Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.145
Filtrar
Más filtros

País/Región como asunto
Intervalo de año de publicación
1.
Mol Cell ; 83(16): 3010-3026.e8, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37595559

RESUMEN

The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that stimulates macromolecule synthesis through transcription, RNA processing, and post-translational modification of metabolic enzymes. However, the mechanisms of how mTORC1 orchestrates multiple steps of gene expression programs remain unclear. Here, we identify family with sequence similarity 120A (FAM120A) as a transcription co-activator that couples transcription and splicing of de novo lipid synthesis enzymes downstream of mTORC1-serine/arginine-rich protein kinase 2 (SRPK2) signaling. The mTORC1-activated SRPK2 phosphorylates splicing factor serine/arginine-rich splicing factor 1 (SRSF1), enhancing its binding to FAM120A. FAM120A directly interacts with a lipogenic transcription factor SREBP1 at active promoters, thereby bridging the newly transcribed lipogenic genes from RNA polymerase II to the SRSF1 and U1-70K-containing RNA-splicing machinery. This mTORC1-regulated, multi-protein complex promotes efficient splicing and stability of lipogenic transcripts, resulting in fatty acid synthesis and cancer cell proliferation. These results elucidate FAM120A as a critical transcription co-factor that connects mTORC1-dependent gene regulation programs for anabolic cell growth.


Asunto(s)
Arginina , Lipogénesis , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Lipogénesis/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Factores de Empalme de ARN , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Humanos , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
2.
Genes Dev ; 35(9-10): 713-728, 2021 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-33888555

RESUMEN

MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro, but its role in adipose development and expansion in vivo has not been reported. Here, we show that MED1 is not generally required for transcription during adipogenesis in culture and that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of fatty acid and triglyceride synthesis genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of lipogenesis genes by facilitating lipogenic TF ChREBP- and SREBP1a-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.


Asunto(s)
Tejido Adiposo/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/genética , Lipogénesis/genética , Subunidad 1 del Complejo Mediador/genética , Subunidad 1 del Complejo Mediador/metabolismo , Tejido Adiposo/metabolismo , Tejido Adiposo Pardo/embriología , Animales , Células Cultivadas , Dieta , Ratones , Unión Proteica/genética
3.
Genes Dev ; 34(9-10): 701-714, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32165409

RESUMEN

Metabolism and development must be closely coupled to meet the changing physiological needs of each stage in the life cycle. The molecular mechanisms that link these pathways, however, remain poorly understood. Here we show that the Drosophila estrogen-related receptor (dERR) directs a transcriptional switch in mid-pupae that promotes glucose oxidation and lipogenesis in young adults. dERR mutant adults are viable but display reduced locomotor activity, susceptibility to starvation, elevated glucose, and an almost complete lack of stored triglycerides. Molecular profiling by RNA-seq, ChIP-seq, and metabolomics revealed that glycolytic and pentose phosphate pathway genes are induced by dERR, and their reduced expression in mutants is accompanied by elevated glycolytic intermediates, reduced TCA cycle intermediates, and reduced levels of long chain fatty acids. Unexpectedly, we found that the central pathways of energy metabolism, including glycolysis, the tricarboxylic acid cycle, and electron transport chain, are coordinately induced at the transcriptional level in mid-pupae and maintained into adulthood, and this response is partially dependent on dERR, leading to the metabolic defects observed in mutants. Our data support the model that dERR contributes to a transcriptional switch during pupal development that establishes the metabolic state of the adult fly.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila/genética , Drosophila/metabolismo , Glucólisis/genética , Lipogénesis/genética , Receptores de Estrógenos/genética , Receptores de Estrógenos/metabolismo , Transcripción Genética/genética , Animales , Drosophila/crecimiento & desarrollo , Mutación , Pupa , Transcriptoma
4.
Nat Rev Mol Cell Biol ; 16(11): 678-89, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26490400

RESUMEN

Fatty acid and fat synthesis in the liver is a highly regulated metabolic pathway that is important for very low-density lipoprotein (VLDL) production and thus energy distribution to other tissues. Having common features at their promoter regions, lipogenic genes are coordinately regulated at the transcriptional level. Transcription factors, such as upstream stimulatory factors (USFs), sterol regulatory element-binding protein 1C (SREBP1C), liver X receptors (LXRs) and carbohydrate-responsive element-binding protein (ChREBP) have crucial roles in this process. Recently, insights have been gained into the signalling pathways that regulate these transcription factors. After feeding, high blood glucose and insulin levels activate lipogenic genes through several pathways, including the DNA-dependent protein kinase (DNA-PK), atypical protein kinase C (aPKC) and AKT-mTOR pathways. These pathways control the post-translational modifications of transcription factors and co-regulators, such as phosphorylation, acetylation or ubiquitylation, that affect their function, stability and/or localization. Dysregulation of lipogenesis can contribute to hepatosteatosis, which is associated with obesity and insulin resistance.


Asunto(s)
Ácidos Grasos/biosíntesis , Lipogénesis/genética , Lipoproteínas VLDL/biosíntesis , Hígado/metabolismo , Transcripción Genética/genética , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice , Proteína Quinasa Activada por ADN/metabolismo , Regulación de la Expresión Génica , Lipogénesis/fisiología , Receptores X del Hígado , Ratones , Proteínas Nucleares/metabolismo , Receptores Nucleares Huérfanos/metabolismo , Proteína Quinasa C/metabolismo , Procesamiento Proteico-Postraduccional/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Factores Estimuladores hacia 5'/metabolismo
5.
Mol Cell ; 75(2): 357-371.e7, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31227231

RESUMEN

Carbohydrate response element binding protein (ChREBP) is a key transcriptional regulator of de novo lipogenesis (DNL) in response to carbohydrates and in hepatic steatosis. Mechanisms underlying nutrient modulation of ChREBP are under active investigation. Here we identify host cell factor 1 (HCF-1) as a previously unknown ChREBP-interacting protein that is enriched in liver biopsies of nonalcoholic steatohepatitis (NASH) patients. Biochemical and genetic studies show that HCF-1 is O-GlcNAcylated in response to glucose as a prerequisite for its binding to ChREBP and subsequent recruitment of OGT, ChREBP O-GlcNAcylation, and activation. The HCF-1:ChREBP complex resides at lipogenic gene promoters, where HCF-1 regulates H3K4 trimethylation to prime recruitment of the Jumonji C domain-containing histone demethylase PHF2 for epigenetic activation of these promoters. Overall, these findings define HCF-1's interaction with ChREBP as a previously unappreciated mechanism whereby glucose signals are both relayed to ChREBP and transmitted for epigenetic regulation of lipogenic genes.


Asunto(s)
Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Proteínas de Homeodominio/genética , Factor C1 de la Célula Huésped/genética , Lipogénesis/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Carbohidratos/genética , Epigénesis Genética , Regulación de la Expresión Génica , Glucosa/metabolismo , Hexosaminas/genética , Hexosaminas/metabolismo , Humanos , Hígado/metabolismo , Ratones , Enfermedad del Hígado Graso no Alcohólico/patología , Regiones Promotoras Genéticas/genética , Mapas de Interacción de Proteínas/genética
6.
Mol Cell ; 76(5): 811-825.e14, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31628041

RESUMEN

Physical contact between organelles is vital to the function of eukaryotic cells. Lipid droplets (LDs) are dynamic organelles specialized in lipid storage that interact physically with mitochondria in several cell types. The mechanisms coupling these organelles are, however, poorly understood, and the cell-biological function of their interaction remains largely unknown. Here, we discover in adipocytes that the outer mitochondrial membrane protein MIGA2 links mitochondria to LDs. We identify an amphipathic LD-targeting motif and reveal that MIGA2 binds to the membrane proteins VAP-A or VAP-B in the endoplasmic reticulum (ER). We find that in adipocytes MIGA2 is involved in promoting triglyceride (TAG) synthesis from non-lipid precursors. Our data indicate that MIGA2 links reactions of de novo lipogenesis in mitochondria to TAG production in the ER, thereby facilitating efficient lipid storage in LDs. Based on its presence in many tissues, MIGA2 is likely critical for lipid and energy homeostasis in a wide spectrum of cell types.


Asunto(s)
Adipocitos/metabolismo , Lipogénesis/fisiología , Proteínas de la Membrana/metabolismo , Proteínas Mitocondriales/metabolismo , Células 3T3 , Adipocitos/fisiología , Animales , Células COS , Diferenciación Celular/fisiología , Chlorocebus aethiops , Retículo Endoplásmico/metabolismo , Células HEK293 , Humanos , Gotas Lipídicas/metabolismo , Lipogénesis/genética , Proteínas de la Membrana/fisiología , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/fisiología , Triglicéridos/biosíntesis , Proteínas de Transporte Vesicular/metabolismo
7.
Mol Cell ; 74(1): 45-58.e7, 2019 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-30846317

RESUMEN

Cells require a constant supply of fatty acids to survive and proliferate. Fatty acids incorporate into membrane and storage glycerolipids through a series of endoplasmic reticulum (ER) enzymes, but how these enzymes are regulated is not well understood. Here, using a combination of CRISPR-based genetic screens and unbiased lipidomics, we identified calcineurin B homologous protein 1 (CHP1) as a major regulator of ER glycerolipid synthesis. Loss of CHP1 severely reduces fatty acid incorporation and storage in mammalian cells and invertebrates. Mechanistically, CHP1 binds and activates GPAT4, which catalyzes the initial rate-limiting step in glycerolipid synthesis. GPAT4 activity requires CHP1 to be N-myristoylated, forming a key molecular interface between the two proteins. Interestingly, upon CHP1 loss, the peroxisomal enzyme, GNPAT, partially compensates for the loss of ER lipid synthesis, enabling cell proliferation. Thus, our work identifies a conserved regulator of glycerolipid metabolism and reveals plasticity in lipid synthesis of proliferating cells.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Retículo Endoplásmico/enzimología , Glicéridos/biosíntesis , Glicerol-3-Fosfato O-Aciltransferasa/metabolismo , Lipogénesis , Células 3T3 , Aciltransferasas/genética , Aciltransferasas/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Unión al Calcio/genética , Proliferación Celular , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Retículo Endoplásmico/efectos de los fármacos , Retículo Endoplásmico/patología , Activación Enzimática , Regulación Enzimológica de la Expresión Génica , Glicerol-3-Fosfato O-Aciltransferasa/genética , Células HEK293 , Células HeLa , Células Hep G2 , Humanos , Células Jurkat , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Ratones , Ácido Palmítico/toxicidad , Unión Proteica
8.
Proc Natl Acad Sci U S A ; 121(28): e2322066121, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38968125

RESUMEN

The Wnt/Wingless signaling pathway plays critical roles in metazoan development and energy metabolism, but its role in regulating lipid homeostasis remains not fully understood. Here, we report that the activation of canonical Wnt/Wg signaling promotes lipolysis while concurrently inhibiting lipogenesis and fatty acid ß-oxidation in both larval and adult adipocytes, as well as cultured S2R+ cells, in Drosophila. Using RNA-sequencing and CUT&RUN (Cleavage Under Targets & Release Using Nuclease) assays, we identified a set of Wnt target genes responsible for intracellular lipid homeostasis. Notably, active Wnt signaling directly represses the transcription of these genes, resulting in decreased de novo lipogenesis and fatty acid ß-oxidation, but increased lipolysis. These changes lead to elevated free fatty acids and reduced triglyceride (TG) accumulation in adipocytes with active Wnt signaling. Conversely, downregulation of Wnt signaling in the fat body promotes TG accumulation in both larval and adult adipocytes. The attenuation of Wnt signaling also increases the expression of specific lipid metabolism-related genes in larval adipocytes, wing discs, and adult intestines. Taken together, these findings suggest that Wnt signaling-induced transcriptional repression plays an important role in regulating lipid homeostasis by enhancing lipolysis while simultaneously suppressing lipogenesis and fatty acid ß-oxidation.


Asunto(s)
Proteínas de Drosophila , Vía de Señalización Wnt , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Adipocitos/metabolismo , Movilización Lipídica , Drosophila melanogaster/metabolismo , Drosophila melanogaster/genética , Proteína Wnt1/metabolismo , Proteína Wnt1/genética , Lipólisis , Lipogénesis/genética , Triglicéridos/metabolismo , Metabolismo de los Lípidos/genética , Larva/metabolismo , Larva/genética , Transcripción Genética , Homeostasis
9.
Nature ; 579(7800): 586-591, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32214246

RESUMEN

Consumption of fructose has risen markedly in recent decades owing to the use of sucrose and high-fructose corn syrup in beverages and processed foods1, and this has contributed to increasing rates of obesity and non-alcoholic fatty liver disease2-4. Fructose intake triggers de novo lipogenesis in the liver4-6, in which carbon precursors of acetyl-CoA are converted into fatty acids. The ATP citrate lyase (ACLY) enzyme cleaves cytosolic citrate to generate acetyl-CoA, and is upregulated after consumption of carbohydrates7. Clinical trials are currently pursuing the inhibition of ACLY as a treatment for metabolic diseases8. However, the route from dietary fructose to hepatic acetyl-CoA and lipids remains unknown. Here, using in vivo isotope tracing, we show that liver-specific deletion of Acly in mice is unable to suppress fructose-induced lipogenesis. Dietary fructose is converted to acetate by the gut microbiota9, and this supplies lipogenic acetyl-CoA independently of ACLY10. Depletion of the microbiota or silencing of hepatic ACSS2, which generates acetyl-CoA from acetate, potently suppresses the conversion of bolus fructose into hepatic acetyl-CoA and fatty acids. When fructose is consumed more gradually to facilitate its absorption in the small intestine, both citrate cleavage in hepatocytes and microorganism-derived acetate contribute to lipogenesis. By contrast, the lipogenic transcriptional program is activated in response to fructose in a manner that is independent of acetyl-CoA metabolism. These data reveal a two-pronged mechanism that regulates hepatic lipogenesis, in which fructolysis within hepatocytes provides a signal to promote the expression of lipogenic genes, and the generation of microbial acetate feeds lipogenic pools of acetyl-CoA.


Asunto(s)
Acetatos/metabolismo , Azúcares de la Dieta/metabolismo , Fructosa/metabolismo , Microbioma Gastrointestinal/fisiología , Lipogénesis , Hígado/metabolismo , ATP Citrato (pro-S)-Liasa/deficiencia , ATP Citrato (pro-S)-Liasa/genética , ATP Citrato (pro-S)-Liasa/metabolismo , Acetato CoA Ligasa/deficiencia , Acetato CoA Ligasa/genética , Acetato CoA Ligasa/metabolismo , Acetilcoenzima A/metabolismo , Animales , Ácido Cítrico/metabolismo , Azúcares de la Dieta/administración & dosificación , Azúcares de la Dieta/farmacología , Ácidos Grasos/metabolismo , Fructosa/administración & dosificación , Fructosa/farmacología , Microbioma Gastrointestinal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Hepatocitos/efectos de los fármacos , Hepatocitos/enzimología , Hepatocitos/metabolismo , Marcaje Isotópico , Lipogénesis/efectos de los fármacos , Lipogénesis/genética , Hígado/citología , Hígado/efectos de los fármacos , Hígado/enzimología , Masculino , Ratones , Especificidad por Sustrato
10.
Proc Natl Acad Sci U S A ; 119(49): e2212220119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459649

RESUMEN

De novo lipogenesis is a highly regulated metabolic process, which is known to be activated through transcriptional regulation of lipogenic genes, including fatty acid synthase (FASN). Unexpectedly, we find that the expression of FASN protein remains unchanged during Drosophila larval development from the second to the third instar larval stages (L2 to L3) when lipogenesis is hyperactive. Instead, acetylation of FASN is significantly upregulated in fast-growing larvae. We further show that lysine K813 residue is highly acetylated in developing larvae, and its acetylation is required for elevated FASN activity, body fat accumulation, and normal development. Intriguingly, K813 is autoacetylated by acetyl-CoA (AcCoA) in a dosage-dependent manner independent of acetyltransferases. Mechanistically, the autoacetylation of K813 is mediated by a novel P-loop-like motif (N-xx-G-x-A). Lastly, we find that K813 is deacetylated by Sirt1, which brings FASN activity to baseline level. In summary, this work uncovers a previously unappreciated role of FASN acetylation in developmental lipogenesis and a novel mechanism for protein autoacetylation, through which Drosophila larvae control metabolic homeostasis by linking AcCoA, lysine acetylation, and de novo lipogenesis.


Asunto(s)
Drosophila , Lipogénesis , Animales , Lipogénesis/genética , Acetilcoenzima A , Drosophila/genética , Lisina , Ácido Graso Sintasas/genética , Larva/genética
11.
Proc Natl Acad Sci U S A ; 119(2)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34996870

RESUMEN

Fate and behavior of neural progenitor cells are tightly regulated during mammalian brain development. Metabolic pathways, such as glycolysis and oxidative phosphorylation, that are required for supplying energy and providing molecular building blocks to generate cells govern progenitor function. However, the role of de novo lipogenesis, which is the conversion of glucose into fatty acids through the multienzyme protein fatty acid synthase (FASN), for brain development remains unknown. Using Emx1Cre-mediated, tissue-specific deletion of Fasn in the mouse embryonic telencephalon, we show that loss of FASN causes severe microcephaly, largely due to altered polarity of apical, radial glia progenitors and reduced progenitor proliferation. Furthermore, genetic deletion and pharmacological inhibition of FASN in human embryonic stem cell-derived forebrain organoids identifies a conserved role of FASN-dependent lipogenesis for radial glia cell polarity in human brain organoids. Thus, our data establish a role of de novo lipogenesis for mouse and human brain development and identify a link between progenitor-cell polarity and lipid metabolism.


Asunto(s)
Encéfalo/metabolismo , Ácido Graso Sintasas/metabolismo , Lipogénesis/fisiología , Animales , Tipificación del Cuerpo , Encéfalo/crecimiento & desarrollo , Encéfalo/patología , Acido Graso Sintasa Tipo I , Ácido Graso Sintasas/genética , Humanos , Metabolismo de los Lípidos , Lipogénesis/genética , Ratones , Ratones Noqueados , Células-Madre Neurales/metabolismo , Neuroglía/metabolismo , Neuroglía/patología , Transcriptoma
12.
Genes Dev ; 31(12): 1202-1211, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28747429

RESUMEN

Liver lipid metabolism is under intricate temporal control by both the circadian clock and feeding. The interplay between these two mechanisms is not clear. Here we show that liver-specific depletion of nuclear receptors RORα and RORγ, key components of the molecular circadian clock, up-regulate expression of lipogenic genes only under fed conditions at Zeitgeber time 22 (ZT22) but not under fasting conditions at ZT22 or ad libitum conditions at ZT10. RORα/γ controls circadian expression of Insig2, which keeps feeding-induced SREBP1c activation under check. Loss of RORα/γ causes overactivation of the SREBP-dependent lipogenic response to feeding, exacerbating diet-induced hepatic steatosis. These findings thus establish ROR/INSIG2/SREBP as a molecular pathway by which circadian clock components anticipatorily regulate lipogenic responses to feeding. This highlights the importance of time of day as a consideration in the treatment of liver metabolic disorders.


Asunto(s)
Relojes Circadianos/genética , Regulación de la Expresión Génica , Lipogénesis/genética , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Animales , Conducta Alimentaria/fisiología , Técnicas de Inactivación de Genes , Metabolismo de los Lípidos/genética , Hígado/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Miembro 1 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Activación Transcripcional
13.
J Lipid Res ; 65(1): 100472, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37949368

RESUMEN

Liver steatosis is a common metabolic disorder resulting from imbalanced lipid metabolism, which involves various processes such as de novo lipogenesis, fatty acid uptake, fatty acid oxidation, and VLDL secretion. In this study, we discovered that KLF2, a transcription factor, plays a crucial role in regulating lipid metabolism in the liver. Overexpression of KLF2 in the liver of db/db mice, C57BL/6J mice, and Cd36-/- mice fed on a normal diet resulted in increased lipid content in the liver. Additionally, transgenic mice (ALB-Klf2) that overexpressed Klf2 in the liver developed liver steatosis after being fed a normal diet. We found that KLF2 promotes lipogenesis by increasing the expression of SCAP, a chaperone that facilitates the activation of SREBP, the master transcription factor for lipogenic gene expression. Our mechanism studies revealed that KLF2 enhances lipogenesis in the liver by binding to the promoter of SCAP and increasing the expression of genes involved in fatty acid synthesis. Reduction of KLF2 expression led to a decrease in SCAP expression and a reduction in the expression of SREBP1 target genes involved in lipogenesis. Overexpression of KLF2 also increased the activation of SREBP2 and the mRNA levels of its downstream target SOAT1. In C57BL/6J mice fed a high-fat diet, overexpression of Klf2 increased blood VLDL secretion, while reducing its expression decreased blood cholesterol levels. Our study emphasizes the novelty that hepatic KLF2 plays a critical role in regulating lipid metabolism through the KLF2/SCAP/SREBPs pathway, which is essential for hepatic lipogenesis and maintaining blood cholesterol homeostasis.


Asunto(s)
Hígado Graso , Lipogénesis , Ratones , Animales , Lipogénesis/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Ratones Endogámicos C57BL , Hígado/metabolismo , Hígado Graso/metabolismo , Metabolismo de los Lípidos/genética , Ácidos Grasos/metabolismo , Colesterol/metabolismo , Homeostasis
14.
J Lipid Res ; 65(7): 100576, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38866328

RESUMEN

Hypercholesterolemia is frequently intertwined with hepatosteatosis, hypertriglyceridemia, and hyperglycemia. This study is designed to assess the therapeutic efficacy of miR-206 in contrast to statins in the context of managing hypercholesterolemia in mice. We previously showed that miR-206 is a potent inhibitor of de novo lipogenesis (DNL), cholesterol synthesis, and gluconeogenesis in mice. Given that these processes occur within hepatocytes, we employed a mini-circle (MC) system to deliver miR-206 specifically to hepatocytes (designated as MC-miR-206). A single intravenous injection of MC-miR-206 maintained high levels of miR-206 in the liver for at least two weeks, thereby maintaining suppression of hepatic DNL, cholesterol synthesis, and gluconeogenesis. MC-miR-206 significantly reduced DNA damage, endoplasmic reticulum and oxidative stress, and hepatic toxicity. Therapeutically, both MC-miR-206 and statins significantly reduced total serum cholesterol and triglycerides as well as LDL cholesterol and VLDL cholesterol in mice maintained on the normal chow and high-fat high-cholesterol diet. MC-miR-206 reduced liver weight, hepatic triglycerides and cholesterol, and blood glucose, while statins slightly increased hepatic cholesterol and blood glucose and failed to affect levels of liver weight and hepatic triglycerides. Mechanistically, miR-206 alleviated hypercholesterolemia by inhibiting hepatic cholesterol synthesis, while statins increased HMGCR activity, hepatic cholesterol synthesis, and fecal-neutral steroid excretion. MiR-206 facilitates the regression of hypercholesterolemia, hypertriglyceridemia, hyperglycemia, and hepatosteatosis. MiR-206 outperforms statins by reducing hyperglycemia, hepatic cholesterol levels, and hepatic toxicity.


Asunto(s)
Colesterol , Inhibidores de Hidroximetilglutaril-CoA Reductasas , MicroARNs , Animales , MicroARNs/genética , MicroARNs/metabolismo , Ratones , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Colesterol/sangre , Colesterol/metabolismo , Masculino , Hígado/metabolismo , Hígado/efectos de los fármacos , Anticolesterolemiantes/farmacología , Anticolesterolemiantes/uso terapéutico , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Hipercolesterolemia/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hepatocitos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética
15.
J Biol Chem ; 299(5): 104678, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37028764

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is one of the most common liver diseases worldwide. Although the involvement of chronic overnutrition, systemic inflammation, and insulin resistance in the development of NAFLD is well-established, however, the associations among these remain to be elucidated. Several studies have reported that chronic overnutrition, such as excessive consumption of fats (high-fat diet, HFD), can cause insulin resistance and inflammation. However, the mechanisms by which HFD exerts inflammation and thereby promotes insulin resistance and intrahepatic fat accumulation remain poorly understood. Here, we show that HFD induces the expression of hepatic serine/threonine kinase 38 (STK38), which further induces systemic inflammation leading to insulin resistance. Notably, ectopic expression of STK38 in mouse liver leads to lean NAFLD phenotype with hepatic inflammation, insulin resistance, intrahepatic lipid accumulation, and hypertriglyceridemia in mice fed on a regular chow diet. Further, depletion of hepatic STK38 in HFD-fed mice remarkably reduces proinflammation, improves hepatic insulin sensitivity, and decreases hepatic fat accumulation. Mechanistically, two critical stimuli are elicited by STK38 action. For one stimulus, STK38 binds to Tank-Binding protein Kinase 1 and induces Tank-Binding protein Kinase 1 phosphorylation to promote NF-κß nuclear translocation that mobilizes the release of proinflammatory cytokines and eventually leads to insulin resistance. The second, stimulus involves intrahepatic lipid accumulation by enhanced de novo lipogenesis via reducing the AMPK-ACC signaling axis. These findings identify STK38 as a novel nutrient-sensitive proinflammatory and lipogenic factor in maintaining hepatic energy homeostasis, and it provides a promising target for hepatic and immune health.


Asunto(s)
Dieta Alta en Grasa , Enfermedad del Hígado Graso no Alcohólico , Proteínas Serina-Treonina Quinasas , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Inflamación/metabolismo , Resistencia a la Insulina/fisiología , Lípidos , Lipogénesis/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Hipernutrición , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Serina/metabolismo
16.
BMC Genomics ; 25(1): 530, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38816813

RESUMEN

BACKGROUND: Skeletal muscle development and fat deposition have important effects on meat quality. The study of regulating skeletal muscle development and fat deposition is of great significance in improving the quality of carcass and meat. In the present study, whole transcriptome sequencing (including RNA-Seq and miRNA-Seq) was performed on the longissimus dorsi muscle (LDM) of Jinfen White pigs at 1, 90, and 180 days of age. RESULTS: The results showed that a total of 245 differentially expressed miRNAs were screened in any two comparisons, which may be involved in the regulation of myogenesis. Among them, compared with 1-day-old group, miR-22-5p was significantly up-regulated in 90-day-old group and 180-day-old group. Functional studies demonstrated that miR-22-5p inhibited the proliferation and differentiation of porcine skeletal muscle satellite cells (PSCs). Pearson correlation coefficient analysis showed that long non-coding RNA (lncRNA) LOC106505926 and CXXC5 gene had strong negative correlations with miR-22-5p. The LOC106505926 and CXXC5 were proven to promote the proliferation and differentiation of PSCs, as opposed to miR-22-5p. In terms of mechanism, LOC106505926 functions as a molecular sponge of miR-22-5p to modulate the expression of CXXC5, thereby inhibits the differentiation of PSCs. In addition, LOC106505926 regulates the differentiation of porcine preadipocytes through direct binding with FASN. CONCLUSIONS: Collectively, our results highlight the multifaceted regulatory role of LOC106505926 in controlling skeletal muscle and adipose tissue development in pigs and provide new targets for improving the quality of livestock products by regulating skeletal muscle development and fat deposition.


Asunto(s)
Diferenciación Celular , Lipogénesis , MicroARNs , Desarrollo de Músculos , ARN Largo no Codificante , Animales , ARN Largo no Codificante/genética , Desarrollo de Músculos/genética , Porcinos , MicroARNs/genética , MicroARNs/metabolismo , Lipogénesis/genética , Diferenciación Celular/genética , Proliferación Celular , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/citología , Músculo Esquelético/metabolismo , Músculo Esquelético/crecimiento & desarrollo , Células Cultivadas
17.
BMC Genomics ; 25(1): 821, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39217297

RESUMEN

Resveratrol has been reported to promote immunity and decrease oxidative stress, but which demonstrates biphasic effects relied on the use concentration. In this study, the effects of diet supplement with a relative high concentration of resveratrol (0.32 mg/kg) on metabolism, antioxidation and apoptosis of liver were investigated in Siberian sturgeon. The results showed that resveratrol significantly increased the lipid synthesis and the apoptosis, but did not either activate the antioxidant NRF2/KEAP1 pathway or enhance the antioxidant enzyme activity. Transcriptome analysis revealed significant changes in regulatory pathways related to glycolipid, including PPAR signaling pathway, Insulin signaling pathway, Fatty acid biosynthesis, and Glycolysis/Gluconeogenesis. In addition, resveratrol significantly increased the lipid synthesis genes (accα and fas), fatty acid transport gene (fatp 6) and gluconeogenesis gene (gck), but decreased the survival-promoting genes (gadd45ß and igf 1). These findings highlight a significant effect of resveratrol on glycolipid metabolism in Siberian sturgeon. Moreover, this study also demonstrated that 0.32 mg/kg resveratrol has physiological toxicity to the liver of Siberian sturgeon, indicating that this dose is too high for Siberian sturgeon. Thus, our study provides a valuable insight for future research and application of resveratrol in fish.


Asunto(s)
Apoptosis , Peces , Perfilación de la Expresión Génica , Resveratrol , Animales , Resveratrol/farmacología , Peces/genética , Peces/metabolismo , Apoptosis/efectos de los fármacos , Hígado/metabolismo , Hígado/efectos de los fármacos , Transcriptoma/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Antioxidantes/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Lipogénesis/efectos de los fármacos , Lipogénesis/genética
18.
Hepatology ; 78(5): 1506-1524, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37129868

RESUMEN

BACKGROUND AND AIMS: Lipid accumulation induced by alcohol consumption is not only an early pathophysiological response but also a prerequisite for the progression of alcohol-associated liver disease (ALD). Alternative splicing regulates gene expression and protein diversity; dysregulation of this process is implicated in human liver diseases. However, how the alternative splicing regulation of lipid metabolism contributes to the pathogenesis of ALD remains undefined. APPROACH AND RESULTS: Serine-arginine-rich protein kinase 2 (SRPK2), a key kinase controlling alternative splicing, is activated in hepatocytes in response to alcohol, in mice with chronic-plus-binge alcohol feeding, and in patients with ALD. Such induction activates sterol regulatory element-binding protein 1 and promotes lipogenesis in ALD. Overexpression of FGF21 in transgenic mice abolishes alcohol-mediated induction of SRPK2 and its associated steatosis, lipotoxicity, and inflammation; these alcohol-induced pathologies are exacerbated in FGF21 knockout mice. Mechanistically, SRPK2 is required for alcohol-mediated impairment of serine-arginine splicing factor 10, which generates exon 7 inclusion in lipin 1 and triggers concurrent induction of lipogenic regulators-lipin 1ß and sterol regulatory element-binding protein 1. FGF21 suppresses alcohol-induced SRPK2 accumulation through mammalian target of rapamycin complex 1 inhibition-dependent degradation of SRPK2. Silencing SRPK2 rescues alcohol-induced splicing dysregulation and liver injury in FGF21 knockout mice. CONCLUSIONS: These studies reveal that (1) the regulation of alternative splicing by SRPK2 is implicated in lipogenesis in humans with ALD; (2) FGF21 is a key hepatokine that ameliorates ALD pathologies largely by inhibiting SRPK2; and (3) targeting SRPK2 signaling by FGF21 may offer potential therapeutic approaches to combat ALD.


Asunto(s)
Arginina Quinasa , Hepatopatías Alcohólicas , Humanos , Ratones , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Lipogénesis/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Arginina Quinasa/genética , Arginina Quinasa/metabolismo , Empalme Alternativo , Hígado/patología , Hepatopatías Alcohólicas/metabolismo , Etanol/toxicidad , Ratones Noqueados , Mamíferos/metabolismo
19.
Exp Cell Res ; 428(1): 113631, 2023 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-37150392

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is one of the main causes of liver disease that has reached its last stage. Over the past few years, evidence for miRNAs' centrality in NAFLD pathogenesis has accumulated. According to some studies, miR-574-5p plays a role in lipid metabolism. However, research on the relationship between miR-574-5p and NAFLD is lacking. For in vivo experiments, we induced the NAFLD mice model with a high-fat diet (HFD). AgomiR-574-5p was injected intravenously into HFD-fed mice for eight weeks, and qPCR was used to identify the expression of miR-574-5p in the serum. In in vitro experiments, The treatment of L-O2 cells with a miR-574-5p mimic resulted in a significant reduction in lipid deposition, suggesting that miR-574-5p can inhibit lipid accumulation and lipid formation induced by OA. The dual-luciferase reporter gene assay revealed that miR-574-5p targets the 3' UTR region of HOXC6 directly. We discovered that OA-induced lipid accumulation in hepatocytes might be mediated through the miR-574-5p-HOXC6 signaling axis. Additional research is required in order to determine the specific mechanism by which HOXC6 downstream pathways are involved in the miR-574-5p induced lipid uptake.


Asunto(s)
MicroARNs , Enfermedad del Hígado Graso no Alcohólico , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Hepatocitos/metabolismo , Metabolismo de los Lípidos/genética , Lípidos , Lipogénesis/genética , Hígado/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad del Hígado Graso no Alcohólico/metabolismo
20.
Exp Cell Res ; 422(1): 113427, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36400183

RESUMEN

Protein kinase C epsilon (PKCε) belongs to a family of serine/threonine kinases that control cell proliferation, differentiation and survival. Aberrant PKCε activation and overexpression is a frequent feature of numerous cancers. However, its role in regulation of lipid metabolism in cancer cells remains elusive. Here we report a novel function of PKCε in regulating of prostate cancer cell proliferation by modulation of PKM2-mediated de novo lipogenesis. We show that PKCε promotes de novo lipogenesis and tumor cell proliferation via upregulation of lipogenic enzymes and lipid contents in prostate cancer cells. Mechanistically, PKCε interacts with NABD (1-388) domain of C-terminal deletion on pyruvate kinase isoform M2 (PKM2) and enhances the Tyr105 phosphorylation of PKM2, leading to its nuclear localization. Moreover, forced expression of mutant Tyr105 (Y105F) or PKM2 inhibition suppressed de novo lipogenesis and cell proliferation induced by overexpression of PKCε in prostate cancer cells. In a murine tumor model, inhibitor of PKM2 antagonizes lipogenic enzymes expression and prostate cancer growth induced by overexpression of PKCε in vivo. These data indicate that PKCε is a critical regulator of de novo lipogenesis, which may represent a potential therapeutic target for the treatment of prostate cancer.


Asunto(s)
Neoplasias de la Próstata , Proteína Quinasa C-epsilon , Animales , Humanos , Masculino , Ratones , Línea Celular Tumoral , Lipogénesis/genética , Fosforilación/fisiología , Neoplasias de la Próstata/metabolismo , Isoformas de Proteínas/metabolismo , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Piruvato Quinasa/genética , Piruvato Quinasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA