Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(5): 1228-1243.e20, 2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30392959

RESUMEN

Genetic drivers of cancer can be dysregulated through epigenetic modifications of DNA. Although the critical role of DNA 5-methylcytosine (5mC) in the regulation of transcription is recognized, the functions of other non-canonical DNA modifications remain obscure. Here, we report the identification of novel N6-methyladenine (N6-mA) DNA modifications in human tissues and implicate this epigenetic mark in human disease, specifically the highly malignant brain cancer glioblastoma. Glioblastoma markedly upregulated N6-mA levels, which co-localized with heterochromatic histone modifications, predominantly H3K9me3. N6-mA levels were dynamically regulated by the DNA demethylase ALKBH1, depletion of which led to transcriptional silencing of oncogenic pathways through decreasing chromatin accessibility. Targeting the N6-mA regulator ALKBH1 in patient-derived human glioblastoma models inhibited tumor cell proliferation and extended the survival of tumor-bearing mice, supporting this novel DNA modification as a potential therapeutic target for glioblastoma. Collectively, our results uncover a novel epigenetic node in cancer through the DNA modification N6-mA.


Asunto(s)
Adenina/análogos & derivados , Neoplasias Encefálicas/patología , Metilación de ADN , Glioblastoma/patología , Adenina/análisis , Adenina/química , Adulto , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/antagonistas & inhibidores , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Astrocitos/citología , Astrocitos/metabolismo , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidad , Hipoxia de la Célula , Niño , Epigenómica , Femenino , Glioblastoma/metabolismo , Glioblastoma/mortalidad , Heterocromatina/metabolismo , Histonas/metabolismo , Humanos , Estimación de Kaplan-Meier , Masculino , Ratones , Persona de Mediana Edad , Células Madre Neoplásicas/citología , Células Madre Neoplásicas/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Proteína p53 Supresora de Tumor/metabolismo
2.
Cell ; 167(3): 816-828.e16, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27745969

RESUMEN

tRNA is a central component of protein synthesis and the cell signaling network. One salient feature of tRNA is its heavily modified status, which can critically impact its function. Here, we show that mammalian ALKBH1 is a tRNA demethylase. It mediates the demethylation of N1-methyladenosine (m1A) in tRNAs. The ALKBH1-catalyzed demethylation of the target tRNAs results in attenuated translation initiation and decreased usage of tRNAs in protein synthesis. This process is dynamic and responds to glucose availability to affect translation. Our results uncover reversible methylation of tRNA as a new mechanism of post-transcriptional gene expression regulation.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Regulación de la Expresión Génica , Biosíntesis de Proteínas/genética , ARN de Transferencia/metabolismo , Adenosina/análogos & derivados , Adenosina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Glucosa/deficiencia , Células HeLa , Humanos , Metilación , Polirribosomas/metabolismo
3.
Mol Cell ; 71(2): 306-318.e7, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30017583

RESUMEN

DNA N6-methyladenine (6mA) modification is the most prevalent DNA modification in prokaryotes, but whether it exists in human cells and whether it plays a role in human diseases remain enigmatic. Here, we showed that 6mA is extensively present in the human genome, and we cataloged 881,240 6mA sites accounting for ∼0.051% of the total adenines. [G/C]AGG[C/T] was the most significantly associated motif with 6mA modification. 6mA sites were enriched in the coding regions and mark actively transcribed genes in human cells. DNA 6mA and N6-demethyladenine modification in the human genome were mediated by methyltransferase N6AMT1 and demethylase ALKBH1, respectively. The abundance of 6mA was significantly lower in cancers, accompanied by decreased N6AMT1 and increased ALKBH1 levels, and downregulation of 6mA modification levels promoted tumorigenesis. Collectively, our results demonstrate that DNA 6mA modification is extensively present in human cells and the decrease of genomic DNA 6mA promotes human tumorigenesis.


Asunto(s)
Adenina/análogos & derivados , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Genoma Humano , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Adenina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Animales , Carcinogénesis/genética , ADN/genética , Metilación de ADN , Xenoinjertos , Humanos , Ratones , Ratones Desnudos , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética
4.
Cell Mol Life Sci ; 81(1): 130, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472355

RESUMEN

ALKBH1 is a typical demethylase of nucleic acids, which is correlated with multiple types of biological processes and human diseases. Recent studies are focused on the demethylation of ALKBH1, but little is known about its non-demethylase function. Here, we demonstrate that ALKBH1 regulates the glycolysis process through HIF-1α signaling in a demethylase-independent manner. We observed that depletion of ALKBH1 inhibits glycolysis flux and extracellular acidification, which is attributable to reduced HIF-1α protein levels, and it can be rescued by reintroducing HIF-1α. Mechanistically, ALKBH1 knockdown enhances chaperone-mediated autophagy (CMA)-mediated HIF-1α degradation by facilitating the interaction between HIF-1α and LAMP2A. Furthermore, we identify that ALKBH1 competitively binds to the OST48, resulting in compromised structural integrity of oligosaccharyltransferase (OST) complex and subsequent defective N-glycosylation of LAMPs, particularly LAMP2A. Abnormal glycosylation of LAMP2A disrupts lysosomal homeostasis and hinders the efficient degradation of HIF-1α through CMA. Moreover, NGI-1, a small-molecule inhibitor that selectively targets the OST complex, could inhibit the glycosylation of LAMPs caused by ALKBH1 silencing, leading to impaired CMA activity and disruption of lysosomal homeostasis. In conclusion, we have revealed a non-demethylation role of ALKBH1 in regulating N-glycosylation of LAMPs by interacting with OST subunits and CMA-mediated degradation of HIF-1α.


Asunto(s)
Autofagia , Transducción de Señal , Humanos , Proteína 2 de la Membrana Asociada a los Lisosomas/metabolismo , Glicosilación , Glucólisis , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo
5.
Acc Chem Res ; 56(19): 2726-2739, 2023 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-37733063

RESUMEN

The function of cellular RNA is modulated by a host of post-transcriptional chemical modifications installed by dedicated RNA-modifying enzymes. RNA modifications are widespread in biology, occurring in all kingdoms of life and in all classes of RNA molecules. They regulate RNA structure, folding, and protein-RNA interactions, and have important roles in fundamental gene expression processes involving mRNA, tRNA, rRNA, and other types of RNA species. Our understanding of RNA modifications has advanced considerably; however, there are still many outstanding questions regarding the distribution of modifications across all RNA transcripts and their biological function. One of the major challenges in the study of RNA modifications is the lack of sequencing methods for the transcriptome-wide mapping of different RNA-modification structures. Furthermore, we lack general strategies to characterize RNA-modifying enzymes and RNA-modification reader proteins. Therefore, there is a need for new approaches to enable integrated studies of RNA-modification chemistry and biology.In this Account, we describe our development and application of chemoproteomic strategies for the study of RNA-modification-associated proteins. We present two orthogonal methods based on nucleoside and oligonucleotide chemical probes: 1) RNA-mediated activity-based protein profiling (RNABPP), a metabolic labeling strategy based on reactive modified nucleoside probes to profile RNA-modifying enzymes in cells and 2) photo-cross-linkable diazirine-containing synthetic oligonucleotide probes for identifying RNA-modification reader proteins.We use RNABPP with C5-modified cytidine and uridine nucleosides to capture diverse RNA-pyrimidine-modifying enzymes including methyltransferases, dihydrouridine synthases, and RNA dioxygenase enzymes. Metabolic labeling facilitates the mechanism-based cross-linking of RNA-modifying enzymes with their native RNA substrates in cells. Covalent RNA-protein complexes are then isolated by denaturing oligo(dT) pulldown, and cross-linked proteins are identified by quantitative proteomics. Once suitable modified nucleosides have been identified as mechanism-based proteomic probes, they can be further deployed in transcriptome-wide sequencing experiments to profile the substrates of RNA-modifying enzymes at nucleotide resolution. Using 5-fluorouridine-mediated RNA-protein cross-linking and sequencing, we analyzed the substrates of human dihydrouridine synthase DUS3L. 5-Ethynylcytidine-mediated cross-linking enabled the investigation of ALKBH1 substrates. We also characterized the functions of these RNA-modifying enzymes in human cells by using genetic knockouts and protein translation reporters.We profiled RNA readers for N6-methyladenosine (m6A) and N1-methyladenosine (m1A) using a comparative proteomic workflow based on diazirine-containing modified oligonucleotide probes. Our approach enables quantitative proteome-wide analysis of the preference of RNA-binding proteins for modified nucleotides across a range of affinities. Interestingly, we found that YTH-domain proteins YTHDF1/2 can bind to both m6A and m1A to mediate transcript destabilization. Furthermore, m6A also inhibits stress granule proteins from binding to RNA.Taken together, we demonstrate the application of chemical probing strategies, together with proteomic and transcriptomic workflows, to reveal new insights into the biological roles of RNA modifications and their associated proteins.


Asunto(s)
Adenosina , Nucleósidos , Humanos , Adenosina/química , Adenosina/metabolismo , Proteómica , Diazometano , Sondas de Oligonucleótidos , ARN/química , Histona H2a Dioxigenasa, Homólogo 1 de AlkB
6.
Cell Commun Signal ; 22(1): 79, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291517

RESUMEN

N1-methyladenosine (m1A) is a post-transcriptionally modified RNA molecule that plays a pivotal role in the regulation of various biological functions and activities. Especially in cancer cell invasion, proliferation and cell cycle regulation. Over recent years, there has been a burgeoning interest in investigating the m1A modification of RNA. Most studies have focused on the regulation of m1A in cancer enrichment areas and different regions. This review provides a comprehensive overview of the methodologies employed for the detection of m1A modification. Furthermore, this review delves into the key players in m1A modification, known as the "writers," "erasers," and "readers." m1A modification is modified by the m1A methyltransferases, or writers, such as TRMT6, TRMT61A, TRMT61B, TRMT10C, NML, and, removed by the demethylases, or erasers, including FTO and ALKBH1, ALKBH3. It is recognized by m1A-binding proteins YTHDF1, TYHDF2, TYHDF3, and TYHDC1, also known as "readers". Additionally, we explore the intricate relationship between m1A modification and its regulators and their implications for the development and progression of specific types of cancer, we discuss how m1A modification can potentially facilitate the discovery of novel approaches for cancer diagnosis, treatment, and prognosis. Our summary of m1A methylated adenosine modification detection methods and regulatory mechanisms in various cancers provides useful insights for cancer diagnosis, treatment, and prognosis. Video Abstract.


Asunto(s)
Neoplasias , Humanos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , ARN/genética , ARN/metabolismo , Metiltransferasas/genética , Metiltransferasas/metabolismo , Metilación , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Dioxigenasa Dependiente de Alfa-Cetoglutarato, Homólogo 3 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo
7.
J Biol Chem ; 298(1): 101499, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34922943

RESUMEN

DNA N6-adenine methylation (6mA), as a novel adenine modification existing in eukaryotes, shows essential functions in embryogenesis and mitochondrial transcriptions. ALKBH1 is a demethylase of 6mA and plays critical roles in osteogenesis, tumorigenesis, and adaptation to stress. However, the integrated biological functions of ALKBH1 still require further exploration. Here, we demonstrate that knockdown of ALKBH1 inhibits adipogenic differentiation in both human mesenchymal stem cells (hMSCs) and 3T3-L1 preadipocytes, while overexpression of ALKBH1 leads to increased adipogenesis. Using a combination of RNA-seq and N6-mA-DNA-IP-seq analyses, we identify hypoxia-inducible factor-1 (HIF-1) signaling as a crucial downstream target of ALKBH1 activity. Depletion of ALKBH1 leads to hypermethylation of both HIF-1α and its downstream target GYS1. Simultaneous overexpression of HIF-1α and GYS1 restores the adipogenic commitment of ALKBH1-deficient cells. Taken together, our data indicate that ALKBH1 is indispensable for adipogenic differentiation, revealing a novel epigenetic mechanism that regulates adipogenesis.


Asunto(s)
Adipogénesis , Histona H2a Dioxigenasa, Homólogo 1 de AlkB , Factor 1 Inducible por Hipoxia , Osteogénesis , Células 3T3-L1 , Adenina/metabolismo , Adipocitos/citología , Adipocitos/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Animales , Diferenciación Celular , ADN/metabolismo , Metilación de ADN , Humanos , Factor 1 Inducible por Hipoxia/metabolismo , Ratones
8.
Eur J Clin Invest ; 53(7): e13986, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36920340

RESUMEN

BACKGROUND: Renal cell carcinoma (RCC) accounts for approximately 4% of all adult malignancies with high mortality worldwide. Although conventional chemotherapy and radiotherapy treatment has been applied for RCC in clinic, the mortality rate of patients is increasing each year, and patients with metastatic RCC are still suffering from poor prognosis. Thus, further investigation of the molecular mechanisms responsible for the development and progression of RCC is of particular importance. METHODS: Total of 10 pairs of RCC tissues and adjacent nontumor tissues were collected for examination of ALKBH1 and GPR137 expression. The correlations between ALKBH1 and GPR137 expression in RCC patient were assessed by GEPIA online tool and were analyzed using auto best cutoff. The human RCC cell lines Caki-1, 786-O, ACHN, Osrc2, A498, and 769-P, were used for mechanistic investigation. RESULTS: Here, we report that the expression of AlkB homologue 1 (ALKBH1) is upregulated in RCC tissues, which is correlated with G-protein-coupled receptor 137 (GPR137) expression. The elevated expression of ALKBH1 is associated with RCC cell malignant characteristics, including cell proliferation and movement (migration and invasion). Mechanistic investigation further reveals that ALKBH1 reduces m6 A levels of GPR137 mRNA in RCC cells, which upregulates GPR137 mRNA levels, resulting in the increased GPR137 protein expression subsequently and the enhanced RCC cell biological actions consequently. In contrast, the suppression of GPR137 effectively alleviates the ALKBH1-induced malignancies of RCC cells. CONCLUSION: Our results indicate that ALKBH1-GPR137 axis might be used as a potential therapeutic target in RCC, contributing to finding new prognostic biomarkers for RCC at an early stage.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Adulto , Humanos , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Proliferación Celular/genética , ARN Mensajero , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo
9.
Genomics ; 114(2): 110265, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35032618

RESUMEN

DNA N6-methyladenine (6 mA) is a new type of DNA methylation identified in various eukaryotic cells. However, its alteration and genomic distribution features in hepatocellular carcinoma (HCC) remain elusive. In this study, we found that N6AMT1 overexpression increased HCC cell viability, suppressed apoptosis, and enhanced migration and invasion, whereas ALKBH1 overexpression induced the opposite effects. Further, 23,779 gain-of-6 mA regions and 11,240 loss-of-6 mA regions were differentially identified in HCC tissues. The differential gain and loss of 6 mA regions were considerably enriched in intergenic regions. Moreover, 7% of the differential 6 mA modifications were associated with tumors, with 60 associated with oncogenes and 57 with tumor suppressor genes (TSGs), and 17 were common to oncogenes and TSGs. The candidate genes affected by 6 mA were filtered by gene ontology (GO) and RNA-seq. Using quantitative polymerase chain reaction (qPCR), BCL2 and PARTICL were found to be correlated with DNA 6 mA in certain HCC processes.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Proliferación Celular , ADN/metabolismo , Metilación de ADN , Regulación Neoplásica de la Expresión Génica , Genoma , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/genética , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo
10.
Nat Chem Biol ; 16(11): 1160-1169, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33067602

RESUMEN

The repertoire of nucleobase methylation in DNA and RNA, introduced by chemical agents or enzymes, is large. Most methylation can be reversed either directly by restoration of the original nucleobase or indirectly by replacement of the methylated nucleobase with an unmodified nucleobase. In many direct and indirect demethylation reactions, ALKBH (AlkB homolog) and TET (ten eleven translocation) hydroxylases play a role. Here, we suggest a chemical classification of methylation types. We then discuss pathways for removal, emphasizing oxidation reactions. We highlight the recently expanded repertoire of ALKBH- and TET-catalyzed reactions and describe the discovery of a TET-like protein that resembles the hydroxylases but uses an alternative co-factor and catalyzes glyceryl transfer rather than hydroxylation.


Asunto(s)
Proteínas de Unión al ADN/química , ADN/química , Dioxigenasas/metabolismo , ARN/química , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/química , Secuencia de Aminoácidos , Sitios de Unión , Catálisis , Regulación de la Expresión Génica , Glicósidos/química , Humanos , Hidroxilación , Metilación , Oxigenasas de Función Mixta/metabolismo , Oxidación-Reducción , Conformación Proteica , Factor de Transcripción SOX9/química , Transducción de Señal
11.
Exp Cell Res ; 400(2): 112492, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33529710

RESUMEN

DNA N6-methyladenine (N6-mA) was recently recognized as a new epigenetic modification in mammalian genome, and ALKBH1 was discovered as its demethylase. Knock-out mice studies revealed that ALKBH1 was indispensable for normal embryonic development. However, the function of ALKBH1 in myogenesis is largely unknown. In this study, we found that N6-mA showed a steady increase, going along with a strong decrease of ALKBH1 during skeletal muscle development. Our results also showed that ALKBH1 enhanced proliferation and inhibited differentiation of C2C12 cells. Genome-wide transcriptome analysis and reporter assays further revealed that ALKBH1 accomplished the differentiation inhibiting function by regulating a core set of genes and multiple signaling pathways, including increasing chemokine (C-X-C motif) ligand 14 (CXCL14) and activating ERK signaling. Taken together, our results demonstrated that ALKBH1 is critical for the myogenic differentiation of C2C12 cells, and suggested that N6-mA might be a new epigenetic mechanism for the regulation of myogenesis.


Asunto(s)
Adenina/análogos & derivados , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Diferenciación Celular , Epigénesis Genética , Desarrollo de Músculos , Músculo Esquelético/patología , Mioblastos/patología , Adenina/química , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Animales , Metilación de ADN , Masculino , Ratones , Ratones Endogámicos C57BL , Músculo Esquelético/metabolismo , Mioblastos/metabolismo
12.
Nature ; 532(7599): 329-33, 2016 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-27027282

RESUMEN

It has been widely accepted that 5-methylcytosine is the only form of DNA methylation in mammalian genomes. Here we identify N(6)-methyladenine as another form of DNA modification in mouse embryonic stem cells. Alkbh1 encodes a demethylase for N(6)-methyladenine. An increase of N(6)-methyladenine levels in Alkbh1-deficient cells leads to transcriptional silencing. N(6)-methyladenine deposition is inversely correlated with the evolutionary age of LINE-1 transposons; its deposition is strongly enriched at young (<1.5 million years old) but not old (>6 million years old) L1 elements. The deposition of N(6)-methyladenine correlates with epigenetic silencing of such LINE-1 transposons, together with their neighbouring enhancers and genes, thereby resisting the gene activation signals during embryonic stem cell differentiation. As young full-length LINE-1 transposons are strongly enriched on the X chromosome, genes located on the X chromosome are also silenced. Thus, N(6)-methyladenine developed a new role in epigenetic silencing in mammalian evolution distinct from its role in gene activation in other organisms. Our results demonstrate that N(6)-methyladenine constitutes a crucial component of the epigenetic regulation repertoire in mammalian genomes.


Asunto(s)
Adenina/análogos & derivados , Metilación de ADN , Epigénesis Genética/genética , Células Madre Embrionarias de Ratones/metabolismo , Adenina/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB , Animales , Diferenciación Celular/genética , Elementos Transponibles de ADN/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/deficiencia , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Elementos de Facilitación Genéticos/genética , Evolución Molecular , Silenciador del Gen , Elementos de Nucleótido Esparcido Largo/genética , Mamíferos/genética , Ratones , Células Madre Embrionarias de Ratones/citología , Regulación hacia Arriba/genética , Cromosoma X/genética , Cromosoma X/metabolismo
13.
J Cell Sci ; 132(19)2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31434717

RESUMEN

The Fe(II) and 2-oxoglutarate-dependent oxygenase Alkb homologue 1 (Alkbh1) has been shown to act on a wide range of substrates, like DNA, tRNA and histones. Thereby different enzymatic activities have been identified including, among others, demethylation of N3-methylcytosine (m3C) in RNA- and single-stranded DNA oligonucleotides, demethylation of N1-methyladenosine (m1A) in tRNA or formation of 5-formyl cytosine (f5C) in tRNA. In accordance with the different substrates, Alkbh1 has also been proposed to reside in distinct cellular compartments in human and mouse cells, including the nucleus, cytoplasm and mitochondria. Here, we describe further evidence for a role of human Alkbh1 in regulation of mitochondrial protein biogenesis, including visualizing localization of Alkbh1 into mitochondrial RNA granules with super-resolution 3D SIM microscopy. Electron microscopy and high-resolution respirometry analyses revealed an impact of Alkbh1 level on mitochondrial respiration, but not on mitochondrial structure. Downregulation of Alkbh1 impacts cell growth in HeLa cells and delays development in Caenorhabditis elegans, where the mitochondrial role of Alkbh1 seems to be conserved. Alkbh1 knockdown, but not Alkbh7 knockdown, triggers the mitochondrial unfolded protein response (UPRmt) in C. elegans.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Mitocondrias/metabolismo , ARN Mitocondrial/metabolismo , Células A549 , Enzimas AlkB/genética , Enzimas AlkB/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Animales , Caenorhabditis elegans , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Electroforesis en Gel de Poliacrilamida , Células HEK293 , Células HT29 , Células HeLa , Humanos , Ratones , Microscopía Electrónica , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Consumo de Oxígeno/fisiología , Factor Tu de Elongación Peptídica/genética , Factor Tu de Elongación Peptídica/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Respuesta de Proteína Desplegada/genética , Respuesta de Proteína Desplegada/fisiología
14.
Mol Biol Rep ; 48(5): 4747-4756, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-34046849

RESUMEN

AlkBH1 is a member of the AlkB superfamily which are kinds of Fe (II) and α-ketoglutarate (α-KG)-dependent dioxygenases. At present, only demethyltransferases FTO and AlkBH5 have relatively clear substrate studies among these members, the types and mechanisms of substrates catalysis of other members are not clear, especially the demethyltransferase AlkBH1. AlkBH1, as a demethylase, has important functions of reversing DNA methylation and repairing DNA damage. And it has become a promising target for the treatment of many cancers, the regulation of neurological and genetic related diseases. Many scholars have made important discoveries in the diversity of AlkBH1 substrates, but there is no comprehensive summary, which affects the design inhibitor target of AlkBH1. Herein, We are absorbed in the latest progress in the study of AlkBH1 substrate diversity and its relationship with human diseases. Besides, we also discuss future research directions and suggest other studies to reveal the specific catalytic effect of AlkBH1 on cancer substrates.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Neoplasias/genética , Enfermedades del Sistema Nervioso/genética , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Daño del ADN/genética , Metilación de ADN/genética , Reparación del ADN/genética , Humanos , Ácidos Cetoglutáricos/metabolismo , Neoplasias/patología , Enfermedades del Sistema Nervioso/patología , Especificidad por Sustrato/genética
15.
Exp Mol Pathol ; 115: 104449, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380054

RESUMEN

OBJECTIVE: To uncover the role of microRNA-339-5p (miRNA-339-5p) in the development of gastric cancer (GC) and its possible molecular mechanism. METHODS: Differential expressions of miRNA-339-5p in GC and adjacent normal tissues were detected. The relationship between miRNA-339-5p level and clinical features in GC patients was analyzed. Proliferative and migratory changes in BGC-823 and SGC-7901 cells overexpressing miRNA-339-5p were examined. Finally, luciferase assay and rescue experiments were conducted to explore the regulatory mechanism of miRNA-339-5p in its downstream gene ALKBH1, and their interaction in the development of GC. RESULTS: MiRNA-339-5p was downregulated in GC tissues. Lowly expressed miRNA-339-5p was unfavorable to prognosis in GC because of high rates of lymphatic metastasis and distant metastasis. Overexpression of miRNA-339-5p markedly reduced proliferative and migratory abilities in GC cells. ALKBH1 was identified to be the downstream gene of miRNA-339-5p. In GC tissues, ALKBH1 was upregulated and negatively correlated to miRNA-339-5p level. Overexpression of ALKBH1 was able to reverse the inhibitory effects of overexpressed miRNA-339-5p on proliferative and migratory abilities in GC. CONCLUSIONS: Lowly expressed miRNA-339-5p is closely related to metastasis and poor prognosis in GC patients. MiRNA-339-5p suppresses the malignant development of GC by negatively regulating ALKBH1.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Carcinogénesis/genética , Carcinogénesis/patología , MicroARNs/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica , Humanos , MicroARNs/genética , Persona de Mediana Edad
16.
RNA Biol ; 17(8): 1092-1103, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32521209

RESUMEN

tiRNAs are small non-coding RNAs produced when tRNA is cleaved under stress. tRNA methylation modifications has emerged in recent years as important regulators for tRNA structural stability and sensitivity to cleavage and tiRNA generation during stress, however, the specificity and higher regulation of such a process is not fully understood. Alkbh1 is a m1A demethylase that leads to destabilization of tRNA and enhanced tRNA cleavage. We examined the impact of Alkbh1 targeting via gene knockdown or overexpression on B35 rat neuroblastoma cell line fate following stresses and on tRNA cleavage. We show that Alkbh1 impact on cell fate and tRNA cleavage is a stress specific process that is impacted by the demethylating capacity of the cellular stress in question. We also show that not all tRNAs are cleaved equally following Alkbh1 manipulation and stress, and that Alkbh1 KD fails to rescue tRNAs from cleavage following demethylating stresses. These findings shed a light on the specificity and higher regulation of tRNA cleavage and should act as a guide for future work exploring the utility of Alkbh1 as a therapeutic target for cancers or ischaemic insult.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , División del ARN , ARN de Transferencia/genética , ARN de Transferencia/metabolismo , ARN no Traducido/genética , Estrés Fisiológico/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Animales , Apoptosis/genética , Línea Celular Tumoral , Metilación de ADN , Técnicas de Silenciamiento del Gen , Humanos , Metilación , Estrés Oxidativo , Procesamiento Postranscripcional del ARN , Ratas
17.
Nucleic Acids Res ; 46(22): 11659-11670, 2018 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-30412255

RESUMEN

N6-methyldeoxyadenosine (6mA) is a well-characterized DNA modification in prokaryotes but reports on its presence and function in mammals have been controversial. To address this issue, we established the capacity of 6mA-Crosslinking-Exonuclease-sequencing (6mACE-seq) to detect genome-wide 6mA at single-nucleotide-resolution, demonstrating this by accurately mapping 6mA in synthesized DNA and bacterial genomes. Using 6mACE-seq, we generated a human-genome-wide 6mA map that accurately reproduced known 6mA enrichment at active retrotransposons and revealed mitochondrial chromosome-wide 6mA clusters asymmetrically enriched on the heavy-strand. We identified a novel putative 6mA-binding protein in single-stranded DNA-binding protein 1 (SSBP1), a mitochondrial DNA (mtDNA) replication factor known to coat the heavy-strand, linking 6mA with the regulation of mtDNA replication. Finally, we characterized AlkB homologue 1 (ALKBH1) as a mitochondrial protein with 6mA demethylase activity and showed that its loss decreases mitochondrial oxidative phosphorylation. Our results show that 6mA clusters play a previously unappreciated role in regulating human mitochondrial function, despite 6mA being an uncommon DNA modification in the human genome.


Asunto(s)
ADN Mitocondrial/genética , Proteínas de Unión al ADN/genética , ADN/genética , Desoxiadenosinas/genética , Genoma Mitocondrial , Proteínas Mitocondriales/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Secuencia de Bases , Mapeo Cromosómico , ADN/metabolismo , ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Desoxiadenosinas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonucleasas , Células HEK293 , Humanos , Proteínas Mitocondriales/metabolismo , Fosforilación Oxidativa , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Análisis de Secuencia de ADN , Proteínas Virales/química , Proteínas Virales/metabolismo
18.
Dig Dis Sci ; 64(6): 1503-1513, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30637548

RESUMEN

BACKGROUND: Reversible N6-methyladenosine (m6A) modifications in messenger RNAs can be categorized under the field of "RNA epigenetics." However, the potential role of m6A-related genes in gastric cancer (GC) prognosis has not been systematically researched. AIMS: This study was aimed at providing insights into the prognostic role of m6A-related gene expression, at both mRNA and protein levels. METHODS: Kaplan-Meier (KM) plotter database and The Cancer Genome Atlas (TCGA) database were used to explore the prognostic significance of individual m6A-related genes in overall survival (OS) and progression-free survival at the mRNA level. For independent validation, the protein level of genes significantly associated with prognosis in both databases was further detected in 450 paired GC and corresponding adjacent non-tumor tissues using tissue microarray (TMA)-based immunohistochemistry (IHC). The relationship between the FTO and ALKBH1 expression and the clinicopathological characteristics was explored. RESULTS: Among nine m6A-related genes, aberrantly high mRNA expression of FTO and ALKBH1 was associated with poor OS in the KM and TCGA cohorts. However, the TMA-IHC indicated that protein expression of FTO and ALKBH1 was markedly downregulated in GC tissues. A lower protein level of ALKBH1 was closely correlated with larger tumor sizes (≥ 5 cm) and more advanced TNM stages, while lower FTO protein expression was associated with shorter OS in GC patients. CONCLUSIONS: Aberrant expression of demethylase genes, FTO and ALKBH1, has a distinct prognostic value in GC patients, indicating that FTO and ALKBH1 may play vital roles in GC progression and metastasis.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/genética , Biomarcadores de Tumor/genética , ARN Mensajero/genética , Neoplasias Gástricas/enzimología , Adenosina/análogos & derivados , Adenosina/metabolismo , Anciano , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Dioxigenasa FTO Dependiente de Alfa-Cetoglutarato/metabolismo , Biomarcadores de Tumor/metabolismo , Bases de Datos Genéticas , Femenino , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Persona de Mediana Edad , Supervivencia sin Progresión , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN Mensajero/metabolismo , Factores de Riesgo , Neoplasias Gástricas/genética , Neoplasias Gástricas/mortalidad , Neoplasias Gástricas/terapia , Factores de Tiempo
19.
Nucleic Acids Res ; 45(12): 7401-7415, 2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28472312

RESUMEN

ALKBH1 is a 2-oxoglutarate- and Fe2+-dependent dioxygenase responsible for multiple cellular functions. Here, we show that ALKBH1 is involved in biogenesis of 5-hydroxymethyl-2΄-O-methylcytidine (hm5Cm) and 5-formyl-2΄-O-methylcytidine (f5Cm) at the first position (position 34) of anticodon in cytoplasmic tRNALeu, as well as f5C at the same position in mitochondrial tRNAMet. Because f5C34 of mitochondrial tRNAMet is essential for translation of AUA, a non-universal codon in mammalian mitochondria, ALKBH1-knockout cells exhibited a strong reduction in mitochondrial translation and reduced respiratory complex activities, indicating that f5C34 formation mediated by ALKBH1 is required for efficient mitochondrial functions. We reconstituted formation of f5C34 on mitochondrial tRNAMetin vitro, and found that ALKBH1 first hydroxylated m5C34 to form hm5C34, and then oxidized hm5C34 to form f5C34. Moreover, we found that the frequency of 1-methyladenosine (m1A) in two mitochondrial tRNAs increased in ALKBH1-knockout cells, indicating that ALKBH1 also has demethylation activity toward m1A in mt-tRNAs. Based on these results, we conclude that nuclear and mitochondrial ALKBH1 play distinct roles in tRNA modification.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Citidina/análogos & derivados , Biosíntesis de Proteínas , ARN de Transferencia de Metionina/genética , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/deficiencia , Anticodón/química , Anticodón/metabolismo , Secuencia de Bases , Sistemas CRISPR-Cas , Citidina/metabolismo , Citosol/metabolismo , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Células HEK293 , Humanos , Metiltransferasas/genética , Metiltransferasas/metabolismo , Mitocondrias/metabolismo , Conformación de Ácido Nucleico , Oxidación-Reducción , Fosforilación Oxidativa , ARN de Transferencia de Metionina/metabolismo
20.
Biochem Biophys Res Commun ; 495(1): 98-103, 2018 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-29097205

RESUMEN

Alkbh1 is a mammalian homolog of the Escherichia coli DNA repair enzyme AlkB, an Fe(II) and 2-oxoglutarate dependent dioxygenase that removes alkyl lesions from DNA bases. The human homolog ALKBH1 has been associated with six different enzymatic activities including DNA, mRNA, or tRNA hydroxylation, cleavage at abasic (AP) sites in DNA, as well as demethylation of histones. The reported cellular roles of this protein reflect the diverse enzymatic activities and include direct DNA repair, tRNA modification, and histone modification. We demonstrate that ALKBH1 produced in mammalian cells (ALKBH1293) is similar to the protein produced in bacteria (ALKBH1Ec) with regard to its m6A demethylase and AP lyase activities. In addition, we find that ALKBH1293 forms a covalent adduct with the 5' product of the lyase product in a manner analogous to ALKBH1Ec. Localization and subcellular fractionation studies with the endogenous protein in two human cell strains confirm that ALKBH1 is primarily in the mitochondria. Two strains of CRISPR/Cas9-created ALKBH1-deficient HEK293 cells showed increases in mtDNA copy number and mitochondrial dysfunction as revealed by growth measurements and citrate synthase activity assays.


Asunto(s)
Histona H2a Dioxigenasa, Homólogo 1 de AlkB/metabolismo , Mitocondrias/metabolismo , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/deficiencia , Histona H2a Dioxigenasa, Homólogo 1 de AlkB/genética , Proliferación Celular , Aductos de ADN/química , Aductos de ADN/genética , Aductos de ADN/metabolismo , Variaciones en el Número de Copia de ADN , ADN Mitocondrial/química , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , ADN-(Sitio Apurínico o Apirimidínico) Liasa/genética , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Células HEK293 , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA