441-450, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34761296

RESUMEN

Biallelic loss of function mutations in the CLDN16 gene cause familial hypomagnesemia with hypercalciuria and nephrocalcinosis (FHHNC), and chronic kidney disease. Here we report two cases of FHHNC with diverse clinical presentations and hypercalcemia in one as a novel finding. Pt#1 initially presented with urinary tract infection and failure to thrive at 5.5 months of age to another center. Bilateral nephrocalcinosis, hypercalcemia (Ca: 12.2 mg/dl), elevated parathyroid hormone (PTH) level, and hypercalciuria were detected. Persistently elevated PTH with high/normal Ca levels led to subtotal-parathyroidectomy at the age of 2.5. However, PTH levels remained elevated with progressive deterioration in renal function. At 9-year-old, she was referred to us for evaluation of hyperparathyroidism and, hypomagnesemia together with hypercalciuria, elevated PTH with normal Ca levels, and medullary nephrocalcinosis were detected. Compound heterozygosity of CLDN16 variants (c.715G>A, p.G239R; and novel c.360C>A, p.C120*) confirmed the diagnosis. Pt#2 was a 10-month-old boy, admitted with irritability and urinary crystals. Hypocalcemia, hypophosphatemia, elevated PTH and ALP, low 25(OH)D levels, and radiographic findings of rickets were detected. However, additional findings of hypercalciuria and bilateral nephrocalcinosis were inconsistent with the nutritional rickets. Low/normal serum Mg levels suggested the diagnosis of FHHNC which was confirmed genetically as a homozygous missense (c.602G > A; p.G201E) variant in CLDN16. Yet, hypocalcemia and hypomagnesemia persisted in spite of treatment. In conclusion, FHHNC may present with diverse clinical features with mild hypomagnesemia leading to secondary hyperparathyroidism with changing Ca levels from low to high. Early and accurate clinical and molecular genetic diagnosis is important for proper management.


Asunto(s)
Claudinas , Hipercalcemia , Hipocalcemia , Nefrocalcinosis , Raquitismo , Niño , Claudinas/genética , Femenino , Humanos , Hipercalciuria/complicaciones , Hipercalciuria/diagnóstico , Hipercalciuria/genética , Lactante , Masculino , Mutación , Nefrocalcinosis/complicaciones , Nefrocalcinosis/diagnóstico , Nefrocalcinosis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA