Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.268
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 177(2): 326-338.e16, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30879787

RESUMEN

Crossing over is a nearly universal feature of sexual reproduction. Here, analysis of crossover numbers on a per-chromosome and per-nucleus basis reveals a fundamental, evolutionarily conserved feature of meiosis: within individual nuclei, crossover frequencies covary across different chromosomes. This effect results from per-nucleus covariation of chromosome axis lengths. Crossovers can promote evolutionary adaptation. However, the benefit of creating favorable new allelic combinations must outweigh the cost of disrupting existing favorable combinations. Covariation concomitantly increases the frequencies of gametes with especially high, or especially low, numbers of crossovers, and thus might concomitantly enhance the benefits of crossing over while reducing its costs. A four-locus population genetic model suggests that such an effect can pertain in situations where the environment fluctuates: hyper-crossover gametes are advantageous when the environment changes while hypo-crossover gametes are advantageous in periods of environmental stasis. These findings reveal a new feature of the basic meiotic program and suggest a possible adaptive advantage.


Asunto(s)
Intercambio Genético/genética , Intercambio Genético/fisiología , Animales , Núcleo Celular , Segregación Cromosómica , Cromosomas/genética , Cromosomas/fisiología , Simulación por Computador , Femenino , Genética de Población/métodos , Recombinación Homóloga/genética , Humanos , Solanum lycopersicum/genética , Masculino , Meiosis/genética , Recombinación Genética/genética , Complejo Sinaptonémico
2.
Annu Rev Genet ; 57: 1-63, 2023 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-37788458

RESUMEN

The raison d'être of meiosis is shuffling of genetic information via Mendelian segregation and, within individual chromosomes, by DNA crossing-over. These outcomes are enabled by a complex cellular program in which interactions between homologous chromosomes play a central role. We first provide a background regarding the basic principles of this program. We then summarize the current understanding of the DNA events of recombination and of three processes that involve whole chromosomes: homolog pairing, crossover interference, and chiasma maturation. All of these processes are implemented by direct physical interaction of recombination complexes with underlying chromosome structures. Finally, we present convergent lines of evidence that the meiotic program may have evolved by coupling of this interaction to late-stage mitotic chromosome morphogenesis.


Asunto(s)
Emparejamiento Cromosómico , Meiosis , Emparejamiento Cromosómico/genética , Meiosis/genética , Cromosomas/genética , ADN , Segregación Cromosómica/genética , Intercambio Genético/genética
3.
Genes Dev ; 36(1-2): 4-6, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-35022326

RESUMEN

During meiosis, a molecular program induces DNA double-strand breaks (DSBs) and their repair by homologous recombination. DSBs can be repaired with or without crossovers. ZMM proteins promote the repair toward crossover. The sites of DSB repair are also sites where the axes of homologous chromosomes are juxtaposed and stabilized, and where a structure called the synaptonemal complex initiates, providing further regulation of both DSB formation and repair. How crossover formation and synapsis initiation are linked has remained unknown. The study by Pyatnitskaya and colleagues (pp. 53-69) in this issue of Genes & Development highlights the central role of the Saccharomyces cerevisiae ZMM protein Zip4 in this process.


Asunto(s)
Intercambio Genético , Complejo Sinaptonémico , Emparejamiento Cromosómico , Roturas del ADN de Doble Cadena , Reparación del ADN , Meiosis/genética
4.
Genes Dev ; 36(1-2): 53-69, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34969823

RESUMEN

Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Complejo Sinaptonémico , Animales , Proteínas de Ciclo Celular/genética , Emparejamiento Cromosómico , Intercambio Genético , Mamíferos/genética , Meiosis/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/genética , Complejo Sinaptonémico/metabolismo
5.
Mol Cell ; 81(20): 4258-4270.e4, 2021 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-34453891

RESUMEN

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double-strand breaks but form by different mechanisms: noncrossovers by synthesis-dependent strand annealing and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes involving branch migration as an integral feature, one that can be separated from repair of the break itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , ADN Cruciforme/genética , ADN de Hongos/genética , Meiosis , Reparación del ADN por Recombinación , Saccharomyces cerevisiae/genética , Intercambio de Cromátides Hermanas , ADN Cruciforme/metabolismo , ADN de Hongos/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Moldes Genéticos
6.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-32362315

RESUMEN

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Asunto(s)
Intercambio Genético/fisiología , Recombinación Homóloga/fisiología , Meiosis/fisiología , Animales , Segregación Cromosómica/genética , Intercambio Genético/genética , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , ADN Cruciforme/genética , ADN Cruciforme/metabolismo , Recombinación Homóloga/genética , Masculino , Meiosis/genética , Ratones , Ratones Endogámicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heterodúplex/genética
7.
Mol Cell ; 79(4): 689-701.e10, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32610038

RESUMEN

Meiotic recombination proceeds via binding of RPA, RAD51, and DMC1 to single-stranded DNA (ssDNA) substrates created after formation of programmed DNA double-strand breaks. Here we report high-resolution in vivo maps of RPA and RAD51 in meiosis, mapping their binding locations and lifespans to individual homologous chromosomes using a genetically engineered hybrid mouse. Together with high-resolution microscopy and DMC1 binding maps, we show that DMC1 and RAD51 have distinct spatial localization on ssDNA: DMC1 binds near the break site, and RAD51 binds away from it. We characterize inter-homolog recombination intermediates bound by RPA in vivo, with properties expected for the critical displacement loop (D-loop) intermediates. These data support the hypothesis that DMC1, not RAD51, performs strand exchange in mammalian meiosis. RPA-bound D-loops can be resolved as crossovers or non-crossovers, but crossover-destined D-loops may have longer lifespans. D-loops resemble crossover gene conversions in size, but their extent is similar in both repair pathways.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Recombinación Homóloga , Meiosis , Proteínas de Unión a Fosfato/metabolismo , Recombinasa Rad51/metabolismo , Proteína de Replicación A/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Cromosomas/genética , Cromosomas/metabolismo , Intercambio Genético , ADN de Cadena Simple/metabolismo , Genoma , Masculino , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Proteínas de Unión a Fosfato/genética , Recombinasa Rad51/genética , Proteína de Replicación A/genética , Testículo
8.
Mol Cell ; 78(1): 168-183.e5, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32130890

RESUMEN

Crossover recombination is essential for accurate chromosome segregation during meiosis. The MutSγ complex, Msh4-Msh5, facilitates crossing over by binding and stabilizing nascent recombination intermediates. We show that these activities are governed by regulated proteolysis. MutSγ is initially inactive for crossing over due to an N-terminal degron on Msh4 that renders it unstable by directly targeting proteasomal degradation. Activation of MutSγ requires the Dbf4-dependent kinase Cdc7 (DDK), which directly phosphorylates and thereby neutralizes the Msh4 degron. Genetic requirements for Msh4 phosphorylation indicate that DDK targets MutSγ only after it has bound to nascent joint molecules (JMs) in the context of synapsing chromosomes. Overexpression studies confirm that the steady-state level of Msh4, not phosphorylation per se, is the critical determinant for crossing over. At the DNA level, Msh4 phosphorylation enables the formation and crossover-biased resolution of double-Holliday Junction intermediates. Our study establishes regulated protein degradation as a fundamental mechanism underlying meiotic crossing over.


Asunto(s)
Intercambio Genético , Proteínas de Unión al ADN/metabolismo , Meiosis/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Ciclo Celular/metabolismo , Emparejamiento Cromosómico , Proteínas de Unión al ADN/química , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo , Proteolisis , Proteínas de Saccharomyces cerevisiae/química
9.
Annu Rev Genet ; 53: 19-44, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31430178

RESUMEN

Through recombination, genes are freed to evolve more independently of one another, unleashing genetic variance hidden in the linkage disequilibrium that accumulates through selection combined with drift. Yet crossover numbers are evolutionarily constrained, with at least one and not many more than one crossover per bivalent in most taxa. Crossover interference, whereby a crossover reduces the probability of a neighboring crossover, contributes to this homogeneity. The mechanisms by which interference is achieved and crossovers are regulated are a major current subject of inquiry, facilitated by novel methods to visualize crossovers and to pinpoint recombination events. Here, we review patterns of crossover interference and the models built to describe this process. We then discuss the selective forces that have likely shaped interference and the regulation of crossover numbers.


Asunto(s)
Intercambio Genético , Roturas del ADN de Doble Cadena , Modelos Genéticos , Recombinación Genética , Animales , Drosophila/genética , Femenino , Humanos , Masculino , Ratones , Modelos Estadísticos , Selección Genética , Especificidad de la Especie , Telómero/genética
10.
Plant Cell ; 36(10): 4472-4490, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39121028

RESUMEN

Meiotic recombination is a key biological process in plant evolution and breeding, as it generates genetic diversity in each generation through the formation of crossovers (COs). However, due to their importance in genome stability, COs are highly regulated in frequency and distribution. We previously demonstrated that this strict regulation of COs can be modified, both in terms of CO frequency and distribution, in allotriploid Brassica hybrids (2n = 3x = 29; AAC) resulting from a cross between Brassica napus (2n = 4x = 38; AACC) and Brassica rapa (2n = 2x = 20; AA). Using the recently updated B. napus genome now including pericentromeres, we demonstrated that COs occur in these cold regions in allotriploids, as close as 375 kb from the centromere. Reverse transcription quantitative PCR (RT-qPCR) of various meiotic genes indicated that Class I COs are likely involved in the increased recombination frequency observed in allotriploids. We also demonstrated that this modified recombination landscape can be maintained via successive generations of allotriploidy (odd ploidy level). This deregulated meiotic behavior reverts to strict regulation in allotetraploid (even ploidy level) progeny in the second generation. Overall, we provide an easy way to manipulate tight recombination control in a polyploid crop.


Asunto(s)
Brassica napus , Centrómero , Meiosis , Ploidias , Centrómero/genética , Brassica napus/genética , Meiosis/genética , Recombinación Genética/genética , Intercambio Genético , Brassica rapa/genética , Cromosomas de las Plantas/genética
11.
Plant Cell ; 36(9): 3838-3856, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39047149

RESUMEN

Crossovers create genetic diversity and are required for equal chromosome segregation during meiosis. Crossover number and distribution are highly regulated by different mechanisms that are not yet fully understood, including crossover interference. The chromosome axis is crucial for crossover formation. Here, we explore the function of the axis protein ASYNAPSIS3. To this end, we use the allotetraploid species Brassica napus; due to its polyploid nature, this system allows a fine-grained dissection of the dosage of meiotic regulators. The simultaneous mutation of all 4 ASY3 alleles results in defective synapsis and drastic reduction of crossovers, which is largely rescued by the presence of only one functional ASY3 allele. Crucially, while the number of class I crossovers in mutants with 2 functional ASY3 alleles is comparable to that in wild type, this number is significantly increased in mutants with only one functional ASY3 allele, indicating that reducing ASY3 dosage increases crossover formation. Moreover, the class I crossovers on each bivalent in mutants with 1 functional ASY3 allele follow a random distribution, indicating compromised crossover interference. These results reveal the distinct dosage-dependent effects of ASY3 on crossover formation and provide insights into the role of the chromosome axis in patterning recombination.


Asunto(s)
Brassica napus , Intercambio Genético , Meiosis , Proteínas de Plantas , Brassica napus/genética , Meiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Alelos , Mutación/genética , Cromosomas de las Plantas/genética , Emparejamiento Cromosómico/genética , Segregación Cromosómica/genética
12.
Cell ; 149(1): 75-87, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464324

RESUMEN

Crossovers (COs) between homologous chromosomes ensure their faithful segregation during meiosis. We identify C. elegans COSA-1, a cyclin-related protein conserved in metazoa, as a key component required to convert meiotic double-strand breaks (DSBs) into COs. During late meiotic prophase, COSA-1 localizes to foci that correspond to the single CO site on each homolog pair and indicate sites of eventual concentration of other conserved CO proteins. Chromosomes gain and lose competence to load CO proteins during meiotic progression, with competence to load COSA-1 requiring prior licensing. Our data further suggest a self-reinforcing mechanism maintaining CO designation. Modeling of a nonlinear dose-response relationship between IR-induced DSBs and COSA-1 foci reveals efficient conversion of DSBs into COs when DSBs are limiting and a robust capacity to limit cytologically differentiated CO sites when DSBs are in excess. COSA-1 foci serve as a unique live cell readout for investigating CO formation and CO interference.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/citología , Intercambio Genético , Ciclinas/metabolismo , Proteínas de Unión al ADN/metabolismo , Meiosis , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Cromosomas/metabolismo , Ciclinas/genética , Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN/genética , Modelos Moleculares , Mutación
13.
Cell ; 149(2): 334-47, 2012 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-22500800

RESUMEN

At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.


Asunto(s)
Intercambio Genético , ADN Cruciforme , Meiosis , RecQ Helicasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Resolvasas de Unión Holliday/metabolismo , Mutación , RecQ Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética
14.
Mol Cell ; 75(4): 859-874.e4, 2019 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-31351878

RESUMEN

Homologous recombination (HR) is essential for high-fidelity DNA repair during mitotic proliferation and meiosis. Yet, context-specific modifications must tailor the recombination machinery to avoid (mitosis) or enforce (meiosis) the formation of reciprocal exchanges-crossovers-between recombining chromosomes. To obtain molecular insight into how crossover control is achieved, we affinity purified 7 DNA-processing enzymes that channel HR intermediates into crossovers or noncrossovers from vegetative cells or cells undergoing meiosis. Using mass spectrometry, we provide a global characterization of their composition and reveal mitosis- and meiosis-specific modules in the interaction networks. Functional analyses of meiosis-specific interactors of MutLγ-Exo1 identified Rtk1, Caf120, and Chd1 as regulators of crossing-over. Chd1, which transiently associates with Exo1 at the prophase-to-metaphase I transition, enables the formation of MutLγ-dependent crossovers through its conserved ability to bind and displace nucleosomes. Thus, rewiring of the HR network, coupled to chromatin remodeling, promotes context-specific control of the recombination outcome.


Asunto(s)
Intercambio Genético/fisiología , Meiosis/fisiología , Mitosis/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Espectrometría de Masas , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
15.
PLoS Genet ; 20(7): e1011336, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38950081

RESUMEN

Increasing natural resistance and resilience in plants is key for ensuring food security within a changing climate. Breeders improve these traits by crossing cultivars with their wild relatives and introgressing specific alleles through meiotic recombination. However, some genomic regions are devoid of recombination especially in crosses between divergent genomes, limiting the combinations of desirable alleles. Here, we used pooled-pollen sequencing to build a map of recombinant and non-recombinant regions between tomato and five wild relatives commonly used for introgressive tomato breeding. We detected hybrid-specific recombination coldspots that underscore the role of structural variations in modifying recombination patterns and maintaining genetic linkage in interspecific crosses. Crossover regions and coldspots show strong association with specific TE superfamilies exhibiting differentially accessible chromatin between somatic and meiotic cells. About two-thirds of the genome are conserved coldspots, located mostly in the pericentromeres and enriched with retrotransposons. The coldspots also harbor genes associated with agronomic traits and stress resistance, revealing undesired consequences of linkage drag and possible barriers to breeding. We presented examples of linkage drag that can potentially be resolved by pairing tomato with other wild species. Overall, this catalogue will help breeders better understand crossover localization and make informed decisions on generating new tomato varieties.


Asunto(s)
Genoma de Planta , Recombinación Genética , Solanum lycopersicum , Solanum lycopersicum/genética , Hibridación Genética , Ligamiento Genético , Fitomejoramiento , Retroelementos/genética , Intercambio Genético , Meiosis/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Alelos
16.
PLoS Genet ; 20(9): e1011426, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39325820

RESUMEN

Meiotic recombination is essential for the accurate chromosome segregation and the generation of genetic diversity through crossover and gene conversion events. Although this process has been studied extensively in a few selected model species, understanding how its properties vary across species remains limited. For instance, the ancestral ZMM pathway that generates interference-dependent crossovers has undergone multiple losses throughout evolution, suggesting variations in the regulation of crossover formation. In this context, we first characterized the meiotic recombination landscape and properties of the Kluyveromyces lactis budding yeast. We then conducted a comprehensive analysis of 29,151 recombination events (19, 212 COs and 9, 939 NCOs) spanning 577 meioses in the five budding yeast species Saccharomyces cerevisiae, Saccharomyces paradoxus, Lachancea kluyveri, Lachancea waltii and K. lactis. Eventually, we found that the Saccharomyces yeasts displayed higher recombination rates compared to the non-Saccharomyces yeasts. In addition, bona fide crossover interference and associated crossover homeostasis were detected in the Saccharomyces species only, adding L. kluyveri and K. lactis to the list of budding yeast species that lost crossover interference. Finally, recombination hotspots, although highly conserved within the Saccharomyces yeasts are not conserved beyond the Saccharomyces genus. Overall, these results highlight great variability in the recombination landscape and properties through budding yeasts evolution.


Asunto(s)
Intercambio Genético , Evolución Molecular , Meiosis , Saccharomyces cerevisiae , Meiosis/genética , Saccharomyces cerevisiae/genética , Kluyveromyces/genética , Saccharomyces/genética , Conversión Génica , Segregación Cromosómica/genética , Saccharomycetales/genética
17.
Proc Natl Acad Sci U S A ; 121(25): e2320995121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865271

RESUMEN

Meiosis, a reductional cell division, relies on precise initiation, maturation, and resolution of crossovers (COs) during prophase I to ensure the accurate segregation of homologous chromosomes during metaphase I. This process is regulated by the interplay of RING-E3 ligases such as RNF212 and HEI10 in mammals. In this study, we functionally characterized a recently identified RING-E3 ligase, RNF212B. RNF212B colocalizes and interacts with RNF212, forming foci along chromosomes from zygonema onward in a synapsis-dependent and DSB-independent manner. These consolidate into larger foci at maturing COs, colocalizing with HEI10, CNTD1, and MLH1 by late pachynema. Genetically, RNF212B foci formation depends on Rnf212 but not on Msh4, Hei10, and Cntd1, while the unloading of RNF212B at the end of pachynema is dependent on Hei10 and Cntd1. Mice lacking RNF212B, or expressing an inactive RNF212B protein, exhibit modest synapsis defects, a reduction in the localization of pro-CO factors (MSH4, TEX11, RPA, MZIP2) and absence of late CO-intermediates (MLH1). This loss of most COs by diakinesis results in mostly univalent chromosomes. Double mutants for Rnf212b and Rnf212 exhibit an identical phenotype to that of Rnf212b single mutants, while double heterozygous demonstrate a dosage-dependent reduction in CO number, indicating a functional interplay between paralogs. SUMOylome analysis of testes from Rnf212b mutants and pull-down analysis of Sumo- and Ubiquitin-tagged HeLa cells, suggest that RNF212B is an E3-ligase with Ubiquitin activity, serving as a crucial factor for CO maturation. Thus, RNF212 and RNF212B play vital, yet overlapping roles, in ensuring CO homeostasis through their distinct E3 ligase activities.


Asunto(s)
Emparejamiento Cromosómico , Intercambio Genético , Meiosis , Ubiquitina-Proteína Ligasas , Animales , Ratones , Masculino , Femenino , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/genética , Ratones Noqueados , Humanos , Ligasas
18.
Proc Natl Acad Sci U S A ; 121(36): e2409346121, 2024 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-39190345

RESUMEN

Meiosis is a form of cell division that is essential to sexually reproducing organisms and is therefore highly regulated. Each event of meiosis must occur at the correct developmental stage to ensure that chromosomes are segregated properly during both meiotic divisions. One unique meiosis-specific structure that is tightly regulated in terms of timing of assembly and disassembly is the synaptonemal complex (SC). While the mechanism(s) for assembly and disassembly of the SC are poorly understood in Drosophila melanogaster, posttranslational modifications, including ubiquitination and phosphorylation, are known to play a role. Here, we identify a role for the deubiquitinase Usp7 in the maintenance of the SC in early prophase and show that its function in SC maintenance is independent of the meiotic recombination process. Using two usp7 shRNA constructs that result in different knockdown levels, we have shown that the presence of SC through early/mid-pachytene is critical for normal levels and placement of crossovers.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Complejo Sinaptonémico , Animales , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Meiosis , Peptidasa Específica de Ubiquitina 7/metabolismo , Peptidasa Específica de Ubiquitina 7/genética , Masculino , Intercambio Genético
19.
PLoS Genet ; 20(7): e1011197, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012914

RESUMEN

We report here the successful labelling of meiotic prophase I DNA synthesis in the flowering plant, Arabidopsis thaliana. Incorporation of the thymidine analogue, EdU, enables visualisation of the footprints of recombinational repair of programmed meiotic DNA double-strand breaks (DSB), with ~400 discrete, SPO11-dependent, EdU-labelled chromosomal foci clearly visible at pachytene and later stages of meiosis. This number equates well with previous estimations of 200-300 DNA double-strand breaks per meiosis in Arabidopsis, confirming the power of this approach to detect the repair of most or all SPO11-dependent meiotic DSB repair events. The chromosomal distribution of these DNA-synthesis foci accords with that of early recombination markers and MLH1, which marks Class I crossover sites. Approximately 10 inter-homologue cross-overs (CO) have been shown to occur in each Arabidopsis male meiosis and, athough very probably under-estimated, an equivalent number of inter-homologue gene conversions (GC) have been described. Thus, at least 90% of meiotic recombination events, and very probably more, have not previously been accessible for analysis. Visual examination of the patterns of the foci on the synapsed pachytene chromosomes corresponds well with expectations from the different mechanisms of meiotic recombination and notably, no evidence for long Break-Induced Replication DNA synthesis tracts was found. Labelling of meiotic prophase I, SPO11-dependent DNA synthesis holds great promise for further understanding of the molecular mechanisms of meiotic recombination, at the heart of reproduction and evolution of eukaryotes.


Asunto(s)
Arabidopsis , Roturas del ADN de Doble Cadena , Meiosis , Arabidopsis/genética , Meiosis/genética , Reparación del ADN/genética , Endodesoxirribonucleasas/genética , Endodesoxirribonucleasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromosomas de las Plantas/genética , Profase Meiótica I/genética , Intercambio Genético , Replicación del ADN/genética
20.
PLoS Genet ; 20(10): e1011432, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39405359

RESUMEN

Several protein ensembles facilitate crossover recombination and the associated assembly of synaptonemal complex (SC) during meiosis. In yeast, meiosis-specific factors including the DNA helicase Mer3, the "ZZS" complex consisting of Zip4, Zip2, and Spo16, the RING-domain protein Zip3, and the MutSγ heterodimer collaborate with crossover-promoting activity of the SC component, Zip1, to generate crossover-designated recombination intermediates. These ensembles also promote SC formation - the organized assembly of Zip1 with other structural proteins between aligned chromosome axes. We used proximity labeling to investigate spatial relationships between meiotic recombination and SC proteins in S. cerevisiae. We find that recombination initiation and SC factors are dispensable for proximity labeling of Zip3 by ZZS components, but proteins associated with early steps in recombination are required for Zip3 proximity labeling by MutSγ, suggesting that MutSγ joins Zip3 only after a recombination intermediate has been generated. We also find that zip1 separation-of-function mutants that are crossover deficient but still assemble SC fail to generate protein ensembles where Zip3 can engage ZZS and/or MutSγ. The SC structural protein Ecm11 is proximity labeled by ZZS proteins in a Zip4-dependent and Zip1-independent manner, but labeling of Ecm11 by Zip3 and MutSγ requires, at least in part, Zip1. Finally, mass spectrometry analysis of biotinylated proteins in eleven proximity labeling strains uncovered shared proximity targets of SC and crossover-associated proteins, some of which have not previously been implicated in meiotic recombination or SC formation, highlighting the potential of proximity labeling as a discovery tool.


Asunto(s)
Intercambio Genético , Meiosis , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Complejo Sinaptonémico , Meiosis/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Complejo Sinaptonémico/metabolismo , Complejo Sinaptonémico/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , ADN Helicasas/metabolismo , ADN Helicasas/genética , Recombinación Genética , Endodesoxirribonucleasas/metabolismo , Endodesoxirribonucleasas/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas MutS/genética , Proteínas MutS/metabolismo , Proteínas Asociadas a Microtúbulos , Proteínas de Ciclo Celular , Ubiquitina-Proteína Ligasas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA