Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123.734
Filtrar
Más filtros

Colección Oncologia Uruguay
Intervalo de año de publicación
1.
Annu Rev Immunol ; 42(1): 647-677, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38424658

RESUMEN

Lymphocytes spanning the entire innate-adaptive spectrum can stably reside in tissues and constitute an integral component of the local defense network against immunological challenges. In tight interactions with the epithelium and endothelium, tissue-resident lymphocytes sense antigens and alarmins elicited by infectious microbes and abiotic stresses at barrier sites and mount effector responses to restore tissue homeostasis. Of note, such a host cell-directed immune defense system has been recently demonstrated to surveil epithelial cell transformation and carcinoma development, as well as cancer cell metastasis at selected distant organs, and thus represents a primordial cancer immune defense module. Here we review how distinct lineages of tissue-resident innate lymphoid cells, innate-like T cells, and adaptive T cells participate in a form of multilayered cancer immunity in murine models and patients, and how their convergent effector programs may be targeted through both shared and private regulatory pathways for cancer immunotherapy.


Asunto(s)
Inmunidad Innata , Neoplasias , Humanos , Animales , Neoplasias/inmunología , Neoplasias/terapia , Linfocitos/inmunología , Linfocitos/metabolismo , Microambiente Tumoral/inmunología , Inmunidad Adaptativa , Inmunoterapia/métodos
2.
Annu Rev Immunol ; 41: 483-512, 2023 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-36750317

RESUMEN

Transforming growth factor ß (TGF-ß) is a key cytokine regulating the development, activation, proliferation, differentiation, and death of T cells. In CD4+ T cells, TGF-ß maintains the quiescence and controls the activation of naive T cells. While inhibiting the differentiation and function of Th1 and Th2 cells, TGF-ß promotes the differentiation of Th17 and Th9 cells. TGF-ß is required for the induction of Foxp3 in naive T cells and the development of regulatory T cells. TGF-ß is crucial in the differentiation of tissue-resident memory CD8+ T cells and their retention in the tissue, whereas it suppresses effector T cell function. In addition, TGF-ß also regulates the generation or function of natural killer T cells, γδ T cells, innate lymphoid cells, and gut intraepithelial lymphocytes. Here I highlight the major findings and recent advances in our understanding of TGF-ß regulation of T cells and provide a personal perspective of the field.


Asunto(s)
Linfocitos T CD8-positivos , Factor de Crecimiento Transformador beta1 , Animales , Humanos , Diferenciación Celular , Inmunidad Innata , Linfocitos/metabolismo , Linfocitos T Reguladores/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo
3.
Annu Rev Immunol ; 40: 195-220, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35044795

RESUMEN

Tissue-resident immune cells span both myeloid and lymphoid cell lineages, have been found in multiple human tissues, and play integral roles at all stages of the immune response, from maintaining homeostasis to responding to infectious challenges to resolution of inflammation to tissue repair. In humans, studying immune cells and responses in tissues is challenging, although recent advances in sampling and high-dimensional profiling have provided new insights into the ontogeny, maintenance, and functional role of tissue-resident immune cells. Each tissue contains a specific complement of resident immune cells. Moreover, resident immune cells for each lineage share core properties, along with tissue-specific adaptations. Here we propose a five-point checklist for defining resident immune cell types in humans and describe the currently known features of resident immune cells, their mechanisms of development, and their putative functional roles within various human organs. We also consider these aspects of resident immune cells in the context of future studies and therapeutics.


Asunto(s)
Inmunidad Innata , Linfocitos , Animales , Linaje de la Célula , Homeostasis , Humanos , Inflamación
4.
Annu Rev Immunol ; 40: 15-43, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-34985928

RESUMEN

Our understanding of the functions of the IL-1 superfamily cytokine and damage-associated molecular pattern IL-33 continues to evolve with our understanding of homeostasis and immunity. The early findings that IL-33 is a potent driver of type 2 immune responses promoting parasite expulsion, but also inflammatory diseases like allergy and asthma, have been further supported. Yet, as the importance of a type 2 response in tissue repair and homeostasis has emerged, so has the fundamental importance of IL-33 to these processes. In this review, we outline an evolving understanding of IL-33 immunobiology, paying particular attention to how IL-33 directs a network of ST2+ regulatory T cells, reparative and regulatory macrophages, and type 2 innate lymphoid cells that are fundamental to tissue development, homeostasis, and repair.


Asunto(s)
Hipersensibilidad , Interleucina-33 , Animales , Citocinas , Homeostasis , Humanos , Inmunidad Innata , Linfocitos
5.
Annu Rev Immunol ; 39: 639-665, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33646858

RESUMEN

Coevolutionary adaptation between humans and helminths has developed a finely tuned balance between host immunity and chronic parasitism due to immunoregulation. Given that these reciprocal forces drive selection, experimental models of helminth infection are ideally suited for discovering how host protective immune responses adapt to the unique tissue niches inhabited by these large metazoan parasites. This review highlights the key discoveries in the immunology of helminth infection made over the last decade, from innate lymphoid cells to the emerging importance of neuroimmune connections. A particular emphasis is placed on the emerging areas within helminth immunology where the most growth is possible, including the advent of genetic manipulation of parasites to study immunology and the use of engineered T cells for therapeutic options. Lastly,we cover the status of human challenge trials with helminths as treatment for autoimmune disease, which taken together, stand to keep the study of parasitic worms at the forefront of immunology for years to come.


Asunto(s)
Helmintiasis , Helmintos , Parásitos , Animales , Interacciones Huésped-Parásitos , Humanos , Inmunidad Innata , Linfocitos , Linfocitos T
6.
Annu Rev Immunol ; 39: 167-198, 2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33534604

RESUMEN

Type 2 immunity helps protect the host from infection, but it also plays key roles in tissue homeostasis, metabolism, and repair. Unfortunately, inappropriate type 2 immune reactions may lead to allergy and asthma. Group 2 innate lymphoid cells (ILC2s) in the lungs respond rapidly to local environmental cues, such as the release of epithelium-derived type 2 initiator cytokines/alarmins, producing type 2 effector cytokines such as IL-4, IL-5, and IL-13 in response to tissue damage and infection. ILC2s are associated with the severity of allergic asthma, and experimental models of lung inflammation have shown how they act as playmakers, receiving signals variously from stromal and immune cells as well as the nervous system and then distributing cytokine cues to elicit type 2 immune effector functions and potentiate CD4+ T helper cell activation, both of which characterize the pathology of allergic asthma. Recent breakthroughs identifying stromal- and neuronal-derived microenvironmental cues that regulate ILC2s, along with studies recognizing the potential plasticity of ILC2s, have improved our understanding of the immunoregulation of asthma and opened new avenues for drug discovery.


Asunto(s)
Asma , Hipersensibilidad , Animales , Asma/etiología , Humanos , Inmunidad Innata , Interleucina-13 , Linfocitos
7.
Annu Rev Immunol ; 38: 365-395, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31986070

RESUMEN

Sialic acid-binding immunoglobulin-type lectins (Siglecs) are expressed on the majority of white blood cells of the immune system and play critical roles in immune cell signaling. Through recognition of sialic acid-containing glycans as ligands, they help the immune system distinguish between self and nonself. Because of their restricted cell type expression and roles as checkpoints in immune cell responses in human diseases such as cancer, asthma, allergy, neurodegeneration, and autoimmune diseases they have gained attention as targets for therapeutic interventions. In this review we describe the Siglec family, its roles in regulation of immune cell signaling, current efforts to define its roles in disease processes, and approaches to target Siglecs for treatment of human disease.


Asunto(s)
Susceptibilidad a Enfermedades , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo , Inmunomodulación , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/genética , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Transducción de Señal , Animales , Biomarcadores , Humanos , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Linfocitos/inmunología , Linfocitos/metabolismo
8.
Annu Rev Immunol ; 38: 759-784, 2020 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-32340572

RESUMEN

The signaling lipid sphingosine 1-phosphate (S1P) plays critical roles in an immune response. Drugs targeting S1P signaling have been remarkably successful in treatment of multiple sclerosis, and they have shown promise in clinical trials for colitis and psoriasis. One mechanism of these drugs is to block lymphocyte exit from lymph nodes, where lymphocytes are initially activated, into circulation, from which lymphocytes can reach sites of inflammation. Indeed, S1P can be considered a circulation marker, signaling to immune cells to help them find blood and lymphatic vessels, and to endothelial cells to stabilize the vasculature. That said, S1P plays pleiotropic roles in the immune response, and it will be important to build an integrated view of how S1P shapes inflammation. S1P can function so effectively because its distribution is exquisitely tightly controlled. Here we review how S1P gradients regulate immune cell exit from tissues, with particular attention to key outstanding questions in the field.


Asunto(s)
Movimiento Celular/inmunología , Sistema Inmunológico/inmunología , Sistema Inmunológico/metabolismo , Lisofosfolípidos/metabolismo , Transducción de Señal , Esfingosina/análogos & derivados , Animales , Biomarcadores , Humanos , Sistema Inmunológico/citología , Activación de Linfocitos/inmunología , Linfocitos/inmunología , Linfocitos/metabolismo , Esfingosina/metabolismo
9.
Annu Rev Immunol ; 37: 497-519, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-31026413

RESUMEN

During development innate lymphoid cells and specialized lymphocyte subsets colonize peripheral tissues, where they contribute to organogenesis and later constitute the first line of protection while maintaining tissue homeostasis. A few of these subsets are produced only during embryonic development and remain in the tissues throughout life. They are generated through a unique developmental program initiated in lympho-myeloid-primed progenitors, which lose myeloid and B cell potential. They either differentiate into innate lymphoid cells or migrate to the thymus to give rise to embryonic T cell receptor-invariant T cells. At later developmental stages, adaptive T lymphocytes are derived from lympho-myeloid progenitors that colonize the thymus, while lymphoid progenitors become specialized in the production of B cells. This sequence of events highlights the requirement for stratification in the establishment of immune functions that determine efficient seeding of peripheral tissues by a limited number of cells.


Asunto(s)
Linfocitos B/inmunología , Linfocitos/fisiología , Células Progenitoras Linfoides/fisiología , Células T Asesinas Naturales/inmunología , Timo/inmunología , Animales , Diferenciación Celular , Linaje de la Célula , Microambiente Celular , Citocinas/metabolismo , Humanos , Inmunidad Innata , Activación de Linfocitos , Comunicación Paracrina , Transcriptoma
10.
Cell ; 187(3): 624-641.e23, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38211590

RESUMEN

The therapeutic potential for human type 2 innate lymphoid cells (ILC2s) has been underexplored. Although not observed in mouse ILC2s, we found that human ILC2s secrete granzyme B (GZMB) and directly lyse tumor cells by inducing pyroptosis and/or apoptosis, which is governed by a DNAM-1-CD112/CD155 interaction that inactivates the negative regulator FOXO1. Over time, the high surface density expression of CD155 in acute myeloid leukemia cells impairs the expression of DNAM-1 and GZMB, thus allowing for immune evasion. We describe a reliable platform capable of up to 2,000-fold expansion of human ILC2s within 4 weeks, whose molecular and cellular ILC2 profiles were validated by single-cell RNA sequencing. In both leukemia and solid tumor models, exogenously administered expanded human ILC2s show significant antitumor effects in vivo. Collectively, we demonstrate previously unreported properties of human ILC2s and identify this innate immune cell subset as a member of the cytolytic immune effector cell family.


Asunto(s)
Granzimas , Inmunidad Innata , Linfocitos , Neoplasias , Animales , Humanos , Ratones , Apoptosis , Citocinas , Neoplasias/inmunología , Neoplasias/terapia
11.
Cell ; 187(1): 44-61.e17, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38134932

RESUMEN

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1GoF) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1GoF expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPß was dependent on JAK1 in the vagus nerve, and CGRPß suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.


Asunto(s)
Dermatitis Atópica , Inmunidad Innata , Pulmón , Células Receptoras Sensoriales , Animales , Humanos , Ratones , Citocinas , Dermatitis Atópica/inmunología , Inflamación , Pulmón/inmunología , Linfocitos , Células Receptoras Sensoriales/enzimología
12.
Annu Rev Immunol ; 34: 203-42, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-26907216

RESUMEN

The continuous migration of immune cells between lymphoid and nonlymphoid organs is a key feature of the immune system, facilitating the distribution of effector cells within nearly all compartments of the body. Furthermore, reaching their correct position within primary, secondary, or tertiary lymphoid organs is a prerequisite to ensure immune cells' unimpaired differentiation, maturation, and selection, as well as their activation or functional silencing. The superfamilies of chemokines and chemokine receptors are of major importance in guiding immune cells to and within lymphoid and nonlymphoid tissues. In this review we focus on the role of the chemokine system in the migration dynamics of immune cells within lymphoid organs at the steady state and on how these dynamics are affected by infectious and inflammatory processes.


Asunto(s)
Quimiocinas/inmunología , Sistema Inmunológico , Infecciones/inmunología , Inflamación/inmunología , Linfocitos/inmunología , Tejido Linfoide/inmunología , Receptores de Quimiocina/inmunología , Animales , Comunicación Celular , Movimiento Celular , Humanos , Activación de Linfocitos
13.
Annu Rev Immunol ; 34: 299-316, 2016 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-27168240

RESUMEN

The discovery of tissue-resident innate lymphoid cell populations effecting different forms of type 1, 2, and 3 immunity; tissue repair; and immune regulation has transformed our understanding of mucosal immunity and allergy. The emerging complexity of these populations along with compounding issues of redundancy and plasticity raise intriguing questions about their precise lineage relationship. Here we review advances in mapping the emergence of these lineages from early lymphoid precursors. We discuss the identification of a common innate lymphoid cell precursor characterized by transient expression of the transcription factor PLZF, and the lineage relationships of innate lymphoid cells with conventional natural killer cells and lymphoid tissue inducer cells. We also review the rapidly growing understanding of the network of transcription factors that direct the development of these lineages.


Asunto(s)
Diferenciación Celular , Hipersensibilidad/inmunología , Inmunidad Innata , Linfocitos/inmunología , Células Progenitoras Linfoides/inmunología , Animales , Linaje de la Célula , Citocinas/metabolismo , Regulación de la Expresión Génica/inmunología , Redes Reguladoras de Genes , Humanos , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Proteína de la Leucemia Promielocítica con Dedos de Zinc , Células TH1/inmunología , Células Th2/inmunología
14.
Annu Rev Immunol ; 33: 505-38, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25650177

RESUMEN

Mammalian lymphoid immunity is mediated by fast and slow responders to pathogens. Fast innate lymphocytes are active within hours after infections in mucosal tissues. Slow adaptive lymphocytes are conventional T and B cells with clonal antigen receptors that function days after pathogen exposure. A transcription factor (TF) regulatory network guiding early T cell development is at the core of effector function diversification in all innate lymphocytes, and the kinetics of immune responses is set by developmental programming. Operational units within the innate lymphoid system are not classified by the types of pathogen-sensing machineries but rather by discrete effector functions programmed by regulatory TF networks. Based on the evolutionary history of TFs of the regulatory networks, fast effectors likely arose earlier in the evolution of animals to fortify body barriers, and in mammals they often develop in fetal ontogeny prior to the establishment of fully competent adaptive immunity.


Asunto(s)
Inmunidad Innata/fisiología , Linfocitos/inmunología , Linfocitos/metabolismo , Linfopoyesis , Factores de Transcripción/metabolismo , Animales , Evolución Biológica , Humanos , Inmunidad , Unión Proteica/inmunología , Transducción de Señal
15.
Annu Rev Immunol ; 33: 563-606, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665078

RESUMEN

In the 40 years since their discovery, dendritic cells (DCs) have been recognized as central players in immune regulation. DCs sense microbial stimuli through pathogen-recognition receptors (PRRs) and decode, integrate, and present information derived from such stimuli to T cells, thus stimulating immune responses. DCs can also regulate the quality of immune responses. Several functionally specialized subsets of DCs exist, but DCs also display functional plasticity in response to diverse stimuli. In addition to sensing pathogens via PRRs, emerging evidence suggests that DCs can also sense stress signals, such as amino acid starvation, through ancient stress and nutrient sensing pathways, to stimulate adaptive immunity. Here, I discuss these exciting advances in the context of a historic perspective on the discovery of DCs and their role in immune regulation. I conclude with a discussion of emerging areas in DC biology in the systems immunology era and suggest that the impact of DCs on immunity can be usefully contextualized in a hierarchy-of-organization model in which DCs, their receptors and signaling networks, cell-cell interactions, tissue microenvironment, and the host macroenvironment represent different levels of the hierarchy. Immunity or tolerance can then be represented as a complex function of each of these hierarchies.


Asunto(s)
Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Animales , Comunicación Celular/inmunología , Diferenciación Celular/inmunología , Selección Clonal Mediada por Antígenos , Resistencia a la Enfermedad , Susceptibilidad a Enfermedades , Interacciones Huésped-Patógeno/inmunología , Humanos , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Estrés Fisiológico
16.
Annu Rev Immunol ; 33: 607-42, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665079

RESUMEN

The lymphocyte family has expanded significantly in recent years to include not only the adaptive lymphocytes (T cells, B cells) and NK cells, but also several additional innate lymphoid cell (ILC) types. ILCs lack clonally distributed antigen receptors characteristic of adaptive lymphocytes and instead respond exclusively to signaling via germline-encoded receptors. ILCs resemble T cells more closely than any other leukocyte lineage at the transcriptome level and express many elements of the core T cell transcriptional program, including Notch, Gata3, Tcf7, and Bcl11b. We present our current understanding of the shared and distinct transcriptional regulatory mechanisms involved in the development of adaptive T lymphocytes and closely related ILCs. We discuss the possibility that a core set of transcriptional regulators common to ILCs and T cells establish enhancers that enable implementation of closely aligned effector pathways. Studies of the transcriptional regulation of lymphopoiesis will support the development of novel therapeutic approaches to correct early lymphoid developmental defects and aberrant lymphocyte function.


Asunto(s)
Inmunidad Adaptativa/genética , Linaje de la Célula/genética , Regulación de la Expresión Génica , Inmunidad Innata/genética , Linfocitos/inmunología , Linfocitos/metabolismo , Transcripción Genética , Animales , Diferenciación Celular , Humanos , Linfocitos/citología , Células Progenitoras Linfoides/citología , Células Progenitoras Linfoides/metabolismo
17.
Annu Rev Immunol ; 33: 747-85, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25706098

RESUMEN

Interleukin-22 (IL-22) is a recently described IL-10 family cytokine that is produced by T helper (Th) 17 cells, γδ T cells, NKT cells, and newly described innate lymphoid cells (ILCs). Knowledge of IL-22 biology has evolved rapidly since its discovery in 2000, and a role for IL-22 has been identified in numerous tissues, including the intestines, lung, liver, kidney, thymus, pancreas, and skin. IL-22 primarily targets nonhematopoietic epithelial and stromal cells, where it can promote proliferation and play a role in tissue regeneration. In addition, IL-22 regulates host defense at barrier surfaces. However, IL-22 has also been linked to several conditions involving inflammatory tissue pathology. In this review, we assess the current understanding of this cytokine, including its physiologic and pathologic effects on epithelial cell function.


Asunto(s)
Interleucinas/genética , Interleucinas/metabolismo , Animales , Susceptibilidad a Enfermedades , Regulación de la Expresión Génica , Humanos , Interleucinas/química , Linfocitos/inmunología , Linfocitos/metabolismo , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Transducción de Señal , Interleucina-22
18.
Annu Rev Immunol ; 33: 677-713, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25665077

RESUMEN

Dynamic tuning of cellular responsiveness as a result of repeated stimuli improves the ability of cells to distinguish physiologically meaningful signals from each other and from noise. In particular, lymphocyte activation thresholds are subject to tuning, which contributes to maintaining tolerance to self-antigens and persisting foreign antigens, averting autoimmunity and immune pathogenesis, but allowing responses to strong, structured perturbations that are typically associated with acute infection. Such tuning is also implicated in conferring flexibility to positive selection in the thymus, in controlling the magnitude of the immune response, and in generating memory cells. Additional functional properties are dynamically and differentially tuned in parallel via subthreshold contact interactions between developing or mature lymphocytes and self-antigen-presenting cells. These interactions facilitate and regulate lymphocyte viability, maintain their functional integrity, and influence their responses to foreign antigens and accessory signals, qualitatively and quantitatively. Bidirectional tuning of T cells and antigen-presenting cells leads to the definition of homeostatic set points, thus maximizing clonal diversity.


Asunto(s)
Linfocitos/inmunología , Linfocitos/metabolismo , Animales , Supervivencia Celular/inmunología , Homeostasis , Humanos , Memoria Inmunológica , Infecciones/inmunología , Infecciones/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Linfocitos/citología , Fenotipo , Subgrupos de Linfocitos T/citología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Timocitos/citología , Timocitos/inmunología , Timocitos/metabolismo
19.
Annu Rev Immunol ; 33: 291-353, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25861976

RESUMEN

Ion channels and transporters mediate the transport of charged ions across hydrophobic lipid membranes. In immune cells, divalent cations such as calcium, magnesium, and zinc have important roles as second messengers to regulate intracellular signaling pathways. By contrast, monovalent cations such as sodium and potassium mainly regulate the membrane potential, which indirectly controls the influx of calcium and immune cell signaling. Studies investigating human patients with mutations in ion channels and transporters, analysis of gene-targeted mice, or pharmacological experiments with ion channel inhibitors have revealed important roles of ionic signals in lymphocyte development and in innate and adaptive immune responses. We here review the mechanisms underlying the function of ion channels and transporters in lymphocytes and innate immune cells and discuss their roles in lymphocyte development, adaptive and innate immune responses, and autoimmunity, as well as recent efforts to develop pharmacological inhibitors of ion channels for immunomodulatory therapy.


Asunto(s)
Inmunidad Adaptativa/fisiología , Inmunidad Innata/fisiología , Canales Iónicos/metabolismo , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Humanos , Hipersensibilidad/genética , Hipersensibilidad/inmunología , Hipersensibilidad/metabolismo , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/inmunología , Síndromes de Inmunodeficiencia/metabolismo , Inmunoterapia/métodos , Canales Iónicos/genética , Linfocitos/citología , Linfocitos/inmunología , Linfocitos/metabolismo , Mastocitos/inmunología , Mastocitos/metabolismo , Terapia Molecular Dirigida , Mutación , Transducción de Señal
20.
Cell ; 185(5): 916-938.e58, 2022 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-35216673

RESUMEN

Treatment of severe COVID-19 is currently limited by clinical heterogeneity and incomplete description of specific immune biomarkers. We present here a comprehensive multi-omic blood atlas for patients with varying COVID-19 severity in an integrated comparison with influenza and sepsis patients versus healthy volunteers. We identify immune signatures and correlates of host response. Hallmarks of disease severity involved cells, their inflammatory mediators and networks, including progenitor cells and specific myeloid and lymphocyte subsets, features of the immune repertoire, acute phase response, metabolism, and coagulation. Persisting immune activation involving AP-1/p38MAPK was a specific feature of COVID-19. The plasma proteome enabled sub-phenotyping into patient clusters, predictive of severity and outcome. Systems-based integrative analyses including tensor and matrix decomposition of all modalities revealed feature groupings linked with severity and specificity compared to influenza and sepsis. Our approach and blood atlas will support future drug development, clinical trial design, and personalized medicine approaches for COVID-19.


Asunto(s)
Biomarcadores/sangre , COVID-19/patología , Proteoma/análisis , Adulto , Proteínas Sanguíneas/metabolismo , COVID-19/sangre , COVID-19/virología , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Gripe Humana/sangre , Gripe Humana/patología , Linfocitos/inmunología , Linfocitos/metabolismo , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proteína Quinasa 14 Activada por Mitógenos/genética , Proteína Quinasa 14 Activada por Mitógenos/metabolismo , Monocitos/inmunología , Monocitos/metabolismo , Análisis de Componente Principal , SARS-CoV-2/aislamiento & purificación , Sepsis/sangre , Sepsis/patología , Índice de Severidad de la Enfermedad , Factor de Transcripción AP-1/genética , Factor de Transcripción AP-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA