Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.392
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(10): 2618-2632.e17, 2021 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-33836156

RESUMEN

The ongoing pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is currently affecting millions of lives worldwide. Large retrospective studies indicate that an elevated level of inflammatory cytokines and pro-inflammatory factors are associated with both increased disease severity and mortality. Here, using multidimensional epigenetic, transcriptional, in vitro, and in vivo analyses, we report that topoisomerase 1 (TOP1) inhibition suppresses lethal inflammation induced by SARS-CoV-2. Therapeutic treatment with two doses of topotecan (TPT), an FDA-approved TOP1 inhibitor, suppresses infection-induced inflammation in hamsters. TPT treatment as late as 4 days post-infection reduces morbidity and rescues mortality in a transgenic mouse model. These results support the potential of TOP1 inhibition as an effective host-directed therapy against severe SARS-CoV-2 infection. TPT and its derivatives are inexpensive clinical-grade inhibitors available in most countries. Clinical trials are needed to evaluate the efficacy of repurposing TOP1 inhibitors for severe coronavirus disease 2019 (COVID-19) in humans.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , ADN-Topoisomerasas de Tipo I/metabolismo , SARS-CoV-2/metabolismo , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Animales , COVID-19/enzimología , COVID-19/patología , Chlorocebus aethiops , Humanos , Inflamación/tratamiento farmacológico , Inflamación/enzimología , Inflamación/patología , Inflamación/virología , Mesocricetus , Ratones , Ratones Transgénicos , Células THP-1 , Células Vero
2.
Mol Cell ; 81(5): 1084-1099.e6, 2021 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-33450211

RESUMEN

Cells have evolved an elaborate DNA repair network to ensure complete and accurate DNA replication. Defects in these repair machineries can fuel genome instability and drive carcinogenesis while creating vulnerabilities that may be exploited in therapy. Here, we use nascent chromatin capture (NCC) proteomics to characterize the repair of replication-associated DNA double-strand breaks (DSBs) triggered by topoisomerase 1 (TOP1) inhibitors. We reveal profound changes in the fork proteome, including the chromatin environment and nuclear membrane interactions, and identify three classes of repair factors according to their enrichment at broken and/or stalled forks. ATM inhibition dramatically rewired the broken fork proteome, revealing that ataxia telangiectasia mutated (ATM) signalling stimulates DNA end resection, recruits PLK1, and concomitantly suppresses the canonical DSB ubiquitination response by preventing accumulation of RNF168 and BRCA1-A. This work and collection of replication fork proteomes provide a new framework to understand how cells orchestrate homologous recombination repair of replication-associated DSBs.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de Ciclo Celular/genética , Replicación del ADN , ADN-Topoisomerasas de Tipo I/genética , ADN/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Reparación del ADN por Recombinación , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , Camptotecina/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Cromatina/química , Cromatina/metabolismo , ADN/metabolismo , Roturas del ADN de Doble Cadena , ADN-Topoisomerasas de Tipo I/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Regulación de la Expresión Génica , Células HeLa , Humanos , Unión Proteica , Proteínas Serina-Treonina Quinasas/metabolismo , Proteómica/métodos , Proteínas Proto-Oncogénicas/metabolismo , Piridinas/farmacología , Quinolinas/farmacología , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Inhibidores de Topoisomerasa I/farmacología , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación/efectos de los fármacos , Quinasa Tipo Polo 1
3.
Genes Dev ; 34(15-16): 1065-1074, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32561545

RESUMEN

RTEL1 helicase is a component of DNA repair and telomere maintenance machineries. While RTEL1's role in DNA replication is emerging, how RTEL1 preserves genomic stability during replication remains elusive. Here we used a range of proteomic, biochemical, cell, and molecular biology and gene editing approaches to provide further insights into potential role(s) of RTEL1 in DNA replication and genome integrity maintenance. Our results from complementary human cell culture models established that RTEL1 and the Polδ subunit Poldip3 form a complex and are/function mutually dependent in chromatin binding after replication stress. Loss of RTEL1 and Poldip3 leads to marked R-loop accumulation that is confined to sites of active replication, enhances endogenous replication stress, and fuels ensuing genomic instability. The impact of depleting RTEL1 and Poldip3 is epistatic, consistent with our proposed concept of these two proteins operating in a shared pathway involved in DNA replication control under stress conditions. Overall, our data highlight a previously unsuspected role of RTEL1 and Poldip3 in R-loop suppression at genomic regions where transcription and replication intersect, with implications for human diseases including cancer.


Asunto(s)
ADN Helicasas/metabolismo , Replicación del ADN , Estructuras R-Loop , Proteínas de Unión al ARN/metabolismo , Línea Celular , Cromatina/metabolismo , Humanos , Estrés Fisiológico , Inhibidores de Topoisomerasa I/farmacología
4.
Nucleic Acids Res ; 52(5): 2142-2156, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38340342

RESUMEN

Human DNA topoisomerase 1 (Top1) is a crucial enzyme responsible for alleviating torsional stress on DNA during transcription and replication, thereby maintaining genome stability. Previous researches had found that non-working Top1 interacted extensively with chromosomal DNA in human cells. However, the reason for its retention on chromosomal DNA remained unclear. In this study, we discovered a close association between Top1 and chromosomal DNA, specifically linked to the presence of G-quadruplex (G4) structures. G4 structures, formed during transcription, trap Top1 and hinder its ability to relax neighboring DNAs. Disruption of the Top1-G4 interaction using G4 ligand relieved the inhibitory effect of G4 on Top1 activity, resulting in a further reduction of R-loop levels in cells. Additionally, the activation of Top1 through the use of a G4 ligand enhanced the toxicity of Top1 inhibitors towards cancer cells. Our study uncovers a negative regulation mechanism of human Top1 and highlights a novel pathway for activating Top1.


Asunto(s)
ADN-Topoisomerasas de Tipo I , G-Cuádruplex , Transcripción Genética , Humanos , ADN/química , Replicación del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Ligandos , Inhibidores de Topoisomerasa I/farmacología
5.
Proc Natl Acad Sci U S A ; 120(34): e2218483120, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37579177

RESUMEN

We designed and carried out a high-throughput screen for compounds that trap topoisomerase III beta (TOP3B poisons) by developing a Comparative Cellular Cytotoxicity Screen. We found a bisacridine compound NSC690634 and a thiacyanine compound NSC96932 that preferentially sensitize cell lines expressing TOP3B, indicating that they target TOP3B. These compounds trap TOP3B cleavage complex (TOP3Bcc) in cells and in vitro and predominately act on RNA, leading to high levels of RNA-TOP3Bccs. NSC690634 also leads to enhanced R-loops in a TOP3B-dependent manner. Preliminary structural activity studies show that the lengths of linkers between the two aromatic moieties in each compound are critical; altering the linker length completely abolishes the trapping of TOP3Bccs. Both of our lead compounds share a similar structural motif, which can serve as a base for further modification. They may also serve in anticancer, antiviral, and/or basic research applications.


Asunto(s)
ADN-Topoisomerasas de Tipo I , Inhibidores de Topoisomerasa I , Línea Celular , ADN-Topoisomerasas de Tipo I/metabolismo , ARN , Inhibidores de Topoisomerasa I/química
6.
Cancer Immunol Immunother ; 73(5): 92, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38564022

RESUMEN

Current immune checkpoint inhibiters (ICIs) have contrasting clinical results in poorly immunogenic cancers such as microsatellite-stable colorectal cancer (MSS-CRC). Therefore, understanding and developing the combinational therapeutics for ICI-unresponsive cancers is critical. Here, we demonstrated that the novel topoisomerase I inhibitor TLC388 can reshape the tumor immune landscape, corroborating their antitumor effects combined with radiotherapy as well as immunotherapy. We found that TLC388 significantly triggered cytosolic single-stranded DNA (ssDNA) accumulation for STING activation, leading to type I interferons (IFN-Is) production for increased cancer immunogenicity to enhance antitumor immunity. TLC388-treated tumors were infiltrated by a vast number of dendritic cells, immune cells, and costimulatory molecules, contributing to the favorable antitumor immune response within the tumor microenvironment. The infiltration of cytotoxic T and NK cells were more profoundly existed within tumors in combination with radiotherapy and ICIs, leading to superior therapeutic efficacy in poorly immunogenic MSS-CRC. Taken together, these results showed that the novel topoisomerase I inhibitor TLC388 increased cancer immunogenicity by ssDNA/STING-mediated IFN-I production, enhancing antitumor immunity for better therapeutic efficacy in combination with radiotherapy and ICIs for poorly immunogenic cancer.


Asunto(s)
Camptotecina/análogos & derivados , Neoplasias Colorrectales , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Neoplasias Colorrectales/terapia , Citosol , Microambiente Tumoral
7.
J Transl Med ; 22(1): 362, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38632563

RESUMEN

BACKGROUND: HER3 (ErbB3), a member of the human epidermal growth factor receptor family, is frequently overexpressed in various cancers. Multiple HER3-targeting antibodies and antibody-drug conjugates (ADCs) were developed for the solid tumor treatment, however none of HER3-targeting agent has been approved for tumor therapy yet. We developed DB-1310, a HER3 ADC composed of a novel humanized anti-HER3 monoclonal antibody covalently linked to a proprietary DNA topoisomerase I inhibitor payload (P1021), and evaluate the efficacy and safety of DB-1310 in preclinical models. METHODS: The binding of DB-1310 to Her3 and other HER families were measured by ELISA and SPR. The competition of binding epitope for DB-1310 and patritumab was tested by FACS. The sensitivity of breast, lung, prostate and colon cancer cell lines to DB-1310 was evaluated by in vitro cell killing assay. In vivo growth inhibition study evaluated the sensitivity of DB-1310 to Her3 + breast, lung, colon and prostate cancer xenograft models. The safety profile was also measured in cynomolgus monkey. RESULTS: DB-1310 binds HER3 via a novel epitope with high affinity and internalization capacity. In vitro, DB-1310 exhibited cytotoxicity in numerous HER3 + breast, lung, prostate and colon cancer cell lines. In vivo studies in HER3 + HCC1569 breast cancer, NCI-H441 lung cancer and Colo205 colon cancer xenograft models showed DB-1310 to have dose-dependent tumoricidal activity. Tumor suppression was also observed in HER3 + non-small cell lung cancer (NSCLC) and prostate cancer patient-derived xenograft (PDX) models. Moreover, DB-1310 showed stronger tumor growth-inhibitory activity than patritumab deruxtecan (HER3-DXd), which is another HER3 ADC in clinical development at the same dose. The tumor-suppressive activity of DB-1310 synergized with that of EGFR tyrosine kinase inhibitor, osimertinib, and exerted efficacy also in osimertinib-resistant PDX model. The preclinical assessment of safety in cynomolgus monkeys further revealed DB-1310 to have a good safety profile with a highest non severely toxic dose (HNSTD) of 45 mg/kg. CONCLUSIONS: These finding demonstrated that DB-1310 exerted potent antitumor activities against HER3 + tumors in in vitro and in vivo models, and showed acceptable safety profiles in nonclinical species. Therefore, DB-1310 may be effective for the clinical treatment of HER3 + solid tumors.


Asunto(s)
Acrilamidas , Compuestos de Anilina , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias del Colon , Inmunoconjugados , Indoles , Neoplasias Pulmonares , Neoplasias de la Próstata , Pirimidinas , Inhibidores de Topoisomerasa I , Animales , Humanos , Masculino , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Epítopos , Inmunoconjugados/farmacología , Inmunoconjugados/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Macaca fascicularis/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptor ErbB-3 , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
8.
Mol Pharm ; 21(7): 3240-3255, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38785196

RESUMEN

Inhibitors of a DNA repair enzyme known as polynucleotide kinase 3'-phosphatase (PNKP) are expected to show synergistic cytotoxicity in combination with topoisomerase I (TOP1) inhibitors in cancer. In this study, the synergistic cytotoxicity of a novel inhibitor of PNKP, i.e., A83B4C63, with a potent TOP1 inhibitor, i.e., SN-38, against colorectal cancer cells was investigated. Polymeric micelles (PMs) for preferred tumor delivery of A83B4C63, developed through physical encapsulation of this compound in methoxy poly(ethylene oxide)-poly(α-benzyl carboxylate-ε-caprolactone) (mPEO-b-PBCL) micelles, were combined with SN-38 in free or PM form. The PM form of SN-38 was prepared through chemical conjugation of SN-38 to the functional end group of mPEO-b-PBCL and further assembly of mPEO-b-PBCL-SN-38 in water. Moreover, mixed micelles composed of mPEO-b-PBCL and mPEO-b-PBCL-SN-38 were used to co-load A83B4C63 and SN-38 in the same nanoformulation. The loading content (% w/w) of the SN-38 and A83B4C63 to mPEO-b-PBCL in the co-loaded formulation was 7.91 ± 0.66 and 16.13 ± 0.11% (w/w), respectively, compared to 15.67 ± 0.34 (% w/w) and 23.06 ± 0.63 (% w/w) for mPEO-b-PBCL micelles loading individual drugs. Notably, the average diameter of PMs co-encapsulating both SN-38 and A83B4C63 was larger than that of PMs encapsulating either of these compounds alone but still lower than 60 nm. The release of A83B4C63 from PMs co-encapsulating both drugs was 76.36 ± 1.41% within 24 h, which was significantly higher than that of A83B4C63-encapsulated micelles (42.70 ± 0.72%). In contrast, the release of SN-38 from PMs co-encapsulating both drugs was 44.15 ± 2.61% at 24 h, which was significantly lower than that of SN-38-conjugated PMs (74.16 ± 3.65%). Cytotoxicity evaluations by the MTS assay as analyzed by the Combenefit software suggested a clear synergy between PM/A83B4C63 (at a concentration range of 10-40 µM) and free SN-38 (at a concentration range of 0.001-1 µM). The synergistic cytotoxic concentration range for SN-38 was narrowed down to 0.1-1 or 0.01-1 µM when combined with PM/A83B4C63 at 10 or 20-40 µM, respectively. In general, PMs co-encapsulating A83B4C63 and SN-38 at drug concentrations within the synergistic range (10 µM for A83B4C63 and 0.05-1 µM for SN-38) showed slightly less enhancement of SN-38 anticancer activity than a combination of individual micelles, i.e., A83B4C63 PMs + SN-38 PMs at the same molar concentrations. This was attributed to the slower release of SN-38 from the SN-38 and A83B4C63 co-encapsulated PMs compared to PMs only encapsulating SN-38. Cotreatment of cells with TOP1 inhibitors and A83B4C63 formulation enhanced the expression level of γ-HA2X, cleaved PARP, caspase-3, and caspase-7 in most cases. This trend was more consistent and notable for PMs co-encapsulating both A83B4C63 and SN-38. The overall result from the study shows a synergy between PMs of SN-38 and A83B4C63 as a mixture of two PMs for individual drugs or PMs co-encapsulating both drugs.


Asunto(s)
Neoplasias Colorrectales , Irinotecán , Micelas , Inhibidores de Topoisomerasa I , Humanos , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/patología , Irinotecán/farmacología , Irinotecán/administración & dosificación , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/administración & dosificación , Inhibidores de Topoisomerasa I/química , Línea Celular Tumoral , Animales , Ratones , Nanomedicina/métodos , Sinergismo Farmacológico , ADN-Topoisomerasas de Tipo I/metabolismo , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Poliésteres/química , Fosfotransferasas (Aceptor de Grupo Alcohol) , Enzimas Reparadoras del ADN
9.
EMBO Rep ; 23(7): e54499, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35593064

RESUMEN

Targeting myeloid cells, especially microglia, for the treatment of neuroinflammatory diseases such as multiple sclerosis (MS), is underappreciated. Our in silico drug screening reveals topoisomerase 1 (TOP1) inhibitors as promising drug candidates for microglial modulation. We show that TOP1 is highly expressed in neuroinflammatory conditions, and TOP1 inhibition using camptothecin (CPT) and its FDA-approved analog topotecan (TPT) reduces inflammatory responses in microglia/macrophages and ameliorates neuroinflammation in vivo. Transcriptomic analyses of sorted microglia from LPS-challenged mice reveal an altered transcriptional phenotype following TPT treatment. To target myeloid cells, we design a nanosystem using ß-glucan-coated DNA origami (MyloGami) loaded with TPT (TopoGami). MyloGami shows enhanced specificity to myeloid cells while preventing the degradation of the DNA origami scaffold. Myeloid-specific TOP1 inhibition using TopoGami significantly suppresses the inflammatory response in microglia and mitigates MS-like disease progression. Our findings suggest that TOP1 inhibition in myeloid cells represents a therapeutic strategy for neuroinflammatory diseases and that the myeloid-specific nanosystems we designed may also benefit the treatment of other diseases with dysfunctional myeloid cells.


Asunto(s)
Enfermedades Neuroinflamatorias , Inhibidores de Topoisomerasa I , Animales , ADN , Macrófagos , Ratones , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología
10.
Pharm Res ; 41(4): 795-806, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536615

RESUMEN

PURPOSE: Quantifying unencapsulated drug concentrations in tissues is crucial for understanding the mechanisms underlying the efficacy and safety of liposomal drugs; however, the methodology for this has not been fully established. Herein, we aimed to investigate the enhanced therapeutic potential of a pegylated liposomal formulation of topotecan (FF-10850) by analyzing the concentrations of the unencapsulated drug in target tissues, to guide the improvement of its dosing regimen. METHODS: We developed a method for measuring unencapsulated topotecan concentrations in tumor and bone marrow interstitial fluid (BM-ISF) and applied this method to pharmacokinetic assessments. The ratios of the area under the concentration-time curves (AUCs) between tumor and BM-ISF were calculated for total and unencapsulated topotecan. DNA damage and antitumor effects of FF-10850 or non-liposomal topotecan (TPT) were evaluated in an ES-2 mice xenograft model. RESULTS: FF-10850 exhibited a much larger AUC ratio between tumor and BM-ISF for unencapsulated topotecan (2.96), but not for total topotecan (0.752), than TPT (0.833). FF-10850 promoted milder DNA damage in the bone marrow than TPT; however, FF-10850 and TPT elicited comparable DNA damage in the tumor. These findings highlight the greater tumor exposure to unencapsulated topotecan and lower bone marrow exposure to FF-10850 than TPT. The dosing regimen was successfully improved based on the kinetics of unencapsulated topotecan and DNA damage. CONCLUSIONS: Tissue pharmacokinetics of unencapsulated topotecan elucidated the favorable pharmacological properties of FF-10850. Evaluation of tissue exposure to an unencapsulated drug with appropriate pharmacodynamic markers can be valuable in optimizing liposomal drugs and dosing regimens.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Ratones , Animales , Topotecan/farmacocinética , Inhibidores de Topoisomerasa I/farmacocinética , Liposomas , Neoplasias/tratamiento farmacológico , Modelos Animales de Enfermedad , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico
11.
Bioorg Med Chem Lett ; 104: 129710, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38518997

RESUMEN

A novel series of benzo[6,7]indolo[3,4-c]isoquinolines 3a-3f was designed by scaffold hopping of topoisomerase I inhibitor benzo[g][1]benzopyrano[4,3-b]indol-6(13H)-ones (BBPIs), which were developed by structural modification of the natural marine product lamellarin. The unconventional pentacycle was constructed by Bischler-Napieralski-type condensation of amide 11 and subsequent intramolecular Heck reaction. In vitro anticancer activity of the synthesized benzo[6,7]indolo[3,4-c]isoquinolines was evaluated on a panel of 39 human cancer cell lines (JFCR39). Among the compounds tested, N-(3-morpholinopropyl) derivative 3e showed the most potent antiproliferative activity, with a mean GI50 value of 39 nM. This compound inhibited topoisomerase I activity by stabilizing the enzyme-DNA complex.


Asunto(s)
Antineoplásicos , Cumarinas , Compuestos Heterocíclicos de 4 o más Anillos , Isoquinolinas , Inhibidores de Topoisomerasa I , Humanos , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , ADN-Topoisomerasas de Tipo I/metabolismo , Ensayos de Selección de Medicamentos Antitumorales , Isoquinolinas/síntesis química , Isoquinolinas/química , Isoquinolinas/farmacología , Relación Estructura-Actividad , Inhibidores de Topoisomerasa I/síntesis química , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/farmacología , Diseño de Fármacos , Cumarinas/síntesis química , Cumarinas/química , Cumarinas/farmacología , Compuestos Heterocíclicos de 4 o más Anillos/síntesis química , Compuestos Heterocíclicos de 4 o más Anillos/química , Compuestos Heterocíclicos de 4 o más Anillos/farmacología
12.
J Immunol ; 209(1): 171-179, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35725272

RESUMEN

Damage-associated molecular patterns (DAMPs) contribute to antitumor immunity during cancer chemotherapy. We previously demonstrated that topotecan (TPT), a topoisomerase I inhibitor, induces DAMP secretion from cancer cells, which activates STING-mediated antitumor immune responses. However, how TPT induces DAMP secretion in cancer cells is yet to be elucidated. Here, we identified RPL15, a 60S ribosomal protein, as a novel TPT target and showed that TPT inhibited preribosomal subunit formation via its binding to RPL15, resulting in the induction of DAMP-mediated antitumor immune activation independent of TOP1. TPT inhibits RPL15-RPL4 interactions and decreases RPL4 stability, which is recovered by CDK12 activity. RPL15 knockdown induced DAMP secretion and increased the CTL population but decreased the regulatory T cell population in a B16-F10 murine melanoma model, which sensitized B16-F10 tumors against PD-1 blockade. Our study identified a novel TPT target protein and showed that ribosomal stress is a trigger of DAMP secretion, which contributes to antitumor immunotherapy.


Asunto(s)
Neoplasias , Topotecan , Animales , Ratones , Neoplasias/tratamiento farmacológico , Proteínas Ribosómicas , Inhibidores de Topoisomerasa I/farmacología , Topotecan/farmacología , Topotecan/uso terapéutico
13.
Bioorg Chem ; 147: 107412, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38696845

RESUMEN

The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.


Asunto(s)
Antineoplásicos , ADN-Topoisomerasas de Tipo I , Clorhidrato de Fingolimod , Simulación del Acoplamiento Molecular , Inhibidores de Topoisomerasa I , Humanos , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/química , Clorhidrato de Fingolimod/síntesis química , ADN-Topoisomerasas de Tipo I/metabolismo , ADN-Topoisomerasas de Tipo I/química , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/química , Inhibidores de Topoisomerasa I/síntesis química , Estructura Molecular , Relación Estructura-Actividad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular/efectos de los fármacos , Simulación de Dinámica Molecular , Células MCF-7
14.
Bioorg Chem ; 143: 107015, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38086241

RESUMEN

Conventional topoisomerase (Topo) inhibitors typically usually exert their cytotoxicity by damaging the DNAs, which exhibit high toxicity and tend to result in secondary carcinogenesis risk. Molecules that have potent topoisomerase inhibitory activity but involve less DNA damage provide more desirable scaffolds for developing novel chemotherapeutic agents. In this work, we broke the rigid pentacyclic system of luotonin A and synthesized thirty-three compounds as potential Topo inhibitors based on the devised molecular motif. Further investigation disclose that two compounds with the highest antiproliferation activity against cancer cells, 5aA and 5dD, had a distinct Topo I inhibitory mechanism different from those of the classic Topo I inhibitors CPT or luteolin, and were able to obviate the obvious cellular DNA damage typically associated with clinically available Topo inhibitors. The animal model experiments demonstrated that even in mice treated with a high dosage of 50 mg/kg 5aA, there were no obvious signs of toxicity or loss of body weight. The tumor growth inhibition (TGI) rate was 54.3 % when 20 mg/kg 5aA was given to the T24 xenograft mouse model, and 5aA targeted the cancer tissue precisely without causing damage to the liver and other major organs.


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Animales , Ratones , Antineoplásicos/farmacología , Quinonas , Pirroles , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Daño del ADN , ADN-Topoisomerasas de Tipo I/metabolismo , Inhibidores de Topoisomerasa II/farmacología , ADN-Topoisomerasas de Tipo II , Línea Celular Tumoral
15.
Angew Chem Int Ed Engl ; 63(17): e202317187, 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38231130

RESUMEN

DNA topoisomerases are attractive targets for anticancer agents. Dual topoisomerase I/II inhibitors are particularly appealing due to their reduced rates of resistance. A number of therapeutically relevant topoisomerase inhibitors are bacterial natural products. Mining the untapped chemical diversity encoded by soil microbiomes presents an opportunity to identify additional natural topoisomerase inhibitors. Here we couple metagenome mining, bioinformatic structure prediction algorithms, and chemical synthesis to produce the dual topoisomerase inhibitor tapcin. Tapcin is a mixed p-aminobenzoic acid (PABA)-thiazole with a rare tri-thiazole substructure and picomolar antiproliferative activity. Tapcin reduced colorectal adenocarcinoma HT-29 cell proliferation and tumor volume in mouse hollow fiber and xenograft models, respectively. In both studies it showed similar activity to the clinically used topoisomerase I inhibitor irinotecan. The study suggests that the interrogation of soil microbiomes using synthetic bioinformatic natural product methods has the potential to be a rewarding strategy for identifying potent, biomedically relevant, antiproliferative agents.


Asunto(s)
Antineoplásicos , Productos Biológicos , Humanos , Ratones , Animales , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa II/química , Inhibidores de Topoisomerasa II/farmacología , ADN-Topoisomerasas de Tipo I/metabolismo , Productos Biológicos/farmacología , ADN-Topoisomerasas de Tipo II/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/química , Biología Computacional , Suelo , Tiazoles , Línea Celular Tumoral
16.
Oncologist ; 28(5): 460-e298, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37010988

RESUMEN

BACKGROUND: Multiple preclinical studies have shown cytotoxic synergy involving combinations of poly (ADP-ribose) polymerase (PARP) inhibitors and topoisomerase 1 (TOP1) inhibitors, but such combinations have proven too toxic in clinical trials. Liposomal irinotecan (nal-IRI) achieved similar intratumoral exposure with better antitumor activity than the conventional TOP1 inhibitor irinotecan in preclinical models. Tumor targeted delivery of TOP1 inhibitor using nal-IRI and an intermittent schedule of administration of PARP inhibitor may provide a tolerable combination. METHODS: A phase I study was performed to evaluate the safety and tolerability of escalating doses of nal-IRI and the PARP inhibitor veliparib in patients with solid tumors resistant to standard treatments. Nal-IRI was administered on days 1 and 15 and veliparib on days 5-12 and 19-25 in 28-day cycles. RESULTS: Eighteen patients were enrolled across 3 dose levels. Five patients encountered dose-limiting toxicities, including grade 3 diarrhea lasting more than 72 h in 3 patients and 1 patient each with grade 4 diarrhea and grade 3 hyponatremia. The most common grade 3 or 4 toxicities included diarrhea (50% of patients), nausea (16.6%), anorexia, and vomiting (11.1% each) (Table 1). There was no difference in frequencies of adverse events based on UGT1A1*28 status or prior opioid use (Table 1). CONCLUSION: The clinical trial was terminated due to high frequency of unacceptable gastrointestinal toxicities, which precluded dose escalation of veliparib in combination with nal-IRI (ClinicalTrials.gov Identifier: NCT02631733).


Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Irinotecán/farmacología , Irinotecán/uso terapéutico , Inhibidores de Poli(ADP-Ribosa) Polimerasas/efectos adversos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Antineoplásicos/uso terapéutico , Inhibidores de Topoisomerasa I/efectos adversos , Poli(ADP-Ribosa) Polimerasas , Diarrea/inducido químicamente , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
17.
FASEB J ; 36(6): e22294, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35579890

RESUMEN

Excessive neuroinflammation and neuronal loss contribute to mechanisms of spinal cord injury (SCI). Accumulating evidence has suggested that topoisomerase 1 (Top1) inhibition can suppress exacerbated immune responses and protect against lethal inflammation. Pyroptosis is a recently identified pro-inflammatory programmed mode of cell death. However, the effects and underlying mechanisms of Top1 inhibition in SCI remains unclear. Locomotor functional recovery in mice was evaluated through Basso Mouse Scale (BMS). Neuronal loss was evaluated by immunochemistry staining of NeuN. Pyroptosis was determined by immunofluorescence staining, western blot, flow cytometry, cell viability, and cytotoxicity assays. In the present study, we estimated the effects of chemical inhibition of Top1 in an SCI model. Administration of Top1 inhibitor camptothecin (CPT) to mice significantly improved locomotor functional recovery after SCI. Moreover, CPT reduced Top1 level, inhibited nucleotide-binding oligomerization domain-like receptor 3 (NLRP3) inflammasome activation and pyroptosis, attenuated proinflammatory cytokines levels, diminished the number of neutrophil and neuronal loss in mice. Furthermore, CPT in oxygen-glucose deprivation neurons down-regulated Top1 level, attenuated NLRP3 inflammasome activation, and suppressed pyroptosis and inflammatory response. Together, our findings indicate that inhibition of Top1 with CPT can inhibit pyroptosis, control neuroinflammation, and improve functional recovery after SCI.


Asunto(s)
Traumatismos de la Médula Espinal , Inhibidores de Topoisomerasa I , Animales , Camptotecina/farmacología , Inflamasomas/metabolismo , Inflamación/metabolismo , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Piroptosis , Médula Espinal/metabolismo , Médula Espinal/patología , Traumatismos de la Médula Espinal/tratamiento farmacológico , Traumatismos de la Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/patología , Inhibidores de Topoisomerasa I/farmacología
18.
FASEB J ; 36(3): e22213, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35192728

RESUMEN

High-risk solid tumors continue to pose a tremendous therapeutic challenge due to multidrug resistance. Biological mechanisms driving chemoresistance in high-risk primary and recurrent disease are distinct: in newly diagnosed patients, non-response to therapy is often associated with a higher level of tumor "stemness" paralleled by overexpression of the ABCG2 drug efflux pump, whereas in tumors relapsing after non-curative therapy, poor drug sensitivity is most commonly linked to the dysfunction of the tumor suppressor protein, p53. In this study, we used preclinical models of aggressive neuroblastoma featuring these characteristic mechanisms of primary and acquired drug resistance to experimentally evaluate a macromolecular prodrug of a structurally enhanced camptothecin analog, SN22, resisting ABCG2-mediated export, and glucuronidation. Together with extended tumor exposure to therapeutically effective drug levels via reversible conjugation to Pluronic F-108 (PF108), these features translated into rapid tumor regression and long-term survival in models of both ABCG2-overexpressing and p53-mutant high-risk neuroblastomas, in contrast to a marginal effect of the clinically used camptothecin derivative, irinotecan. Our results demonstrate that pharmacophore enhancement, increased tumor uptake, and optimally stable carrier-drug association integrated into the design of the hydrolytically activatable PF108-[SN22]2  have the potential to effectively combat multiple mechanisms governing chemoresistance in newly diagnosed (chemo-naïve) and recurrent forms of aggressive malignancies. As a macromolecular carrier-based delivery system exhibiting remarkable efficacy against two particularly challenging forms of high-risk neuroblastoma, PF108-[SN22]2 can pave the way to a robust and clinically viable therapeutic strategy urgently needed for patients with multidrug-resistant disease presently lacking effective treatment options.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Resistencia a Antineoplásicos , Neuroblastoma/tratamiento farmacológico , Profármacos/uso terapéutico , Inhibidores de Topoisomerasa I/uso terapéutico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Camptotecina/análogos & derivados , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Ratones SCID , Poloxámero/química , Profármacos/administración & dosificación , Profármacos/química , Inhibidores de Topoisomerasa I/química
19.
Gynecol Oncol ; 170: 38-45, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36610380

RESUMEN

OBJECTIVES: Carcinosarcomas are highly aggressive gynecologic malignancies containing both carcinomatous and sarcomatous elements with heterogeneous HER2/neu expression and limited therapeutic options. We compared the efficacy of trastuzumab deruxtecan (DS-8201a), a novel HER2/neu-targeting antibody-drug conjugate (ADC) to an ADC isotype control (MAAA-9199) against primary uterine and ovarian carcinosarcomas in vitro and in vivo. METHODS: Twelve primary carcinosarcoma (CS) cell lines were evaluated for HER2/neu surface expression by immunohistochemistry (IHC) and by flow cytometry, and gene amplification by fluorescence in situ hybridization (FISH) assays. The in vitro experiments included cytotoxicity and bystander killing effect assays on three cell lines of variable HER2/neu expression. In vivo activity was studied in a mouse CS xenograft model of 3+ HER2/neu uterine CS. RESULTS: In vitro studies showed that DS-8201a was highly effective against uterine and ovarian CS cell lines demonstrating 3+ HER2/neu expression compared to MAAA-9199 control; there was no significant improvement in the 0 HER2/neu CS cell line. However, DS-8201a induced efficient bystander killing of 0 HER2/neu tumor cells when admixed with 3+ HER2/neu cells. In vivo studies confirmed that DS-8201a was more effective than MAAA-9199 in 3+ HER2/neu-expressing CS xenografts. CONCLUSION: DS-8201a may represent a novel and highly effective ADC against HER2/neu-expressing CS.


Asunto(s)
Carcinosarcoma , Inmunoconjugados , Neoplasias Ováricas , Humanos , Femenino , Ratones , Animales , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Hibridación Fluorescente in Situ , Receptor ErbB-2/genética , Anticuerpos Monoclonales Humanizados/uso terapéutico , Línea Celular Tumoral , Trastuzumab/uso terapéutico , Inmunoconjugados/uso terapéutico , Neoplasias Ováricas/patología , Carcinosarcoma/patología
20.
Org Biomol Chem ; 21(21): 4518-4528, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37199703

RESUMEN

The human topoisomerase IB (hTopoIB) enzyme is a monomeric protein that relaxes the supercoils on double-stranded DNA by forming a covalent DNA/hTopoIB complex by introducing a nick on the DNA strand. Inhibition of hTopoIB results in cell death, which makes this protein a strong target for the treatment of various cancer types, including small-cell lung cancers and ovarian cancers. Camptothecin (CPT) and indenoisoquinoline (IQN) classes of compounds inhibit the hTopoIB activity by intercalating to nicked DNA pairs; however, these inhibitors show different preferences towards DNA bases when bound to the DNA/hTopoIB complex. Here, we investigated the affinities of CPT and one IQN derivative towards different DNA base pairs. The two inhibitors showed different stacking behaviors in the intercalation site and interaction pattern with binding pocket residues, indicating that they have different inhibition mechanisms in the binding pocket that affects the base-pair selectivity. The results obtained from this study are expected to guide researchers in designing gene-specific and more potent compounds to fight cancer through hTopoIB poisoning.


Asunto(s)
Neoplasias , Inhibidores de Topoisomerasa I , Humanos , Inhibidores de Topoisomerasa I/farmacología , ADN/química , ADN-Topoisomerasas de Tipo I/química , Emparejamiento Base , Camptotecina/química , Inhibidores Enzimáticos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA