Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 146: 109419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38301812

RESUMEN

Peroxiredoxins (Prxs) are a family of antioxidant enzymes crucial for shielding cells against oxidative damage from reactive oxygen species (ROS). In this study, we cloned and analyzed two grass carp peroxiredoxin genes, CiPrx5 and CiPrx6. These genes exhibited ubiquitous expression across all sampled tissues, with their expression levels significantly modulated upon exposure to grass carp reovirus (GCRV). CiPrx5 was localized in the mitochondria, while CiPrx6 was uniformly distributed in the whole cells. Transfection or transformation of CiPrx5 and CiPrx6 into fish cells or E. coli significantly enhanced host resistance to H2O2 and heavy metals, leading to increased cell viability and reduced cell apoptosis rates. Furthermore, purified recombinant CiPrx5 and CiPrx6 proteins effectively protected DNA against oxidative damage. Notably, overexpression of both peroxiredoxins in fish cells effectively inhibited GCRV replication, reduced intracellular ROS levels induced by GCRV infection and H2O2 treatment, and induced autophagy. Significantly, these functions of CiPrx5 and CiPrx6 in GCRV replication and ROS mitigation were abolished upon treatment with an autophagy inhibitor. In summation, our findings suggest that grass carp Prx5 and Prx6 promote autophagy to inhibit GCRV replication, decrease intracellular ROS, and provide protection against oxidative stress.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Animales , Carpas/genética , Carpas/metabolismo , Especies Reactivas de Oxígeno , Peroxirredoxinas/genética , Escherichia coli , Peróxido de Hidrógeno , Infecciones por Reoviridae/prevención & control , Estrés Oxidativo , Autofagia , Enfermedades de los Peces/prevención & control
2.
J Virol ; 96(14): e0075922, 2022 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-35867570

RESUMEN

Avian reovirus (ARV) causes viral arthritis, chronic respiratory diseases, retarded growth, and malabsorption syndrome. MicroRNAs (miRNAs) are small noncoding RNAs that regulate gene expression posttranscriptionally by silencing or degrading their targets, thus playing important roles in the host response to pathogenic infection. However, the role of miRNAs in host response to ARV infection is still not clear. In this study, we show that ARV infection markedly increased gga-miR-30c-5p expression in DF-1 cells and that transfection of cells with gga-miR-30c-5p inhibited ARV replication while knockdown of endogenous gga-miR-30c-5p enhanced viral growth in cells. Importantly, we identified the autophagy related 5 (ATG5), an important proautophagic protein, as a bona fide target of gga-miR-30c-5p. Transfection of DF-1 cells with gga-miR-30c-5p markedly reduced ATG5 expression accompanied with reduced conversion of ARV-induced-microtubule-associated protein 1 light chain 3 II (LC3-II) from LC3-I, an indicator of autophagy in host cell, while knockdown of endogenous gga-miR-30c-5p enhanced ATG5 expression as well as ARV-induced conversion of LC3-II, facilitating viral growth in cells. Furthermore, knockdown of ATG5 by RNA interference (RNAi) or treatment of cells with autophagy inhibitors (3-MA and wortmannin) markedly reduced ARV-induced LC3-II and syncytium formation, suppressing viral growth in cells, while overexpression of ATG5 increased ARV-induced LC3-II and syncytium formation, promoting viral growth in cells. Thus, gga-miR-30c-5p suppressed viral replication by inhibition of ARV-induced autophagy via targeting ATG5. These findings unraveled the mechanism of how host cells combat against ARV infection by self-encoded small RNA and furthered our understanding of the role of microRNAs in host response to pathogenic infection. IMPORTANCE Avian reovirus (ARV) is an important poultry pathogen causing viral arthritis, chronic respiratory diseases, and retarded growth, leading to considerable economic losses to the poultry industry across the globe. Elucidation of the pathogenesis of ARV infection is crucial to guiding the development of novel vaccines or drugs for the effective control of these diseases. Here, we investigated the role of miRNAs in host response to ARV infection. We found that infection of host cells by ARV remarkably upregulated gga-miR-30c-5p expression. Importantly, gga-miR-30c-5p suppressed ARV replication by inhibition of ARV-induced autophagy via targeting autophagy related 5 (ATG5) accompanied by suppression of virus-induced syncytium formation, thus serving as an important antivirus factor in host response against ARV infection. These findings will further our understanding of how host cells combat against ARV infection by self-encoded small RNAs and may be used as a potential target for intervening ARV infection.


Asunto(s)
Proteína 5 Relacionada con la Autofagia , MicroARNs , Orthoreovirus Aviar , Infecciones por Reoviridae , Animales , Autofagia , Proteína 5 Relacionada con la Autofagia/genética , Proteína 5 Relacionada con la Autofagia/metabolismo , Pollos/genética , MicroARNs/genética , Orthoreovirus Aviar/patogenicidad , Orthoreovirus Aviar/fisiología , Infecciones por Reoviridae/prevención & control , Replicación Viral
3.
Fish Shellfish Immunol ; 142: 109160, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37858787

RESUMEN

Grass carp (Ctenopharyngodon idella) is subject to a hemorrhagic disease caused by grass carp reovirus (GCRV), which can lead to mass mortality in grass carp culture, causing significant economic loss. Vaccination is the most promising strategy for the prevention of infectious diseases. Immersion vaccination is considered the most effective disease prevention method for juvenile fish because it can be implemented on many fish at once and administered without causing stress. However, immune responses by immersion vaccination are markedly less robust due to the skin barrier and insufficient antigen uptake. The display of heterologous proteins on the cell surface has been explored as a delivery system for viral antigens in veterinary and human vaccine studies. To improve the efficacy of the immersion vaccine, the major capsid protein (VP7) of GCRV was co-displayed with Aeromonas hydrophila outer membrane protein a (OmpA) and major adhesion protein (Mah) on the outer membrane surface of nonpathogenic Escherichia coli BL21 using the anchoring motif of ice-nucleation protein (Inp). The immune responses and protection efficiency against GCRV infection via both the injection and immersion routes were evaluated. The results indicated that the activities of anti-oxidant enzymes (ACP, AKP, SOD and T-AOC), as well as the expression of immune-related genes (TNF-α, IL-1ß, MHCI and IgM) and specific VP7 antibody levels, were strongly increased in the grass carp from 7 to 21 days post-injection inoculation in a dose dependent manner. The cumulative mortality rates of injection-vaccinated groups were much lower than those of the control group after the GCRV challenge, and the relative percent survival (RPS) was greater than 80 %. Vitally, the surface co-display of vp7-Mah protein conferred marked protection to grass carp against GCRV infection after immersion administration (RPS >50 %); this was consistent with the production of high level of specific serum antibodies, non-specific immune responses, and the expression of immune-related genes. Moreover, the invasion analysis further showed that surface co-display of the vp7-Mah protein indeed significantly improved the invasion of E. coli BL21 (DE3) in vitro. Altogether, this study demonstrated that surface display GCRV core antigen vaccine system accompanied by invasion component from aquatic pathogenic microorganism is an effective prophylactic against GCRV viral diseases via the immersion administration approach.


Asunto(s)
Carpas , Enfermedades de los Peces , Orthoreovirus , Infecciones por Reoviridae , Reoviridae , Vacunas Virales , Humanos , Animales , Escherichia coli , Inmersión , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/veterinaria , Anticuerpos Antivirales
4.
Microb Pathog ; 152: 104602, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33157219

RESUMEN

Vaccine immunization is currently the only effective way to prevent and control the grass carp haemorrhagic disease, and the primary pathogen in these infections is grass carp reovirus genotype II (GCRV-II) for which there is no commercial vaccine. In this study, we evaluated the safety of the GCRV-II avirulent strain GD1108 which isolated in the early stage of the laboratory through continuously passed in grass carp. The immunogenicity and protective effects were evaluated after immunization by injection and immersion. The avirulent strain GD1108 could infect and replicate in the fish which did not revert to virulence after continuous passage. No adverse side effects were observed and the vaccine strain did not spread horizontally among fish. Two routes of immunization induced high serum antibody titers of OD450nm value were 0.79 and 0.76 and neutralization titers of 320 and 320 for the injection and immersion routes of inoculation, respectively. The expression of immune-related genes increased after immunization and the levels were statistically significant. Challenge of immunized fish with a virulent GCRV-II strain resulted in protection rates of 93.88% and 76.00% for the injection and immersion routes, respectively. The avirulent strain GD1108 revealed good safety and immunogenicity via two different inoculation routes. Although the injection route provided the best immune effect, two pathways provided protection against infection with virulent GCRV-II strains in various degrees. These results indicated that the avirulent strain GD1108 can be used for the development and application as live vaccine.


Asunto(s)
Carpas , Enfermedades de los Peces , Infecciones por Reoviridae , Reoviridae , Animales , Enfermedades de los Peces/prevención & control , Genotipo , Reoviridae/genética , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/veterinaria
5.
Fish Shellfish Immunol ; 117: 53-61, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34284109

RESUMEN

Vaccination is the most effective way to control the grass carp haemorrhagic disease (GCHD) with the primary pathogen grass carp reovirus genotype II (GCRV-II). However, due to the large difference in breeding conditions and unclear genetic background of grass carp, the results of the experiment were not reliable, which further hinders the effective prevention and control of GCHD. The rare minnow (Gobiocypris rarus) is highly sensitive to GCRV. Its small size, easy feeding, transparent egg membrane, and annual spawning are in line with the necessary conditions for an experimental aquatic animals culture object. In this study, immunogenicity and protective effects of attenuated and inactivated viruses for grass carp and rare minnow were evaluated in parallel. The expression of immune-related genes increased statistically significant after immunization. With the rise of specific serum antibody titers, the results of rare minnow and grass carp were consistent. In addition, there was no significant residue of adjuvant observed in both fish species injected with an adjuvanted and inactivated virus. Challenge of immunized grass carp and rare minnow with the isolate HuNan1307 resulted in protection rates of 95.8% and 92.6% for attenuated virus, 81.4% and 77.7% for inactivated virus, respectively, as well as the viral load changed consistently. The results indicated that rare minnow can be used as a model for evaluation of experimental vaccines against GCHD.


Asunto(s)
Cyprinidae , Modelos Animales de Enfermedad , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/prevención & control , Reoviridae/inmunología , Vacunas Virales/administración & dosificación , Animales , Anticuerpos Antivirales/sangre , Cyprinidae/sangre , Cyprinidae/genética , Cyprinidae/inmunología , Cyprinidae/virología , Enfermedades de los Peces/mortalidad , Enfermedades de los Peces/virología , Expresión Génica/efectos de los fármacos , Infecciones por Reoviridae/mortalidad , Infecciones por Reoviridae/veterinaria , Infecciones por Reoviridae/virología , Bazo/efectos de los fármacos , Bazo/inmunología
6.
Protein Expr Purif ; 158: 1-8, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30753891

RESUMEN

Grass carp reovirus (GCRV) is one of the most serious pathogens threatening grass carp (Ctenopharyngodon idellus) production and results in high mortality in China. VP7 from GCRV is involved in viral infection and could be suitable for developing vaccines for the control of GCRV infection. To obtain a genetically engineered vaccine and a plant-based oral vaccine and to evaluate their immune efficacy as an oral vaccine against GCRV, cholera toxin B subunit (CTB) of Vibrio cholerae fused to VP7 (CTB-VP7) was transformed into BL21(DE3) for expression. SDS-PAGE and Western blotting showed that the purified CTB-VP7 fusion protein (rCTB-VP7) was approximately 49.0 kDa. Meanwhile, CTB-VP7 was transformed into rice callus cells by Agrobacterium tumefaciens-mediated gene transformation. CTB-VP7 was integrated into the nuclear genome by PCR, and mRNA transcripts of CTB-VP7 were detected. ELISA and Western blot analyses revealed that the CTB-VP7 fusion protein (CTB-VP7) could be expressed in rice callus lines. The level of expression was determined to be 1.54% ±â€¯0.43 of the total soluble protein. CTB-VP7 showed a binding affinity for monosialoganglioside(GM1), a receptor for CTB. CTB-VP7 showed a higher affinity towards GM1 compared to rCTB-VP7. CTB-VP7 bonded to GM1 with different affinities under different temperatures. Maximum binding of CTB-VP7 to GM1 was reported to occur within 2 h at 37 °C, and approximately half of the binding affinity remained at 25 °C. Our results suggest that CTB-VP7 could be produced in rice calli, increasing the possibility that edible plants can be employed in mucosal vaccines for protection against GCRV in aquaculture.


Asunto(s)
Antígenos Virales/inmunología , Carpas/inmunología , Toxina del Cólera , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/prevención & control , Reoviridae/inmunología , Vacunas Virales/inmunología , Animales , Antígenos Virales/química , Antígenos Virales/genética , Carpas/virología , Toxina del Cólera/química , Toxina del Cólera/genética , Toxina del Cólera/inmunología , Toxina del Cólera/aislamiento & purificación , Enfermedades de los Peces/genética , Enfermedades de los Peces/inmunología , Oryza/química , Oryza/genética , Oryza/inmunología , Plantas Modificadas Genéticamente/química , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/inmunología , Proteínas Recombinantes de Fusión , Reoviridae/genética , Infecciones por Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/veterinaria , Vacunas Virales/química , Vacunas Virales/genética
7.
Fish Shellfish Immunol ; 90: 12-19, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31015064

RESUMEN

Grass carp reovirus (GCRV) is the main viral pathogen that endangers grass carp seriously. Application of vaccine has been considered to be the most effective way to prevent virus infection. VP56 is a protein encoded by gene segment 7 of grass carp reovirus, and is predicted to share homology with fiber protein of mammalian reovirus (MRV). In our study, the immunogenicity of VP56 was evaluated by neutralization test. GCRV was incubated with mouse anti-VP56 antibody, and then was injected into grass carp. Results showed that disease progress and death occurrence was hindered in the experimental group compared with the control group. For further study, the recombinant VP56 protein (rVP56) expressed by pET-32a (+) vector was purified, and was used as subunit vaccine to immunize grass carp. After each fish (15 ± 1.5 g) was injected with 30 µg purified rVP56 intraperitoneally, the immune protective efficacy of recombinant VP56 protein was assessed by a series of immune parameters. The population of red blood cells in immunized fish increased significantly after 5 d post injection (dpi), and reached a peak with (2.98 ± 0.17) × 109/ml at 7 dpi (p < 0.05). The numbers of white blood cells peaked with (8.42 ±â€¯1.01) × 107/ml at 7 dpi (p < 0.05). Additionally, the percentage of monocytes and neutrophils rose to a peak with (9.05 ±â€¯0.92)% and (25.93 ±â€¯2.60)% respectively at 5 dpi (p < 0.05 or p < 0.01), whereas lymphocytes reached the highest value of (85.81 ±â€¯2.73) % at 14 dpi (p < 0.01). Serum antibody titer in the vaccinated fish increased significantly and reached a peak at 21 dpi (p < 0.01). The mRNA expression levels of type I interferon (IFN1), major histocompatibility complex class I (MHC I), Toll-like receptor 22 (TLR22), and immunoglobulin M (IgM) were significantly up-regulated in head kidney and spleen (p < 0.05 or p < 0.01). The GCRV challenge test showed that the relative survival rate in immunized group was 71%-75%. Collectively, the results indicated that rVP56 protein can induce immune protection in grass carp, and can be consider as a candidate vaccine against GCRV infection.


Asunto(s)
Carpas , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Enfermedades de los Peces/virología , Inmunidad Innata , Inmunogenicidad Vacunal , Distribución Aleatoria , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Vacunas de Subunidad/inmunología
8.
Fish Shellfish Immunol ; 84: 768-780, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30300738

RESUMEN

Grass carp (Ctenopharyngodon idellus) hemorrhagic disease (GCHD), caused by grass carp reovirus (GCRV), has given rise to an enormous loss in grass carp industry during the past years. Up to date, vaccination remained to be the most effective way to protect grass carp from GCHD. Oral vaccination is of major interest due to its advantages of noninvasive, time-saving, and easily-operated. The introduction of oral vaccination has profound impact on aquaculture industry because of its feasibility of extensive application for fish in various size and age. However, the main challenge in developing oral vaccine is that antigens are easily degraded and are easy to induce tolerance. Bacillus subtilis (B. subtilis) spores would be an ideal oral vaccine delivery system for their robust specialty, gene operability, safety and adjuvant property. VP4 protein is the major outer capsid protein encoded by GCRV segment 6 (S6), which plays an important role in viral invasion and replication. In this study, we used B. subtilis spores as the oral delivery system and successfully constructed the B. subtilis CotC-VP4 recombinant spores (CotC-VP4 spores) to evaluate its protective efficacy in grass carp. Grass carp orally immunized with CotC-VP4 spores showed a survival rate of 57% and the relative percent survival (RPS) of 47% after the viral challenge. Further, the specific IgM levels in serum and the specific IgZ levels in intestinal mucus were significantly higher in the CotC-VP4 group than those in the Naive group. The immune-related genes including three innate immune-related genes (IL-4/13A, IL-4/13B, CSF1R), four adaptive immune-related genes (BAFF, CD4L, MHC-II, CD8), three inflammation-related genes (IL-1ß, TNF-α, TGF-ß) and interferon type I (IFN-I) related signaling pathway genes were significantly up-regulated in the CotC-VP4 group. The study demonstrated that the CotC-VP4 spores produced protection in grass carp against GCRV infection, and triggered both innate and adaptive immunity post oral immunization. This work highlighted that Bacillus subtilis spores were powerful platforms for oral vaccine delivery, and the combination of Bacillus subtilis spores with GCRV VP4 protein was a promising oral vaccine.


Asunto(s)
Bacillus subtilis/química , Carpas/inmunología , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Vacunación/veterinaria , Vacunas Virales/farmacología , Inmunidad Adaptativa , Administración Oral , Animales , Antivirales , Bacillus subtilis/genética , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/parasitología , Inmunidad Innata , Microorganismos Modificados Genéticamente/química , Microorganismos Modificados Genéticamente/genética , Distribución Aleatoria , Reoviridae/química , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/parasitología , Infecciones por Reoviridae/prevención & control , Esporas Bacterianas/química , Esporas Bacterianas/genética , Proteínas Virales/metabolismo
9.
Avian Pathol ; 48(4): 334-342, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-30915860

RESUMEN

Avian orthoreovirus (ARV) infections of broiler flocks cause arthritis/tenosynovitis syndrome and significant economic losses. ARV variants were detected in the USA and Canada. Viral arthritis/tenosynovitis syndrome has occurred frequently in China in recent years. In this study, a variant ARV strain associated with viral arthritis/tenosynovitis syndrome was isolated from broilers and designated as LY383. Genomic sequence and phylogenetic analysis of the σC nucleic acid and amino acid sequences revealed that the isolate was closely related to ARV field strains Reo/PA/Layer/01224B/14, Reo/PA/Broiler/1551/13, GA/14602/2014, GA/13569/2013 and GA/13542/2013, in cluster V, but distinct from most Chinese field strains or commercial vaccine strains. Experimental challenge showed that the isolate could cause arthritis/tenosynovitis syndrome in broilers, which possessed a high level of maternal antibodies induced by commercial ARV vaccines (S1133, 1733 and T98). Furthermore, viral nucleic acid could be detected in cloacal swabs of all challenged birds throughout the entire test from 5 dpi onward. These results suggest that a novel ARV genotype emerges and might become prevalent in broiler flocks in China. RESEARCH HIGHLIGHTS A variant avian orthoreovirus was isolated from a vaccinated broiler flock in North China. The ARV field strain was distinct from previous China-origin ARV isolates and vaccine strains. The current commercial ARV vaccine could not provide effective protection of broilers against the field isolate infection. These findings indicated that variant ARV field strains might become frequent in broiler flocks in China and effective measures should be conducted to prevent and control the disease.


Asunto(s)
Pollos , Genoma/genética , Orthoreovirus Aviar/genética , Orthoreovirus Aviar/patogenicidad , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/veterinaria , Secuencia de Aminoácidos , Animales , Artritis/veterinaria , Proteínas de la Cápside/química , Proteínas de la Cápside/genética , China , Secuenciación de Nucleótidos de Alto Rendimiento/veterinaria , Orthoreovirus Aviar/clasificación , Filogenia , Enfermedades de las Aves de Corral/prevención & control , ARN Viral/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Distribución Aleatoria , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Líquido Sinovial/virología , Tendones/virología , Tenosinovitis/veterinaria , Vacunación/veterinaria
10.
Fish Shellfish Immunol ; 75: 66-73, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29409932

RESUMEN

Grass carp reovirus II (GCRV II) causes severe hemorrhagic disease with high mortality in grass carp, Cyenopharyngodon idellus. DNA vaccination has been proven to be a very effective method in conferring protection against fish viruses. However, DNA vaccines for GCRV II have not yet been conducted on grass carp. In the current work, we vaccinated grass carp with a DNA vaccine consisting of the segment 6 (pC-S6; encoding VP4) or 10 (pC-S10; encoding NS38) of GCRV II and comparatively analyzed the immune responses induced by these two vaccines. The protective efficacy of pC-S6 and pC-S10, in terms of relative percentage survival (RPS), was 59.9% and 23.1% respectively. This suggests that pC-S6 and pC-S10 DNA vaccines could increase the survival rate of grass carp against GCRV, albeit with variations in immunoprotective effect. Immunological analyses indicated the following. First, post-vaccination (pv), both pC-S6 and pC-S10 up-regulated the expression of interferon (IFN-1), Mx1, IL-1ß, and TNF-α. However, CD4 and CD8α were up-regulated in the case of pC-S6 but not pC-S10. Second, comparing non-vaccinated and pC-S10-vaccinated fish, the T cell response related genes, such as CD4, CD8α, and GATA3, were elevated in pC-S6-vaccinated fish at 48 h post-challenge (pc). Third, pC-S6 and pC-S10 induced similar patterns of specific antibody response pv. However, only anti-VP4 IgM in the sera of surviving fish infected with GCRV was significantly increased pc compared with that pre-challenge. Taken together, these results indicate that pC-S6 promotes both innate (IFN-1 and Mx1 induction) and adaptive (T cell and specific antibody response) immunity pv and that the induction of a memory state promptly primes the immune response upon later encounters with the virus, whereas pC-S10 only induces the type I IFN-related response pv and a lower inflammatory response pc.


Asunto(s)
Carpas , Enfermedades de los Peces/prevención & control , Inmunidad Innata , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Vacunas de ADN/inmunología , Vacunas Virales/inmunología , Animales , Enfermedades de los Peces/virología , Inyecciones Intramusculares/veterinaria , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Vacunas de ADN/administración & dosificación , Vacunas Virales/administración & dosificación
11.
Fish Shellfish Immunol ; 75: 91-98, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29408645

RESUMEN

The grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is one of the most severe infectious diseases in aquaculture. Given that antiviral therapies are currently limitedly available, vaccination remains the most effective means for the prevention of viral diseases, such as GCRV. A reovirus strain, which was temporarily named GCRV-HN14, was recently isolated from grass carp in Henan province, China. The S11 gene fragment of GCRV-HN14 was speculated to encode viral structural protein VP35, which has no equivalent gene in other aquareviruses but has antigenic epitopes. In this study, the recombinant plasmid pET-32a-vp35 was constructed to express recombinant VP35 proteins in prokaryotic cells, which was used to create a novel subunit vaccine. The immune protection of recombinant VP35 protein was evaluated by a series of experiments in grass carp. Results showed that the number of white blood cells (WBC) in the peripheral blood increased significantly to 7.92 ±â€¯0.72 × 107/ml 5 days after vaccination (P < 0.05). The number of neutrophils and monocytes in WBC were significantly higher than those of the control 3 days after vaccination (P < 0.05) and maximally got to 12.22 ±â€¯1.28% and 18.70 ±â€¯1.78%, respectively. Owing to the significant increase in the number of lymphocytes (92.37 ±â€¯2.10%; P < 0.01), the percentages of neutrophils and monocytes declined significantly (14 dpi; P < 0.01). Serum antibody levels induced by recombinant VP35 protein significantly increased 7 days post immunization and continued to increase until 5 weeks post vaccination. The mRNA expression levels of type I interferon (designated as IFN1), immunoglobulin M, Toll-like receptor 22 and major histocompatibility complex class I were up-regulated significantly in the head kidneys and spleens of immunized fish (P < 0.01). Grass carp immunized by recombinant VP35 protein showed that the relative percentage of survival was about 60% after it was challenged with GCRV. Overall, the results suggested that recombinant VP35 protein can induce immunity and protect grass carp against GCRV infection. Thus, it can be used as a subunit vaccine.


Asunto(s)
Carpas , Enfermedades de los Peces/prevención & control , Inmunidad Innata , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunología , Animales , Enfermedades de los Peces/virología , Plásmidos/inmunología , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología , Vacunas Virales/administración & dosificación
12.
Fish Shellfish Immunol ; 72: 199-209, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29102630

RESUMEN

Infection with Grass carp reovirus (GCRV) is becoming unprecedentedly widespread in grass carp (Ctenopharyngodon idella) aquaculture industry, yet the management of GCRV infection still remains a challenge. Therefore, it is of importance to develop effective means against GCRV. As a delivery system of viral antigens, surface displaying of heterologous proteins on bacteria using anchoring motifs has successfully been implemented in human and veterinary vaccines research. In this study, a novel vaccine (BL21/InpN/vp7) was developed based on surface displaying a major capsid protein (vp7) of GCRV using the anchoring motif of N-terminal unique domain of ice-nucleation protein (InpN) on Escherichia coli BL21 (DE3) vaccine. Then the grass carp were immunized by surface displaying BL21/InpN/vp7 vaccine against GCRV using both intraperitoneal injection and bath immunization and their immune responses were tested. The results revealed that some non-specific immune parameters (acid phosphatase (ACP), alkaline phosphatase (AKP) and total antioxidant capacity (T-AOC)) were strongly increased in grass carp post injection inoculation (vp7 dose ranged from 10 to 20 µg). The specific antibody levels against GCRV and the transcriptional of immune-related genes (TNF-α, IL-1ß, MHCI and IgM) were also significantly enhanced in grass carp by injection inoculation (vp7 dose ranged from 5 to 20 µg). On the other hand, only the highest dose of bath vaccination significantly induced the production of specific antibody and up-regulated transcriptions of several immune-related genes (IgM and MHCI) in grass carp. The lower cumulative mortality of grass carp in vaccinated groups after GCRV challenge clearly demonstrated that surface displayed vp7 vaccine could protect fish against GCRV infection. The relative percentage survival (RPS) value in injection vaccinated group (88.89%) was much higher compared to bath group (18.89%), which was in consistent with the production of specific serum antibodies, non-specific immune response and immune related genes expression. To sum up, our results indicated the surface display of heterologous antigenic proteins on E. coli BL21 (DE3) using the anchoring motif of ice-nucleation protein may provide a promising approach to the vaccine development of aquatic animals and suggested its potential to be used as vaccine to fight against GCRV infection.


Asunto(s)
Proteínas de la Cápside/inmunología , Carpas , Enfermedades de los Peces/prevención & control , Inmunogenicidad Vacunal , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Vacunas Virales/inmunología , Animales , Escherichia coli/genética , Escherichia coli/inmunología , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/virología , Microorganismos Modificados Genéticamente/genética , Microorganismos Modificados Genéticamente/inmunología , Distribución Aleatoria , Reoviridae/genética , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Vacunas de Subunidad/inmunología
13.
J Fish Dis ; 41(9): 1411-1419, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29926926

RESUMEN

Heart- and skeletal muscle inflammation (HSMI) caused by infection with Piscine orthoreovirus (PRV) is one of the most common viral diseases in farmed Atlantic salmon (Salmo salar) in Norway, and disease outbreaks have been reported in most countries with large-scale Atlantic salmon aquaculture. Currently there is no vaccine available for protection against HSMI, partly due to the lack of a cell line for efficient virus propagation. Erythrocytes are the primary target cells for PRV in vivo and a potential source for isolation of PRV particles. In this study, PRV was purified from infected erythrocytes, inactivated and used in a vaccination trial against HSMI. A single immunization with adjuvanted, inactivated PRV induced protection against HSMI in Atlantic salmon infected by virus injection 6 weeks later, while a moderate protection was obtained in fish infected through natural transmission, i.e. cohabitation. The PRV vaccine significantly reduced PRV loads and histopathological lesions typical for HSMI compared to the unvaccinated control group. This is the first demonstration of protective vaccination against PRV, and promising for future control of HSMI in Atlantic salmon aquaculture.


Asunto(s)
Enfermedades de los Peces/prevención & control , Inflamación/prevención & control , Orthoreovirus/inmunología , Infecciones por Reoviridae/veterinaria , Salmo salar/inmunología , Vacunas Virales/administración & dosificación , Adyuvantes Inmunológicos/administración & dosificación , Animales , Acuicultura , Eritrocitos/virología , Enfermedades de los Peces/inmunología , Corazón/fisiopatología , Inmunización , Músculo Esquelético/inmunología , Músculo Esquelético/patología , Miositis/patología , Noruega , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Salmo salar/anatomía & histología , Salmo salar/virología , Vacunas de Productos Inactivados/administración & dosificación , Carga Viral
14.
BMC Vet Res ; 13(1): 214, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28683792

RESUMEN

BACKGROUND: Infection with Goose Reovirus (GRV) can cause serious economic losses in the goose breeding industry. In this study, the GRV allantoic fluid was concentrated and used as an antigen in a formalin-inactivated oil-emulsion vaccine. RESULTS: When 6 day-old geese were inoculated, antibodies against GRV became detectable at 6 days post-vaccination, their concentration peaked at 3 weeks. These antibodies were maintained for longer than 2 weeks. As the most susceptible age for GRV infection is birds under 2 weeks of age this vaccine should provide adequate cover for the most at risk birds. When geese were exposed to reovirus at different time intervals after immunization, the data revealed that the vaccine can provide a protection rate of 80%. The developed vaccine has good stability and could be stored at 4 °C for at least 12 months. CONCLUSION: These results indicate that the developed GRV vaccine is safe, effectively absorbed, efficacious in inducing a rapid immune response, and effective in controlling GRV infection. Our results should be useful for the application of vaccines for controlling GRV in different goose flocks.


Asunto(s)
Gansos , Enfermedades de las Aves de Corral/virología , Infecciones por Reoviridae/veterinaria , Vacunas Virales/inmunología , Animales , Embrión de Pollo/virología , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/prevención & control , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/prevención & control , Vacunación/veterinaria , Vacunas de Productos Inactivados/administración & dosificación , Vacunas de Productos Inactivados/inmunología , Vacunas Virales/administración & dosificación
15.
J Aquat Anim Health ; 29(2): 89-94, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28379065

RESUMEN

Grass Carp reovirus (GCRV) is one of the most pathogenic agents among aquareovirus isolates and has the ability to cause a severe epidemic outbreak of hemorrhagic disease, thus resulting in both a high mortality rate during the culture of Grass Carp Ctenopharyngodon idella and an enormous economic loss. Aptamers have been demonstrated to have strong promising applications in antiviral drug development. In the present study, a complementary DNA fragment encoding the S10 gene of GCRV was cloned. The S10 protein was expressed and purified. Aptamers for S10 protein were selected by the method of selective evolution of ligands by exponential enrichment (SELEX), and their characteristics and antiviral actions were examined. All targeting-selected aptamers formed a similar structure, forming a 5-7 base loop at the terminus. The results show that the aptamers could inhibit the GCRV infection. The most significant inhibitory effect was obsereved when the aptamers were added to the cell culture for 1 h before the cells were infected by GCRV. Our data showed that these novel molecular agents could be considered suitable candidates for anti-GCRV therapy. Received August 23, 2016; accepted February 5, 2017.


Asunto(s)
Aptámeros de Nucleótidos/antagonistas & inhibidores , Carpas , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/veterinaria , Reoviridae/genética , Animales , Infecciones por Reoviridae/prevención & control
16.
Fish Shellfish Immunol ; 54: 473-80, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27142935

RESUMEN

Grass carp (Ctenopharyngodon idella) hemorrhagic disease, caused by grass carp reovirus (GCRV), is emerging as a serious problem in grass carp aquaculture. There is no available antiviral therapy and vaccination is the primary method of disease control. In the present study, the immunological effects and protective efficacy of an inactivated HuNan1307 vaccine in grass carp were evaluated. The GCRV isolate HuNan1307 was produced by replication onto the grass carp PSF cell line, and inactivated with 1% ß-propiolactone for 60 h at 4 °C. Grass carp were injected with inactivated GCRV vaccine, followed by challenge with the isolate HuNan1307. The results showed that the minimum dosage of the inactivated vaccine was 10(5.5) TCID50/0.2 mL to induce immune protection. All grass carp immunized with the inactivated vaccine produced a high titer of serum antibodies and GCRV-specific neutralizing antibody. Moreover, the inactivated vaccine injection increased the expression of 6 immune-related genes in the spleen and head kidney, which indicated that a immune response was induced by the HuNan1307 vaccine. In addition, grass carp immunized with the inactivated vaccine showed a survival rate above 80% after the viral challenge, equal to that of grass carp immunized with a commercial attenuated vaccine, and the protection lasted at least for one year. The data in this study suggested that the inactivated HuNan1307 vaccine may represent an efficient method to induce immunity against GCRV infection and the induced disease in grass carp.


Asunto(s)
Carpas , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/prevención & control , Inmunogenicidad Vacunal , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Vacunas Virales/inmunología , Animales , Técnicas de Cultivo de Célula , Inmunización/veterinaria , Infecciones por Reoviridae/inmunología , Infecciones por Reoviridae/prevención & control , Vacunas de Productos Inactivados/inmunología
17.
Arch Virol ; 161(3): 573-82, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26615551

RESUMEN

Grass carp reovirus strain 109 (GCReV-109) was previously isolated from a grass carp (Ctenopharyngodon idellus) with hemorrhagic disease, and its complete genome has been sequenced. However, the infectivity of GCReV-109 has not been studied, and the viral protein VP33, encoded on genome segment S11, had no detectable sequence homology to other known reovirus proteins. In this study, we characterized GCReV-109 infections in vivo and in vitro, as well as the VP33 protein. Infectivity analysis showed that GCReV-109 caused severe hemorrhagic disease and 100% mortality at dilutions up to 10(-4) in rare minnows (Gobiocypris rarus) by 8 days postinfection, but no visible cytopathic effect was observed in GCReV-109-infected subcultured grass carp muscle (GCM) cells. To confirm that GCReV-109 could be propagated in GCM cells, three virus genome segments were detected by RT-PCR, and large numbers of virus particles were observed by transmission electron microscopy in samples from the infected GCM cells. The suspension of GCReV-109-infected GCM cells was pathogenic to rare minnows. VP33 protein was expressed and purified for generation of an anti-VP33 antiserum. In western blot analysis of purified GCReV-109 particles, the antiserum specifically recognized a protein band (approximately 33 kDa). This revealed that VP33 is a major structural protein of GCReV-109 that might have immunogenic properties. The protective efficacy of the anti-VP33 antiserum against GCReV-109 infection was tested. The death of infected fish was delayed and the mortality fell to 10% when fish were treated with the anti-VP33 antiserum, suggesting that it might be useful for the prevention and control of fish reoviral disease.


Asunto(s)
Cyprinidae , Enfermedades de los Peces/prevención & control , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Proteínas Estructurales Virales/inmunología , Animales , Células Cultivadas , Efecto Citopatogénico Viral , Inmunización Pasiva , Microscopía Electrónica de Transmisión , ARN Viral/análisis , ARN Viral/genética , Infecciones por Reoviridae/prevención & control , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Supervivencia , Resultado del Tratamiento , Virión/ultraestructura
18.
Mol Biol Rep ; 43(6): 509-15, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27085857

RESUMEN

Grass carp hemorrhagic disease is a common fish disease and often results in significant economic losses in grass carp aquaculture in China. This study was aimed to develop a novel oral vaccine against grass carp reovirus (GCRV). GCRV vp6 and vp7 genes with ß-actin promoter of Megalobrama amblycephala and polyhedrin promoter (Ph10) of baculovirus, respectively, were cloned into plasmid pFast™-Dual to construct a vector pFast-PHVP7-AVP6, which was used to generate a recombinant baculovirus BacFish-vp6/vp7 via Bac-to-Bac system. The VP7 expression was analyzed from freeze-dried powder of the BacFish-vp6/vp7-infected silkworm pupae by western blotting, and VP6 expression was analyzed from orally vaccinated fish with the freeze-dried powder by RT-PCR. The VP6 expression was also analyzed from both CIK cells transduced with BacFish-vp6/vp7 and tissues of vaccinated fish by immunofluorescence analysis. Recombinant VP7 could be detected from the BacFish-vp6/vp7-infected silkworm pupae. Pathological changes were not observed in CIK cells transduced with BacFish-vp6/vp7, and VP6 expression was found in CIK cells. When the grass carps were orally administrated with the freeze-dried powder, vp6 gene transcription was found in blood of the vaccinated fishes and VP6 protein was observed in liver and kidney of the vaccinated fish by immunofluorescence analysis. These results indicated that vp7 gene was expressed in the BacFish-vp6/vp7-infected silkworm and vp6 gene was expressed in orally vaccinated fish with freeze-dried powder of the BacFish-vp6/vp7-infected silkworm pupae, suggesting the possibility to use the powder as an orally administrated vaccine.


Asunto(s)
Carpas/virología , Enfermedades de los Peces/virología , Infecciones por Reoviridae/veterinaria , Reoviridae/genética , Proteínas no Estructurales Virales/genética , Animales , Baculoviridae/genética , Bombyx/genética , Línea Celular , Clonación Molecular , Enfermedades de los Peces/prevención & control , Explotaciones Pesqueras , Expresión Génica , ARN Mensajero/sangre , ARN Mensajero/genética , ARN Viral/sangre , Infecciones por Reoviridae/prevención & control , Infecciones por Reoviridae/virología , Vacunación , Proteínas no Estructurales Virales/biosíntesis , Vacunas Virales/genética , Vacunas Virales/inmunología
20.
Fish Shellfish Immunol ; 41(2): 279-93, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25240976

RESUMEN

Grass carp reovirus (GCRV), the most pathogenic aquareovirus, can cause fatal hemorrhagic disease in fingerling and yearling grass carp. Vaccination by injection is by far the most effective method of combating disease. However it is labor intensive, costly and not feasible to vaccinate large numbers of the fish. Thus, an efficient and economic strategy for the prevention of GCRV infection becomes urgent. Here, functionalized single-walled carbon nanotubes (SWCNTs) as carrier were used to manufacture SWCNTs-VP7 subunit vaccine with chemical modification. Different developmental stages of grass carps were immunized by VP7/SWCNTs-VP7 subunit vaccine against GCRV by intramuscular injection and bath immunization. The results indicate that better immune responses of grass carp immunized with the SWCNTs-VP7 subunit vaccine were induced in comparison with VP7 subunit vaccine alone. Immunization doses/concentrations are significantly reduced (about 5-8 times) to prevent GCRV infection in different developmental stages of grass carp with injection or bath treatment when SWCNTs carrier was used. A good immune protective effect (relative percentage survival greater than 95%) is observed in smaller size fish (0.2 g) with SWCNTs-VP7 bath immunization. In addition, serum respiratory burst activity, complement activity, lysozyme activity, superoxide dismutase activity, alkaline phosphatase activity, immune-related genes and antibody levels were significantly enhanced in fish immunized with vaccine. This study suggested that functionalized SWCNTs was the promising carrier for recombinant subunit vaccine and might be used to vaccinate fish by bath approach.


Asunto(s)
Carpas , Sistemas de Liberación de Medicamentos/métodos , Enfermedades de los Peces/prevención & control , Enfermedades de los Peces/virología , Nanotubos de Carbono , Infecciones por Reoviridae/veterinaria , Reoviridae/inmunología , Vacunas Virales/uso terapéutico , Fosfatasa Alcalina/sangre , Animales , Anticuerpos Antivirales/sangre , Acuicultura/métodos , China , Clonación Molecular , Proteínas del Sistema Complemento/inmunología , Cartilla de ADN/genética , Inmunización/métodos , Muramidasa/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Infecciones por Reoviridae/prevención & control , Estallido Respiratorio/inmunología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Superóxido Dismutasa/sangre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA