Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 613
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nature ; 629(8013): 945-950, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720069

RESUMEN

Lipoprotein(a) (Lp(a)), an independent, causal cardiovascular risk factor, is a lipoprotein particle that is formed by the interaction of a low-density lipoprotein (LDL) particle and apolipoprotein(a) (apo(a))1,2. Apo(a) first binds to lysine residues of apolipoprotein B-100 (apoB-100) on LDL through the Kringle IV (KIV) 7 and 8 domains, before a disulfide bond forms between apo(a) and apoB-100 to create Lp(a) (refs. 3-7). Here we show that the first step of Lp(a) formation can be inhibited through small-molecule interactions with apo(a) KIV7-8. We identify compounds that bind to apo(a) KIV7-8, and, through chemical optimization and further application of multivalency, we create compounds with subnanomolar potency that inhibit the formation of Lp(a). Oral doses of prototype compounds and a potent, multivalent disruptor, LY3473329 (muvalaplin), reduced the levels of Lp(a) in transgenic mice and in cynomolgus monkeys. Although multivalent molecules bind to the Kringle domains of rat plasminogen and reduce plasmin activity, species-selective differences in plasminogen sequences suggest that inhibitor molecules will reduce the levels of Lp(a), but not those of plasminogen, in humans. These data support the clinical development of LY3473329-which is already in phase 2 studies-as a potent and specific orally administered agent for reducing the levels of Lp(a).


Asunto(s)
Descubrimiento de Drogas , Lipoproteína(a) , Macaca fascicularis , Animales , Femenino , Humanos , Masculino , Ratones , Administración Oral , Kringles , Lipoproteína(a)/antagonistas & inhibidores , Lipoproteína(a)/sangre , Lipoproteína(a)/química , Lipoproteína(a)/metabolismo , Ratones Transgénicos , Bibliotecas de Moléculas Pequeñas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Plasminógeno/química , Plasminógeno/metabolismo , Especificidad de la Especie , Ensayos Clínicos Fase II como Asunto , Apolipoproteínas A/química , Apolipoproteínas A/metabolismo
2.
Annu Rev Pharmacol Toxicol ; 64: 135-157, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-37506332

RESUMEN

Lipoprotein(a) [Lp(a)] is a molecule bound to apolipoprotein(a) with some similarity to low-density lipoprotein cholesterol (LDL-C), which has been found to be a risk factor for cardiovascular disease (CVD). Lp(a) appears to induce inflammation, atherogenesis, and thrombosis. Approximately 20% of the world's population has increased Lp(a) levels, determined predominantly by genetics. Current clinical practices for the management of dyslipidemia are ineffective in lowering Lp(a) levels. Evolving RNA-based therapeutics, such as the antisense oligonucleotide pelacarsen and small interfering RNA olpasiran, have shown promising results in reducing Lp(a) levels. Phase III pivotal cardiovascular outcome trials [Lp(a)HORIZON and OCEAN(a)] are ongoing to evaluate their efficacy in secondary prevention of major cardiovascular events in patients with elevated Lp(a). The future of cardiovascular residual risk reduction may transition to a personalized approach where further lowering of either LDL-C, triglycerides, or Lp(a) is selected after high-intensity statin therapy based on the individual risk profile and preferences of each patient.


Asunto(s)
Enfermedades Cardiovasculares , Humanos , LDL-Colesterol/metabolismo , LDL-Colesterol/uso terapéutico , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/genética , Factores de Riesgo , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Lipoproteína(a)/uso terapéutico , Factores de Riesgo de Enfermedad Cardiaca
3.
Arterioscler Thromb Vasc Biol ; 44(3): 720-740, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38269588

RESUMEN

BACKGROUND: Oxidized phospholipids play a key role in the atherogenic potential of lipoprotein(a) (Lp[a]); however, Lp(a) is a complex particle that warrants research into additional proinflammatory mediators. We hypothesized that additional Lp(a)-associated lipids contribute to the atherogenicity of Lp(a). METHODS: Untargeted lipidomics was performed on plasma and isolated lipoprotein fractions. The atherogenicity of the observed Lp(a)-associated lipids was tested ex vivo in primary human monocytes by RNA sequencing, ELISA, Western blot, and transendothelial migratory assays. Using immunofluorescence staining and single-cell RNA sequencing, the phenotype of macrophages was investigated in human atherosclerotic lesions. RESULTS: Compared with healthy individuals with low/normal Lp(a) levels (median, 7 mg/dL [18 nmol/L]; n=13), individuals with elevated Lp(a) levels (median, 87 mg/dL [218 nmol/L]; n=12) demonstrated an increase in lipid species, particularly diacylglycerols (DGs) and lysophosphatidic acid (LPA). DG and the LPA precursor lysophosphatidylcholine were enriched in the Lp(a) fraction. Ex vivo stimulation with DG(40:6) demonstrated a significant upregulation in proinflammatory pathways related to leukocyte migration, chemotaxis, NF-κB (nuclear factor kappa B) signaling, and cytokine production. Functional assessment showed a dose-dependent increase in the secretion of IL (interleukin)-6, IL-8, and IL-1ß after DG(40:6) and DG(38:4) stimulation, which was, in part, mediated via the NLRP3 (NOD [nucleotide-binding oligomerization domain]-like receptor family pyrin domain containing 3) inflammasome. Conversely, LPA-stimulated monocytes did not exhibit an inflammatory phenotype. Furthermore, activation of monocytes by DGs and LPA increased their transendothelial migratory capacity. Human atherosclerotic plaques from patients with high Lp(a) levels demonstrated colocalization of Lp(a) with M1 macrophages, and an enrichment of CD68+IL-18+TLR4+ (toll-like receptor) TREM2+ (triggering receptor expressed on myeloid cells) resident macrophages and CD68+CASP1+ (caspase) IL-1B+SELL+ (selectin L) inflammatory macrophages compared with patients with low Lp(a). Finally, potent Lp(a)-lowering treatment (pelacarsen) resulted in a reduction in specific circulating DG lipid subspecies in patients with cardiovascular disease with elevated Lp(a) levels (median, 82 mg/dL [205 nmol/L]). CONCLUSIONS: Lp(a)-associated DGs and LPA have a potential role in Lp(a)-induced monocyte inflammation by increasing cytokine secretion and monocyte transendothelial migration. This DG-induced inflammation is, in part, NLRP3 inflammasome dependent.


Asunto(s)
Lisofosfolípidos , Monocitos , Proteína con Dominio Pirina 3 de la Familia NLR , Humanos , Diglicéridos/metabolismo , Inflamasomas/metabolismo , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Lipoproteína(a)/metabolismo , Monocitos/metabolismo , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
4.
J Bioenerg Biomembr ; 56(3): 247-259, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38483739

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death globally, attributed to a complex etiology involving metabolic, genetic, and protein-related factors. Lipoprotein(a) (Lp(a)), identified as a genetic risk factor, exhibits elevated levels linked to an increased risk of cardiovascular diseases. The lipoprotein(a) kringle domains have recently been identified as a potential target for the treatment of CVDs, in this study we utilized a fragment-based drug design approach to design a novel, potent, and safe inhibitor for lipoprotein(a) kringle domain. With the use of fragment library (61,600 fragments) screening, combined with analyses such as MM/GBSA, molecular dynamics simulation (MD), and principal component analysis, we successfully identified molecules effective against the kringle domains of Lipoprotein(a). The hybridization process (Breed) of the best fragments generated a novel 249 hybrid molecules, among them 77 exhibiting superior binding affinity (≤ -7 kcal/mol) compared to control AZ-02 (-6.9 kcal/mol), Importantly, the top ten molecules displayed high similarity to the control AZ-02. Among the top ten molecules, BR1 exhibited the best docking energy (-11.85 kcal/mol ), and higher stability within the protein LBS site, demonstrating the capability to counteract the pathophysiological effects of lipoprotein(a) [Lp(a)]. Additionally, principal component analysis (PCA) highlighted a similar trend of motion during the binding of BR1 and the control compound (AZ-02), limiting protein mobility and reducing conformational space. Moreover, ADMET analysis indicated favorable drug-like properties, with BR1 showing minimal violations of Lipinski's rules. Overall, the identified compounds hold promise as potential therapeutics, addressing a critical need in cardiovascular medicine. Further preclinical and clinical evaluations are needed to validate their efficacy and safety, potentially ushering in a new era of targeted therapies for CVDs.


Asunto(s)
Enfermedades Cardiovasculares , Diseño de Fármacos , Kringles , Lipoproteína(a) , Lipoproteína(a)/metabolismo , Lipoproteína(a)/química , Enfermedades Cardiovasculares/tratamiento farmacológico , Humanos , Simulación de Dinámica Molecular
5.
Eur J Clin Invest ; 54(6): e14179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38363025

RESUMEN

BACKGROUND: Emerging data suggested that lipoprotein(a) [Lp(a)] is an independent risk factor for atherosclerotic cardiovascular disease. Previous studies indicated fibrinogen (Fib) had synergetic effect on Lp(a)-induced events. However, combined impact of Fib and Lp(a) on ischemic stroke has not been elucidated. METHODS: In this prospective study, we consecutively enrolled 8263 patients with stable coronary artery diseases (CAD) from 2011 to 2017. Patients were categorized into three groups according to tertiles of Lp(a) levels [Lp(a)-low, Lp(a)-medium, and Lp(a)-high] and further divided into nine groups by Lp(a) and Fib levels. All subjects were followed up for the occurrence of ischemic stroke. RESULTS: During a median follow-up of 37.7 months, 157 (1.9%) ischemic strokes occurred. Stroke incidence increased by Lp(a) (1.1 vs. 2.1 vs. 2.5%, Cochran-Armitage p < .001) and Fib (1.1 vs. 2.0 vs. 2.6%, Cochran-Armitage p < .001) categories. When further classified into nine groups by Lp(a) and Fib levels, the incidence of ischemic stroke in group 9 [Lp(a)-high and Fib-high] was significantly higher than that in group 1 [Lp(a)-low and Fib-low] (3.1 vs. 6%, p < .001). The group 9 was associated with a highest risk for ischemic stroke (adjusted HR 4.907, 95% CI: 2.154-11.18, p < .001), compared with individuals in the Lp(a)-high (adjusted HR 2.290, 95% CI: 1.483-3.537, p < .001) or Fib-high (adjusted HR 1.184, 95% CI: 1.399-3.410, p = .001). Furthermore, combining Lp(a) with Fib increased C-statistics by .045 (p = .004). CONCLUSIONS: Current study first demonstrated that elevated Lp(a) combining with Fib evaluation enhanced the risk of ischemic stroke in patients with CAD beyond Lp(a) or Fib alone.


Asunto(s)
Enfermedad de la Arteria Coronaria , Fibrinógeno , Accidente Cerebrovascular Isquémico , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Lipoproteína(a)/metabolismo , Fibrinógeno/metabolismo , Masculino , Femenino , Enfermedad de la Arteria Coronaria/epidemiología , Persona de Mediana Edad , Anciano , Estudios Prospectivos , Accidente Cerebrovascular Isquémico/epidemiología , Accidente Cerebrovascular/epidemiología , Incidencia , Factores de Riesgo
6.
Curr Opin Clin Nutr Metab Care ; 27(2): 136-143, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37997792

RESUMEN

PURPOSE OF REVIEW: Lp(a) is one of the most atherogenic lipoproteins, and significant progress has been made to understand its pathophysiology over the last 20 years. There are now selective therapies in late-stage clinical trials to lower Lp(a). Yet there are many outstanding questions about Lp(a). This review outlines 10 of the most burning questions and tries to answer some of them. RECENT FINDINGS: Antisense oligonucleotide (ASO) treatment is currently the most advanced therapy to lower plasma Lp(a) by 60-80%. There are, however, also two small molecule medications in early stage of development with similar efficacy. SUMMARY: This review aims to answer important preclinical and clinical questions about the metabolism and physiological role of Lp(a) and also outlines possible therapeutic approaches with nutraceuticals, currently available lipid-lowering therapies and new medications. In addition, ways are illustrated to use Lp(a) as a marker to better predict cardiovascular risk.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Aterosclerosis/tratamiento farmacológico , Lipoproteína(a)/antagonistas & inhibidores , Lipoproteína(a)/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Factores de Riesgo , Animales
7.
Curr Opin Clin Nutr Metab Care ; 27(1): 77-86, 2024 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-37650693

RESUMEN

PURPOSE OF REVIEW: Calcific aortic valve disease (CAVD), the most common cause of aortic stenosis (AS), is characterized by slowly progressive fibrocalcific remodelling of the valve cusps. Once symptomatic, severe AS is associated with poor survival unless surgical or transcatheter valve replacement is performed. Unfortunately, no pharmacological interventions have been demonstrated to alter the natural history of CAVD. Lipoprotein(a) [Lp(a)], a low-density lipoprotein-like particle, has been implicated in the pathophysiology of CAVD. RECENT FINDINGS: The mechanisms by which Lp(a) results in CAVD are not well understood. However, the oxidized phospholipids carried by Lp(a) are considered a crucial mediator of the disease process. An increasing number of studies demonstrate a causal association between plasma Lp(a) levels and frequency of AS and need for aortic valve replacement, which is independent of inflammation, as measured by plasma C-reactive protein levels. However, not all studies show an association between Lp(a) and increased progression of calcification in individuals with established CAVD. SUMMARY: Epidemiologic, genetic, and Mendelian randomization studies have collectively suggested that Lp(a) is a causal risk factor for CAVD. Whether Lp(a)-lowering can prevent initiation or slow progression of CAVD remains to be demonstrated.


Asunto(s)
Estenosis de la Válvula Aórtica , Calcinosis , Humanos , Válvula Aórtica/cirugía , Válvula Aórtica/metabolismo , Estenosis de la Válvula Aórtica/epidemiología , Estenosis de la Válvula Aórtica/etiología , Estenosis de la Válvula Aórtica/cirugía , Calcinosis/genética , Calcinosis/metabolismo , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo
8.
Curr Atheroscler Rep ; 26(7): 317-329, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38753254

RESUMEN

PURPOSE OF REVIEW: Low-density lipoprotein (LDL) poses a risk for atherosclerotic cardiovascular disease (ASCVD). As LDL comprises various subtypes differing in charge, density, and size, understanding their specific impact on ASCVD is crucial. Two highly atherogenic LDL subtypes-electronegative LDL (L5) and Lp(a)-induce vascular cell apoptosis and atherosclerotic changes independent of plasma cholesterol levels, and their mechanisms warrant further investigation. Here, we have compared the roles of L5 and Lp(a) in the development of ASCVD. RECENT FINDINGS: Lp(a) tends to accumulate in artery walls, promoting plaque formation and potentially triggering atherosclerosis progression through prothrombotic or antifibrinolytic effects. High Lp(a) levels correlate with calcific aortic stenosis and atherothrombosis risk. L5 can induce endothelial cell apoptosis and increase vascular permeability, inflammation, and atherogenesis, playing a key role in initiating atherosclerosis. Elevated L5 levels in certain high-risk populations may serve as a distinctive predictor of ASCVD. L5 and Lp(a) are both atherogenic lipoproteins contributing to ASCVD through distinct mechanisms. Lp(a) has garnered attention, but equal consideration should be given to L5.


Asunto(s)
Aterosclerosis , Lipoproteína(a) , Humanos , Lipoproteína(a)/sangre , Lipoproteína(a)/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/sangre , Lipoproteínas LDL/sangre , Lipoproteínas LDL/metabolismo , Apoptosis , Animales
9.
Curr Atheroscler Rep ; 26(4): 111-118, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311667

RESUMEN

PURPOSE OF REVIEW: Lipoprotein(a) is an important causal risk factor for cardiovascular disease but currently no available medication effectively reduces lipoprotein(a). This review discusses recent findings regarding lipoprotein(a) as a causal risk factor and therapeutic target in cardiovascular disease, it reviews current clinical recommendations, and summarizes new lipoprotein(a) lowering drugs. RECENT FINDINGS: Epidemiological and genetic studies have established lipoprotein(a) as a causal risk factor for cardiovascular disease and mortality. Guidelines worldwide now recommend lipoprotein(a) to be measured once in a lifetime, to offer patients with high lipoprotein(a) lifestyle advise and initiate other cardiovascular medications. Clinical trials including antisense oligonucleotides, small interfering RNAs, and an oral lipoprotein(a) inhibitor have shown great effect on lowering lipoprotein(a) with reductions up to 106%, without any major adverse effects. Recent clinical phase 1 and 2 trials show encouraging results and ongoing phase 3 trials will hopefully result in the introduction of specific lipoprotein(a) lowering drugs to lower the risk of cardiovascular disease.


Asunto(s)
Enfermedades Cardiovasculares , Lipoproteína(a) , Humanos , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/etiología , Factores de Riesgo de Enfermedad Cardiaca , Lipoproteína(a)/efectos de los fármacos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Oligonucleótidos Antisentido/uso terapéutico , Factores de Riesgo
10.
FASEB J ; 37(3): e22813, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36809652

RESUMEN

Apolipoprotein(a) [apo(a)] is a highly polymorphic O-glycoprotein circulating in human plasma as lipoprotein(a) [Lp(a)]. The O-glycan structures of apo(a) subunit of Lp(a) serve as strong ligands of galectin-1, an O-glycan binding pro-angiogenic lectin abundantly expressed in placental vascular tissues. But the pathophysiological significance of apo(a)-galectin-1 binding is not yet been revealed. Carbohydrate-dependent binding of galectin-1 to another O-glycoprotein, neuropilin-1 (NRP-1) on endothelial cells activates vascular endothelial growth factor receptor 2 (VEGFR2) and mitogen-activated protein kinase (MAPK) signaling. Using apo(a), isolated from human plasma, we demonstrated the potential of the O-glycan structures of apo(a) in Lp(a) to inhibit angiogenic properties such as proliferation, migration, and tube-formation in human umbilical vein endothelial cells (HUVECs) as well as neovascularization in chick chorioallantoic membrane. Further, in vitro protein-protein interaction studies have confirmed apo(a) as a superior ligand to NRP-1 for galectin-1 binding. We also demonstrated that the protein levels of galectin-1, NRP-1, VEGFR2, and downstream proteins in MAPK signaling were reduced in HUVECs in the presence of apo(a) with intact O-glycan structures compared to that of de-O-glycosylated apo(a). In conclusion, our study shows that apo(a)-linked O-glycans prevent the binding of galectin-1 to NRP-1 leading to the inhibition of galectin-1/neuropilin-1/VEGFR2/MAPK-mediated angiogenic signaling pathway in endothelial cells. As higher plasma Lp(a) level in women is an independent risk factor for pre-eclamsia, a pregnancy-associated vascular complication, we propose that apo(a) O-glycans-mediated inhibition of the pro-angiogenic activity of galectin-1 may be one of the underlying molecular mechanism of pathogenesis of Lp(a) in pre-eclampsia.


Asunto(s)
Galectina 1 , Lipoproteína(a) , Femenino , Humanos , Apoproteína(a)/metabolismo , Galectina 1/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Ligandos , Lipoproteína(a)/metabolismo , Neuropilina-1/metabolismo , Polisacáridos/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
11.
Arterioscler Thromb Vasc Biol ; 43(10): 1851-1866, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37589135

RESUMEN

BACKGROUND: High levels of Lp(a) (lipoprotein(a)) are associated with multiple forms of cardiovascular disease. Lp(a) consists of an apoB100-containing particle attached to the plasminogen homologue apo(a). The pathways for Lp(a) clearance are not well understood. We previously discovered that the plasminogen receptor PlgRKT (plasminogen receptor with a C-terminal lysine) promoted Lp(a) uptake in liver cells. Here, we aimed to further define the role of PlgRKT and to investigate the role of 2 other plasminogen receptors, annexin A2 and S100A10 (S100 calcium-binding protein A10) in the endocytosis of Lp(a). METHODS: Human hepatocellular carcinoma (HepG2) cells and haploid human fibroblast-like (HAP1) cells were used for overexpression and knockout of plasminogen receptors. The uptake of Lp(a), LDL (low-density lipoprotein), apo(a), and endocytic cargos was visualized and quantified by confocal microscopy and Western blotting. RESULTS: The uptake of both Lp(a) and apo(a), but not LDL, was significantly increased in HepG2 and HAP1 cells overexpressing PlgRKT, annexin A2, or S100A10. Conversely, Lp(a) and apo(a), but not LDL, uptake was significantly reduced in HAP1 cells in which PlgRKT and S100A10 were knocked out. Surface binding studies in HepG2 cells showed that overexpression of PlgRKT, but not annexin A2 or S100A10, increased Lp(a) and apo(a) plasma membrane binding. Annexin A2 and S100A10, on the other hand, appeared to regulate macropinocytosis with both proteins significantly increasing the uptake of the macropinocytosis marker dextran when overexpressed in HepG2 and HAP1 cells and knockout of S100A10 significantly reducing dextran uptake. Bringing these observations together, we tested the effect of a PI3K (phosphoinositide-3-kinase) inhibitor, known to inhibit macropinocytosis, on Lp(a) uptake. Results showed a concentration-dependent reduction confirming that Lp(a) uptake was indeed mediated by macropinocytosis. CONCLUSIONS: These findings uncover a novel pathway for Lp(a) endocytosis involving multiple plasminogen receptors that enhance surface binding and stimulate macropinocytosis of Lp(a). Although the findings were produced in cell culture models that have limitations, they could have clinical relevance since drugs that inhibit macropinocytosis are in clinical use, that is, the PI3K inhibitors for cancer therapy and some antidepressant compounds.


Asunto(s)
Anexina A2 , Plasminógeno , Humanos , Plasminógeno/química , Plasminógeno/metabolismo , Lipoproteína(a)/metabolismo , Anexina A2/genética , Dextranos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Portadoras , Apolipoproteínas A/metabolismo
12.
Harefuah ; 163(3): 185-190, 2024 Mar.
Artículo en Hebreo | MEDLINE | ID: mdl-38506362

RESUMEN

INTRODUCTION: Lipoprotein(a) [Lp(a)] is composed of 2 major protein components, a low-density lipoprotein (LDL) cholesterol-like particle containing apolipoprotein B (apo B) that is covalently bound to apolipoprotein(a). Its level is predominantly genetically determined, and it is estimated that 20% to 25% of the population have Lp(a) levels that are associated with increased cardiovascular risk. Elevated Lp(a) is related to increased vascular inflammation, calcification, atherogenesis and thrombosis, and is considered an independent and potentially causal risk factor for atherosclerotic cardiovascular diseases and calcified aortic valve stenosis. Recent data demonstrate that Lp(a) testing has the potential to reclassify patients' risk and improve cardiovascular risk prediction, and therefore could inform clinical decision-making regarding risk management. Statins and ezetimibe are ineffective in lowering Lp(a) levels, whereas proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors have a modest effect on Lp(a) reduction. Nevertheless, RNA interference-based therapies with potent Lp(a)-lowering effects are in advanced stages of development, and clinical trials are underway to confirm their benefit in reducing cardiovascular events. This scientific consensus document was developed by a committee that consisted of representatives from the Israeli Society for the Research, Prevention and Treatment of Atherosclerosis, and the Israeli Society for Clinical Laboratory Sciences, in order to create uniformity in Lp(a) measurement methods, indications for testing and reporting of the results, aiming to improve the diagnosis and management of elevated Lp(a) in clinical practice.


Asunto(s)
Estenosis de la Válvula Aórtica , Válvula Aórtica/patología , Aterosclerosis , Calcinosis , Proproteína Convertasa 9 , Humanos , Israel , Ciencia del Laboratorio Clínico , Aterosclerosis/diagnóstico , Aterosclerosis/prevención & control , Lipoproteína(a)/metabolismo , Factores de Riesgo
13.
Pharmacol Res ; 194: 106843, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37406784

RESUMEN

Lipoprotein(a) [Lp(a)], a distinct lipoprotein class, has become a major focus for cardiovascular research. This review is written in light of the recent guideline and consensus statements on Lp(a) and focuses on 1) the causal association between Lp(a) and cardiovascular outcomes, 2) the potential mechanisms by which elevated Lp(a) contributes to cardiovascular diseases, 3) the metabolic insights on the production and clearance of Lp(a) and 4) the current and future therapeutic approaches to lower Lp(a) concentrations. The concentrations of Lp(a) are under strict genetic control. There exists a continuous relationship between the Lp(a) concentrations and risk for various endpoints of atherosclerotic cardiovascular disease (ASCVD). One in five people in the Caucasian population is considered to have increased Lp(a) concentrations; the prevalence of elevated Lp(a) is even higher in black populations. This makes Lp(a) a cardiovascular risk factor of major public health relevance. Besides the association between Lp(a) and myocardial infarction, the relationship with aortic valve stenosis has become a major focus of research during the last decade. Genetic studies provided strong support for a causal association between Lp(a) and cardiovascular outcomes: carriers of genetic variants associated with lifelong increased Lp(a) concentration are significantly more frequent in patients with ASCVD. This has triggered the development of drugs that can specifically lower Lp(a) concentrations: mRNA-targeting therapies such as anti-sense oligonucleotide (ASO) therapies and short interfering RNA (siRNA) therapies have opened new avenues to lower Lp(a) concentrations more than 95%. Ongoing Phase II and III clinical trials of these compounds are discussed in this review.


Asunto(s)
Estenosis de la Válvula Aórtica , Aterosclerosis , Enfermedades Cardiovasculares , Infarto del Miocardio , Humanos , Estenosis de la Válvula Aórtica/metabolismo , Aterosclerosis/etiología , Enfermedades Cardiovasculares/etiología , Lipoproteína(a)/metabolismo , Factores de Riesgo
14.
Arterioscler Thromb Vasc Biol ; 42(3): 289-304, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35045727

RESUMEN

BACKGROUND: Elevated plasma Lp(a) (lipoprotein(a)) levels are associated with increased risk for atherosclerotic cardiovascular disease and aortic valve stenosis. However, the cell biology of Lp(a) biosynthesis remains poorly understood, with the locations of the noncovalent and covalent steps of Lp(a) assembly unclear and the nature of the apoB-containing particle destined for Lp(a) unknown. We, therefore, asked if apo(a) and apoB interact noncovalently within hepatocytes and if this impacts Lp(a) biosynthesis. METHODS: Using human hepatocellular carcinoma cells expressing 17K (17 kringle) apo(a), or a 17KΔLBS7,8 variant with a reduced ability to bind noncovalently to apoB, we performed coimmunoprecipitation, coimmunofluorescence, and proximity ligation assays to document intracellular apo(a):apoB interactions. We used a pulse-chase metabolic labeling approach to measure apo(a) and apoB secretion rates. RESULTS: Noncovalent complexes containing apo(a)/apoB are present in lysates from cells expressing 17K but not 17KΔLBS7,8, whereas covalent apo(a)/apoB complexes are absent from lysates. 17K and apoB colocalized intracellularly, overlapping with staining for markers of endoplasmic reticulum trans-Golgi, and early endosomes, and less so with lysosomes. The 17KΔLBS7,8 had lower colocalization with apoB. Proximity ligation assays directly documented intracellular 17K/apoB interactions, which were dramatically reduced for 17KΔLBS7,8. Treatment of cells with PCSK9 (proprotein convertase subtilisin/kexin type 9) enhanced, and lomitapide reduced, apo(a) secretion in a manner dependent on the noncovalent interaction between apo(a) and apoB. Apo(a) secretion was also reduced by siRNA-mediated knockdown of APOB. CONCLUSIONS: Our findings explain the coupling of apo(a) and Lp(a)-apoB production observed in human metabolic studies using stable isotopes as well as the ability of agents that inhibit apoB biosynthesis to lower Lp(a) levels.


Asunto(s)
Apolipoproteína B-100/metabolismo , Apolipoproteínas A/metabolismo , Hepatocitos/metabolismo , Lipoproteína(a)/metabolismo , Apolipoproteína B-100/química , Apolipoproteínas A/química , Apolipoproteínas A/genética , Sitios de Unión/genética , Células Hep G2 , Humanos , Kringles/genética , Lipoproteína(a)/química , Lisina/química , Redes y Vías Metabólicas , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Unión Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
15.
Molecules ; 28(3)2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36770634

RESUMEN

Lipoprotein(a) (Lp(a)) is a low-density lipoprotein (LDL) cholesterol-like particle bound to apolipoprotein(a). Increased Lp(a) levels are an independent, heritable causal risk factor for atherosclerotic cardiovascular disease (ASCVD) as they are largely determined by variations in the Lp(a) gene (LPA) locus encoding apo(a). Lp(a) is the preferential lipoprotein carrier for oxidized phospholipids (OxPL), and its role adversely affects vascular inflammation, atherosclerotic lesions, endothelial function and thrombogenicity, which pathophysiologically leads to cardiovascular (CV) events. Despite this crucial role of Lp(a), its measurement lacks a globally unified method, and, between different laboratories, results need standardization. Standard antilipidemic therapies, such as statins, fibrates and ezetimibe, have a mediocre effect on Lp(a) levels, although it is not yet clear whether such treatments can affect CV events and prognosis. This narrative review aims to summarize knowledge regarding the mechanisms mediating the effect of Lp(a) on inflammation, atherosclerosis and thrombosis and discuss current diagnostic and therapeutic potentials.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Aterosclerosis/diagnóstico , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Factores de Riesgo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Inflamación/diagnóstico , Inflamación/tratamiento farmacológico , Inflamación/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico
16.
Curr Opin Lipidol ; 33(3): 185-192, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35695615

RESUMEN

PURPOSE OF REVIEW: This review summarizes our current understanding of the processes of apolipoprotein(a) secretion, assembly of the Lp(a) particle and removal of Lp(a) from the circulation. We also identify existing knowledge gaps that need to be addressed in future studies. RECENT FINDINGS: The Lp(a) particle is assembled in two steps: a noncovalent, lysine-dependent interaction of apo(a) with apoB-100 inside hepatocytes, followed by extracellular covalent association between these two molecules to form circulating apo(a).The production rate of Lp(a) is primarily responsible for the observed inverse correlation between apo(a) isoform size and Lp(a) levels, with a contribution of catabolism restricted to larger Lp(a) isoforms.Factors that affect apoB-100 secretion from hepatocytes also affect apo(a) secretion.The identification of key hepatic receptors involved in Lp(a) clearance in vivo remains unclear, with a role for the LDL receptor seemingly restricted to conditions wherein LDL concentrations are low, Lp(a) is highly elevated and LDL receptor number is maximally upregulated. SUMMARY: The key role for production rate of Lp(a) [including secretion and assembly of the Lp(a) particle] rather than its catabolic rate suggests that the most fruitful therapies for Lp(a) reduction should focus on approaches that inhibit production of the particle rather than its removal from circulation.


Asunto(s)
Apolipoproteínas A , Lipoproteína(a) , Apolipoproteína B-100 , Apolipoproteínas A/metabolismo , Apoproteína(a) , Humanos , Lipoproteína(a)/metabolismo , Receptores de LDL
17.
J Lipid Res ; 63(6): 100216, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35469919

RESUMEN

Elevated plasma lipoprotein(a) (Lp(a)) is an independent, causal risk factor for atherosclerotic cardiovascular disease and calcific aortic valve stenosis. Lp(a) is formed in or on hepatocytes from successive noncovalent and covalent interactions between apo(a) and apoB, although the subcellular location of these interactions and the nature of the apoB-containing particle involved remain unclear. Sortilin, encoded by the SORT1 gene, modulates apoB secretion and LDL clearance. We used a HepG2 cell model to study the secretion kinetics of apo(a) and apoB. Overexpression of sortilin increased apo(a) secretion, while siRNA-mediated knockdown of sortilin expression correspondingly decreased apo(a) secretion. Sortilin binds LDL but not apo(a) or Lp(a), indicating that its effect on apo(a) secretion is likely indirect. Indeed, the effect was dependent on the ability of apo(a) to interact noncovalently with apoB. Overexpression of sortilin enhanced internalization of Lp(a), but not apo(a), by HepG2 cells, although neither sortilin knockdown in these cells or Sort1 deficiency in mice impacted Lp(a) uptake. We found several missense mutations in SORT1 in patients with extremely high Lp(a) levels; sortilin containing some of these mutations was more effective at promoting apo(a) secretion than WT sortilin, though no differences were found with respect to Lp(a) internalization. Our observations suggest that sortilin could play a role in determining plasma Lp(a) levels and corroborate in vivo human kinetic studies which imply that secretion of apo(a) and apoB are coupled, likely within the hepatocyte.


Asunto(s)
Proteínas Adaptadoras del Transporte Vesicular , Apolipoproteínas B , Hiperlipidemias , Lipoproteína(a) , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Animales , Apolipoproteínas A/metabolismo , Apolipoproteínas B/metabolismo , Apoproteína(a) , Células Hep G2 , Humanos , Cinética , Lipoproteína(a)/metabolismo , Ratones
18.
Eur J Clin Invest ; 52(4): e13710, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34837383

RESUMEN

Over the past few years, there has been an undiminished interest in lipoprotein(a) [Lp(a)] and oxidized phospholipids (OxPLs), mainly carried on this lipoprotein. Elevated Lp(a) has been established as an independent causal risk factor for cardiovascular disease. OxPLs play an important role in atherosclerosis. The main questions that remain to be answered, however, is to what extent OxPLs contribute to the atherogenicity of Lp(a), what effect hypolipidaemic medications may have on their levels and the potential clinical benefit of their reduction. This narrative review aimed to summarize currently available data on OxPLs and cardiovascular risk, as well as the effect of established and emerging hypolipidaemic medications on Lp(a)-OxPLs.


Asunto(s)
Factores de Riesgo de Enfermedad Cardiaca , Lipoproteína(a)/metabolismo , Fosfolípidos/metabolismo , Humanos , Oxidación-Reducción
19.
Curr Opin Cardiol ; 37(4): 364-371, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35731681

RESUMEN

PURPOSE OF REVIEW: Atherosclerosis, characterized by lipid accumulation and chronic inflammation in the arterial wall, is the leading causes of death worldwide. The purpose of this article is to review the status of RNA interference (RNAi) based therapies in clinical trials for the treatment and prevention of atherosclerosis risk factors. RECENT FINDINGS: There is a growing interest on using RNAi technology for the control of atherosclerosis risk factors. Current clinical trials utilizing RNAi for atherosclerosis are targeting lipid metabolism regulating genes including proprotein convertase subtilisin/kexin 9, apolipoprotein C-III, lipoprotein (a) and angiopoietin-like protein 3. Currently, three RNAi-based drugs have been approved by U.S. Food and Drug Administration, but there are several therapies in clinical trials at the moment, and potentially entering the market in near future. In addition, recent preclinical studies on regulating vascular inflammation have shown promising results. SUMMARY: In recent years, RNAi based technologies and therapies have been intensively developed for the treatment of atherosclerosis risk factors, such as hyperlipidemia and vascular inflammation. Multiple potential therapeutic targets have emerged, and many of the reported clinical trials have already been successful in plasma lipid lowering. The scope of RNAi therapies is well recognized and recent approvals are encouraging for the treatment of cardiovascular and metabolic disorders.


Asunto(s)
Aterosclerosis , Tratamiento con ARN de Interferencia , Aterosclerosis/genética , Aterosclerosis/prevención & control , Humanos , Inflamación/genética , Lipoproteína(a)/metabolismo , Proproteína Convertasa 9/metabolismo , Interferencia de ARN , Factores de Riesgo
20.
Curr Atheroscler Rep ; 24(6): 399-405, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35355214

RESUMEN

PURPOSE OF REVIEW: Lipoprotein (a) [Lp(a)] is a highly atherogenic lipoprotein species. A unique feature of Lp(a) is the strong genetic determination of its concentration. The LPA gene is responsible for up to 90% of the variance in Lp(a), but other genes also have an impact. RECENT FINDINGS: Genome-wide associations studies indicate that the APOE gene, encoding apolipoprotein E (apoE), is the second most important locus modulating Lp(a) concentrations. Population studies clearly show that carriers of the apoE2 variant (ε2) display reduced Lp(a) levels, the lowest concentrations being observed in ε2/ε2 homozygotes. This genotype can lead predisposed adults to develop dysbetalipoproteinemia, a lipid disorder characterized by sharp elevations in cholesterol and triglycerides. However, dysbetalipoproteinemia does not significantly modulate circulating Lp(a). Mechanistically, apoE appears to impair the production but not the catabolism of Lp(a). These observations underline the complexity of Lp(a) metabolism and provide key insights into the pathways governing Lp(a) synthesis and secretion.


Asunto(s)
Hiperlipoproteinemia Tipo III , Lipoproteína(a) , Adulto , Apolipoproteínas E/genética , Genotipo , Humanos , Hiperlipoproteinemia Tipo III/genética , Lipoproteína(a)/genética , Lipoproteína(a)/metabolismo , Isoformas de Proteínas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA