Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.134
Filtrar
Más filtros

Intervalo de año de publicación
1.
Methods ; 223: 45-55, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38272245

RESUMEN

A fluorescent dansyl-based amphiphilic probe, 5-(dimethylamino)-N-hexadecylnaphthalene-1-sulfonamide (DLC), was synthesized and characterized to detect multiple analytes at different sensing environments. In acetonitrile, DLC detects nitro explosives such as trinitrophenol (TNP) and 2,4-dinitrophenol (2,4-DNP) by an emission "on-off" response method, and the detection limits (LOD) were estimated to be as low as 4.3 µM and 17.4 µM, respectively. Amphiphilic long chains of the probe were embedded into lipid bilayers to form nanoscale vesicles DLC.Ves. Nanovesicular probe DLC.Ves was found to be highly selective for Hg2+ among other metal ions and for pyrophosphate (PPi) ions among various anions. DLC.Ves could detect Hg2+ with a turn "on-off" emission and PPi with ratiometric change in emission at 525 nm. It is proposed that DLC.Ves could detect Hg2+ via the Hg2+-induced aggregation quenching mechanism and PPi through the Hydrogen bonding. The LODs are estimated as 6.41 µM and 70.9 µM for Hg2+ and PPi, respectively. 1H NMR, SEM, and fluorescence lifetime measurements confirmed the binding mechanism. Thus, it is believed that the simple fluorescent probe DLC could be a prominent sensor to detect multiple analytes depending on the sensing medium.


Asunto(s)
Mercurio , Iones , Picratos , Mercurio/química , Fluorescencia , Colorantes Fluorescentes/química
2.
Nature ; 569(7756): 438-442, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31068697

RESUMEN

Symmetrical protein cages have evolved to fulfil diverse roles in nature, including compartmentalization and cargo delivery1, and have inspired synthetic biologists to create novel protein assemblies via the precise manipulation of protein-protein interfaces. Despite the impressive array of protein cages produced in the laboratory, the design of inducible assemblies remains challenging2,3. Here we demonstrate an ultra-stable artificial protein cage, the assembly and disassembly of which can be controlled by metal coordination at the protein-protein interfaces. The addition of a gold (I)-triphenylphosphine compound to a cysteine-substituted, 11-mer protein ring triggers supramolecular self-assembly, which generates monodisperse cage structures with masses greater than 2 MDa. The geometry of these structures is based on the Archimedean snub cube and is, to our knowledge, unprecedented. Cryo-electron microscopy confirms that the assemblies are held together by 120 S-Aui-S staples between the protein oligomers, and exist in two chiral forms. The cage shows extreme chemical and thermal stability, yet it readily disassembles upon exposure to reducing agents. As well as gold, mercury(II) is also found to enable formation of the protein cage. This work establishes an approach for linking protein components into robust, higher-order structures, and expands the design space available for supramolecular assemblies to include previously unexplored geometries.


Asunto(s)
Oro/química , Proteínas/química , Microscopía por Crioelectrón , Cisteína/química , Mercurio/química , Modelos Moleculares , Proteínas/ultraestructura
3.
Photochem Photobiol Sci ; 23(5): 997-1010, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693447

RESUMEN

Firefly luciferases emit yellow-green light and are pH-sensitive, changing the bioluminescence color to red in the presence of heavy metals, acidic pH and high temperatures. These pH and metal-sensitivities have been recently harnessed for intracellular pH indication and toxic metal biosensing. However, whereas the structure of the pH sensor and the metal binding site, which consists mainly of two salt bridges that close the active site (E311/R337 and H310/E354), has been identified, the specific role of residue H310 in pH and metal sensing is still under debate. The Amydetes vivianii firefly luciferase has one of the lowest pH sensitivities among the group of pH-sensitive firefly luciferases, displaying high bioluminescent activity and special spectral selectivity for cadmium and mercury, which makes it a promising analytical reagent. Using site-directed mutagenesis, we have investigated in detail the role of residue H310 on pH and metal sensitivity in this luciferase. Negatively charged residues at position 310 increase the pH sensitivity and metal sensitivity; H310G considerably increases the size of the cavity, severely impacting the activity, H310R closes the cavity, and H310F considerably decreases both pH and metal sensitivities. However, no substitution completely abolished pH and metal sensitivities. The results indicate that the presence of negatively charged and basic side chains at position 310 is important for pH sensitivity and metals coordination, but not essential, indicating that the remaining side chains of E311 and E354 may still coordinate some metals in this site. Furthermore, a metal binding site search predicted that H310 mutations decrease the affinity mainly for Zn, Ni and Hg but less for Cd, and revealed the possible existence of additional binding sites for Zn, Ni and Hg.


Asunto(s)
Luciérnagas , Histidina , Luciferasas de Luciérnaga , Mutagénesis Sitio-Dirigida , Concentración de Iones de Hidrógeno , Animales , Luciferasas de Luciérnaga/metabolismo , Luciferasas de Luciérnaga/química , Luciferasas de Luciérnaga/genética , Luciérnagas/enzimología , Histidina/química , Histidina/metabolismo , Color , Metales Pesados/química , Metales Pesados/metabolismo , Mercurio/química , Mercurio/metabolismo , Cadmio/química , Cadmio/metabolismo
4.
Analyst ; 149(3): 824-835, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38131268

RESUMEN

Exploring highly active nanozymes is an important task to realize the real-time detection of some heavy metal ions in water. In this work, yolk-shell Co3S4 microspheres have been verified to possess excellent peroxidase-like activity, which can be further improved by adding Hg2+. Very interestingly, Hg2+ can trigger "ON" the oxidase-like activity of Co3S4 microspheres. The dual peroxidase-/oxidase-like activity of the yolk-shell Co3S4 microspheres is evaluated by using the chromogenic substrate 3,3',5,5'-tetramethylbenzidine (TMB). Furthermore, comprehensive studies verify that the enhanced peroxidase-like activity, together with the "ON" oxidase-like activity of the yolk-shell Co3S4 microspheres, is attributed to the in situ generation of HgS on the surface of Co3S4 microspheres and then the release of more active sites. Importantly, the in situ generated HgS on the surface of Co3S4 microspheres can form a heterojunction, which also accelerates the catalytic process. During the catalytic reaction, some active species (O2- and h+) can be detected by ESR. Thus, a colorimetric sensing platform based on Hg2+-triggered signal amplification has been successfully constructed, which can be validated by the detection of Hg2+ residue in environmental water.


Asunto(s)
Mercurio , Oxidorreductasas , Microesferas , Mercurio/química , Peroxidasas , Agua , Colorimetría , Peróxido de Hidrógeno/química
5.
Environ Sci Technol ; 58(1): 660-670, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38110333

RESUMEN

To effectively remove high concentrations of mercury in a high sulfur atmosphere of nonferrous smelting flue gas, a novel two-dimensional CuS-MOF (CuS-BDC-2D) material is synthesized by anchoring S to Cu sites in the Cu-BDC MOF. The highly dispersed CuS active sites and MOF framework structural properties in CuS-BDC-2D enable efficiently collaborate in capturing mercury. CuS-BDC-2D exhibits a layered floral structure with high specific surface area and thermal stability, with poor crystallinity. Compared to CuS and the three-dimensional CuS-MOF (CuS-BDC-3D) structure, CuS-BDC-2D demonstrates significantly higher mercury capture capacity due to the high exposure of active sites and defects sites in the two-dimensional material. Moreover, CuS-BDC-2D exhibits excellent resistance to sulfur, maintaining its high efficiency in removing Hg0 even at high levels of sulfur dioxide (SO2), such as 5000-20,000 ppm. The superior performance of CuS-BDC-2D makes it suitable for controlling mercury emissions in actual nonferrous smelting flue gas. This discovery also paves the way for the development of new mercury adsorbents, which can guide future advancements in this field.


Asunto(s)
Mercurio , Mercurio/química , Adsorción , Metales , Dióxido de Azufre , Azufre
6.
Environ Res ; 252(Pt 3): 118983, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38692421

RESUMEN

Environmental monitoring of mercury (Hg2+) ions has become increasingly important as a result of their detrimental effects on biological organisms at all levels. To recognize toxic metal ions, utmost effort has been devoted to developing new materials that are highly selective, ultra-sensitive, and provide rapid response. In this context, a new chemosensor, 2-imino [N - (N-amido phenyl)]-6-methoxy-3-carbethoxy quinoline (L), has been synthesized by combining 2-formyl-6-methoxy-3-carbethoxy quinoline and benzhydrazide and it has been extensively characterized by NMR, FTIR, ESI-Mass and SCXRD analysis. Probe L has excellent specificity and sensitivity toward Hg2+ ions in semi-aqueous solutions, with a detection limit of 0.185 µM, regardless of the presence of other interfering cations. Chromogenic behavior was demonstrated by the L when it changed the color of the solution from colorless to light yellow, a change that can be observed visually. The probe L forms a 1:1 stochiometric complex with an estimated association constant (Ka) of 6.74 × 104 M-1. The 1H NMR change and density functional theory calculations were analyzed to improve our understanding of the sensing mechanism. Also, an inexpensive and simple paper-based test kit has been developed for the on-site detection of mercury ions in water samples.


Asunto(s)
Mercurio , Quinolinas , Bases de Schiff , Mercurio/análisis , Mercurio/química , Bases de Schiff/química , Quinolinas/química , Quinolinas/análisis , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Monitoreo del Ambiente/métodos
7.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-34580231

RESUMEN

The Late Triassic Carnian Pluvial Episode (CPE) saw a dramatic increase in global humidity and temperature that has been linked to the large-scale volcanism of the Wrangellia large igneous province. The climatic changes coincide with a major biological turnover on land that included the ascent of the dinosaurs and the origin of modern conifers. However, linking the disparate cause and effects of the CPE has yet to be achieved because of the lack of a detailed terrestrial record of these events. Here, we present a multidisciplinary record of volcanism and environmental change from an expanded Carnian lake succession of the Jiyuan Basin, North China. New U-Pb zircon dating, high-resolution chemostratigraphy, and palynological and sedimentological data reveal that terrestrial conditions in the region were in remarkable lockstep with the large-scale volcanism. Using the sedimentary mercury record as a proxy for eruptions reveals four discrete episodes during the CPE interval (ca. 234.0 to 232.4 Ma). Each eruptive phase correlated with large, negative C isotope excursions and major climatic changes to more humid conditions (marked by increased importance of hygrophytic plants), lake expansion, and eutrophication. Our results show that large igneous province eruptions can occur in multiple, discrete pulses, rather than showing a simple acme-and-decline history, and demonstrate their powerful ability to alter the global C cycle, cause climate change, and drive macroevolution, at least in the Triassic.


Asunto(s)
Ecosistema , Animales , China , Cambio Climático , Dinosaurios/fisiología , Extinción Biológica , Sedimentos Geológicos/química , Humedad , Isótopos/química , Mercurio/química , Silicatos/química , Temperatura , Erupciones Volcánicas , Circonio/química
8.
Mikrochim Acta ; 191(4): 189, 2024 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-38457045

RESUMEN

The importance of understanding the mercury (II) ion interactions with thymine-rich DNA sequences is the reason for multiple comparative investigations carried out with the use of optical detection techniques directly in the depth of solution. However, the results of such investigations have limited applicability in the interpretation of the Hg2+ binding phenomenon by DNA sequences in thin, interfacial (electrode/solution), self-organized monolayers immobilized on polarizable surfaces, often used for sensing purposes in electrochemical biosensors. Overlooking the careful optimization of the measurement conditions is the source of discrepancies in the interpretation of the registered electrochemical signal. In this study, the chosen effects accompanying the efficiency of surface related recognition of Hg2+ by polyThymine DNA sequences labelled with methylene blue were investigated by voltammetry, QCM and spectro-electrochemical techniques. As was shown, the composition of the biosensing layer and buffers or the analytical procedures have a significant impact on the registered electrochemical readout which translates into signal stability, the biosensor's working parameters or even the mechanism of detection. After elucidation of the above factors, the complete and ready-to-use biosensor-based analytical solution was proposed offering subpicomolar mercury ion determination with high selectivity (also in aqueous real samples), reusability, and high signal stability even after long-term storage. The developed procedures were successfully used during the miniaturization process with self-prepared (PVD) elastic transducers. The obtained sensor, together with the simplicity of its use, low manufacturing cost, and attractive analytical parameters (i.e., LOD < < Hg2+ WHO limit) can present an interesting alternative for on-site mercury ion detection in environmental samples.


Asunto(s)
Técnicas Biosensibles , Mercurio , Mercurio/química , Oro/química , Agua/química , Azul de Metileno/química , Técnicas Biosensibles/métodos
9.
Mikrochim Acta ; 191(6): 352, 2024 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-38806756

RESUMEN

Developing convenient and reliable methods for Hg2+ monitoring is highly important. Some precious metal nanomaterials with intriguing peroxidase-like activity have been used for highly sensitive Hg2+ detection. However, H2O2 must be added during these detections, which impedes practical applications of Hg2+ sensors due to its susceptible decomposition by environmental factors. Herein, we discovered that the combination of Hg2+ and palladium metal-organic framework@graphene (Pd-MOF@GNs) exhibits oxidase-like activity (OXD). In the absence of H2O2, this activity not only catalyzes the oxidation of chromogenic substrates such as 3,3',5,5'-tetramethylbenzidine (TMB) or o-phenylenediamine (OPD) to produce a color change but also enhances the electrical signals during OPD oxidation. Based on these properties, an effective and convenient dual-mode colorimetric and electrochemical sensor for Hg2+ has been developed. The colorimetric and amperometric linear relationships for Hg2+ were 0.045 µM-0.25 mM and 0.020 µM-2.0 mM, respectively. The proposed strategy shows good recovery in real sample tests, indicating promising prospects for multiple environmental sample detection of Hg2+ without relying on H2O2. The colorimetric and electrochemical dual-mode Hg2+ sensor is expected to hold great potentials in applications such as environmental monitoring, rapid field detection, and integration into smartphone detection of Hg2+.


Asunto(s)
Colorimetría , Técnicas Electroquímicas , Grafito , Límite de Detección , Mercurio , Estructuras Metalorgánicas , Paladio , Grafito/química , Colorimetría/métodos , Mercurio/análisis , Mercurio/química , Estructuras Metalorgánicas/química , Paladio/química , Técnicas Electroquímicas/métodos , Bencidinas/química , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/análisis , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Fenilendiaminas/química
10.
J Environ Manage ; 352: 120024, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38215594

RESUMEN

Despite the recognised risks of human exposure to mercury (Hg), the drivers of gaseous elemental mercury (GEM) emissions from the soil remain understudied. In this study, we aimed to identify the environmental parameters that affect the GEM flux from soil and derive the correlations between environmental parameters and GEM flux. Principal component analysis (PCA), factor analysis (FA), and structural equation modelling (SEM) were performed on samples from forest and non-forest sites. The associated results revealed the impact of each environmental parameter on GEM flux, either due to the interaction between the parameters or as a coherent set of parameters. An introductory correlation matrix examining the relationship between two components showed a negative correlation between GEM flux and atmospheric pressure at the two sites, as well as strong correlations between atmospheric pressure and soil temperature. In cases of non-forest open sites with no trees, the PCA and FA results were consistent, indicating that atmospheric pressure, solar irradiance, and soil moisture-defined as primary causality-are largely independent drivers of GEM flux. In contrast, the PCA and FA results for the forest areas with high humidity, tree coverage, and shade were inconsistent, confirming the hypothesis that primary causality affects GEM flux rather than consequent parameters driven by primary causality, such as air and soil temperature and atmospheric humidity. The SEM results provided further evidence for primary and consequent causality as crucial drivers of the GEM flux. This study demonstrates the importance of key primary parameters, such as atmospheric pressure, solar irradiance, and soil moisture content, that can be used to predict mercury release from soils, as well as the importance of consequent parameters, such as air and soil temperature and atmospheric humidity. Monitoring the magnitude of these environmental parameters alone may facilitate the estimation of mercury release from soils and be useful for detailed modelling of soil-air Hg exchange.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes del Suelo , Humanos , Mercurio/química , Suelo , Contaminantes del Suelo/química , Monitoreo del Ambiente , Temperatura , Contaminantes Atmosféricos/análisis
11.
Molecules ; 29(10)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38792066

RESUMEN

The objective of this study is to develop a remediation technology for composited heavy metal-contaminated soil. Biochars (BC300, BC400, and BC500) derived from corn were combined with potassium dihydrogen phosphate (KH2PO4) to immobilize and remove heavy metal ions, including mercury (Hg2+), cadmium (Cd2+), and lead (Pb2+). The adsorption kinetics of metal ions in aqueous solutions with different concentrations was tested, and the fitting effects of the two models were compared. The findings demonstrate that the joint application of biochar and KH2PO4 could markedly enhance the immobilization efficacy of Pb2+, whereas the utilization of KH2PO4 on its own exhibited a more pronounced immobilization impact on Cd2+. Furthermore, the present study underscores the shortcomings of various remediation techniques that must be taken into account when addressing heavy metal-contaminated soils. It also emphasizes the value of comprehensive remediation techniques that integrate multiple remediation agents. This study offers a novel approach and methodology for addressing the intricate and evolving challenges posed by heavy metal contamination in soil. Its practical value and potential for application are significant.


Asunto(s)
Cadmio , Carbón Orgánico , Plomo , Mercurio , Fosfatos , Compuestos de Potasio , Contaminantes del Suelo , Carbón Orgánico/química , Contaminantes del Suelo/química , Cadmio/química , Plomo/química , Adsorción , Mercurio/química , Fosfatos/química , Compuestos de Potasio/química , Restauración y Remediación Ambiental/métodos , Medición de Riesgo , Suelo/química , Metales Pesados/química , Cinética
12.
Environ Geochem Health ; 46(1): 28, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38225446

RESUMEN

Mercury is the heavy metal that is most difficult to remove from cyanide solution. This situation brings with it many environmental, health and economic problems. This study aims to effectively utilize xanthate by presenting a new strategy for purifying mercury in the cyanidation process of amalgamation residues. In the study, the removal of mercury by precipitation using PAX from cyanidation leach solutions of a well-characterized amalgamation residue was investigated. The dosage of the precipitation reagent is the most important parameter in the removal of mercury. The mercury removal efficiency increases with the increase in the PAX/Hg ratio, and when the removal ratio is 60, the precipitation efficiency reaches a value of 66.7%. Applying coagulation and flocculation procedures after the precipitation process increases the mercury removal efficiency. It is seen that with this application, mercury can be removed with an efficiency of 95.6% at the same reagent rate. With this application, the particle sizes of the precipitates are enlarged and their filtration properties are improved. It has also been determined that the precipitates formed are in the form of HgS, a stable mercury compound. These results indicate that mercury can be effectively removed in its steady state. It was found that the concentration of Au and Cu did not change significantly, while the concentration of Ag decreased during the precipitation processes.


Asunto(s)
Mercurio , Metales Pesados , Purificación del Agua , Mercurio/química , Potasio , Purificación del Agua/métodos
13.
J Am Chem Soc ; 145(32): 17945-17953, 2023 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-37530628

RESUMEN

Metal-mediated DNA (mmDNA) presents a pathway toward engineering bioinorganic and electronic behavior into DNA devices. Many chemical and biophysical forces drive the programmable chelation of metals between pyrimidine base pairs. Here, we developed a crystallographic method using the three-dimensional (3D) DNA tensegrity triangle motif to capture single- and multi-metal binding modes across granular changes to environmental pH using anomalous scattering. Leveraging this programmable crystal, we determined 28 biomolecular structures to capture mmDNA reactions. We found that silver(I) binds with increasing occupancy in T-T and U-U pairs at elevated pH levels, and we exploited this to capture silver(I) and mercury(II) within the same base pair and to isolate the titration points for homo- and heterometal base pair modes. We additionally determined the structure of a C-C pair with both silver(I) and mercury(II). Finally, we extend our paradigm to capture cadmium(II) in T-T pairs together with mercury(II) at high pH. The precision self-assembly of heterobimetallic DNA chemistry at the sub-nanometer scale will enable atomistic design frameworks for more elaborate mmDNA-based nanodevices and nanotechnologies.


Asunto(s)
Mercurio , Plata , Emparejamiento Base , Plata/química , ADN/química , Mercurio/química
14.
Chemistry ; 29(21): e202203815, 2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-36701527

RESUMEN

Mercury-197 m/g are a promising pair of radioactive isomers for incorporation into a theranostic as they can be used as a diagnostic agent using SPECT imaging and a therapeutic via Meitner-Auger electron emissions. However, the current absence of ligands able to stably coordinate 197m/g Hg to a tumour-targeting vector precludes their use in vivo. To address this, we report herein a series of sulfur-rich chelators capable of incorporating 197m/g Hg into a radiopharmaceutical. 1,4,7,10-Tetrathia-13-azacyclopentadecane (NS4 ) and its derivatives, (2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetic acid (NS4 -CA) and N-benzyl-2-(1,4,7,10-tetrathia-13-azacyclopentadecan-13-yl)acetamide (NS4 -BA), were designed, synthesized and analyzed for their ability to coordinate Hg2+ through a combination of theoretical (DFT) and experimental coordination chemistry studies (NMR and mass spectrometry) as well as 197m/g Hg radiolabeling studies and in vitro stability assays. The development of stable ligands for 197m/g Hg reported herein is extremely impactful as it would enable their use for in vivo imaging and therapy, leading to personalized treatments for cancer.


Asunto(s)
Mercurio , Radiofármacos , Radiofármacos/química , Medicina de Precisión , Ligandos , Quelantes/química , Mercurio/química , Azufre
15.
Environ Sci Technol ; 57(11): 4632-4642, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36912193

RESUMEN

CuX/TiO2 adsorbents with CuO as the active component were prepared via a simple impregnation method for efficient purification of phosphine (PH3) under the conditions of low temperatures (90 °C) and low oxygen concentration (1%). The PH3 breakthrough capacity of optimal adsorbent (Cu30/TiO2) is 136.2 mg(PH3)·gsorbent-1, and the excellent dephosphorization performance is mainly attributed to its abundant sur face-active oxygen and alkaline sites, large specific surface area, and strong interaction between CuO and the support TiO2. Surprisingly, CuO is converted to Cu3P after the dephosphorization by CuX/TiO2. Since Cu3P is a P-type semiconductor with high added value, the deactivated adsorbent (Cu3P/TiO2) is an efficient heterostructure photocatalyst for photocatalytic removal of Hg0 (gas) with the Hg0 removal performance of 92.64% under visible light. This study provides a feasible strategy for the efficient removal and resource conversion of PH3 under low-temperature conditions and the alleviation of the environmental risk of secondary pollution.


Asunto(s)
Cobre , Mercurio , Catálisis , Mercurio/química
16.
Environ Sci Technol ; 57(48): 20431-20439, 2023 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-37992298

RESUMEN

The interaction between mercury (Hg) and inorganic compounds, including selenium (Se), sulfur (S), and halogens (X = Cl, Br, or I), plays a critical role in the global mercury cycle. However, most previously reported mercury compounds are susceptible to reduction, leading to the release of elemental mercury (Hg0) and causing secondary pollution. In this study, we unveil a groundbreaking discovery that underscores the vital role of halogenation in creating exceptionally stable Hg3Se2X2 compounds. Through the dynamic interplay of Hg, Se, and halogens, an intermediary stage denoted [HgSe]m[HgX2]n emerges, and this transformative process significantly elevates the stabilization of mercury. Remarkably, halogen ions strategically occupy pores at the periphery of HgSe clusters, engendering a more densely packed atomic arrangement of Hg, Se, and halogen components. A marked enhancement in both thermal and acid stability is observed, wherein temperatures ascend from 130 to 300 °C (transitioning from HgSe to Hg3Se2Cl2). This sequence of escalating stability follows the order HgSe < Hg3Se2I2 < Hg3Se2Br2 < Hg3Se2Cl2 for thermal resilience, complemented by virtually absent acid leaching. This innovative compound formation fundamentally alters the transformation pathways of gaseous Hg0 and ionic mercury (Hg2+), resulting in highly efficient in situ removal of both Hg0 and Hg2+ ions. These findings pave the way for groundbreaking advancements in mercury stabilization and environmental remediation strategies, offering a comprehensive solution through the creation of chemically stable precipitates.


Asunto(s)
Compuestos de Mercurio , Mercurio , Selenio , Mercurio/química , Halogenación , Halógenos , Iones , Compuestos de Mercurio/química
17.
Sensors (Basel) ; 23(2)2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36679600

RESUMEN

The present study aimed to develop and characterize new heavy metal sensors functionalized by extracellular polymeric substances (EPSs) isolated from a Tunisian thermophilic microalga strain Graesiella sp. The elaborated sensor showed a highly homogeneous character and revealed a microstructural lamellar arrangement, high crystalline nature, and several functional groups. Electrochemical impedance spectroscopy (EIS) and acoustic wave sensing were used as sensing techniques to explore the ability of microalgae-EPS-functionalized sensors to detect cadmium and mercury as heavy metals. For impedimetric measurements, a two-dipole circuit was adopted and showed good-fitted results with a low total error. The acoustic sensor platforms showed good compatibility with EPS in adjacent water. For both EPS-functionalized sensors, metal ions (Cd2+, Hg2+) were successfully detected in the concentration range from 10-10 M to 10-4 M. Impedimetric sensor was more sensitive to Cd2+ at low concentrations before saturation at 10-7 M, while the acoustic sensor exhibited more sensitivity to Hg2+ over the full range. The results highlight a new potential alternative to use microalgae EPSs as a sensitive coating material for the detection of heavy metals. However, its use in a real liquid medium requires further investigation of its selectivity in the presence of other compounds.


Asunto(s)
Mercurio , Metales Pesados , Microalgas , Cadmio/química , Matriz Extracelular de Sustancias Poliméricas , Mercurio/química
18.
Int J Mol Sci ; 24(14)2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37511078

RESUMEN

This study presents the synthesis of zeolites derived from coal fly ash (CFA) using the fusion-assisted alkaline hydrothermal method. The zeolites were synthesized by combining CFA and NaOH at a molar ratio of 1:1.2 under fusion temperatures of 500, 600, and 700 °C. Subsequently, the obtained zeolites were subjected to further modifications through the incorporation of magnetic (Fe3O4) and silver (Ag0) nanoparticles (NPs). The Fe3O4 NPs were introduced through co-precipitation of Fe(NO3)2 and FeCl3 at a molar ratio of 1:1, followed by thermal curing at 120 °C. On the other hand, the Ag0 NPs were incorporated via ion exchange of Na+ with Ag+ and subsequent reduction using NaBH4. The synthesized porous materials exhibited the formation of zeolites, specifically analcime and sodalite, as confirmed by X-ray diffraction (XRD) analysis. Additionally, the presence of Fe3O4 and Ag0 NPs was also confirmed by XRD analysis. The elemental composition analysis of the synthesized nanocomposites further validated the successful formation of Fe3O4 and Ag0 NPs. Nitrogen porosimetric analysis revealed the formation of a microporous structure, with the BET surface area of the zeolites and nanocomposites ranging from 48.6 to 128.7 m2/g and pore sizes ranging from 0.6 to 4.8 nm. The porosimetric characteristics of the zeolites exhibited noticeable changes after the modification process, which can be attributed to the impregnation of Fe3O4 and Ag0 NPs. The findings of this research demonstrate the effectiveness of the fusion-assisted method in producing synthetic zeolites and nanocomposites derived from CFA. The resulting composites were evaluated for their potential application in the removal of mercury ions from aqueous solutions. Among the samples tested, the composite containing Ag0 NPs exhibited the highest adsorption capacity, reaching 107.4 mg of Hg2+ per gram of composite. The composites modified with Fe3O4 NPs and Ag/Fe3O4 nanocomposites displayed adsorption capacities of 68.4 mg/g and 71.4 mg/g, respectively.


Asunto(s)
Mercurio , Nanocompuestos , Zeolitas , Zeolitas/química , Adsorción , Mercurio/química , Ceniza del Carbón/química , Nanocompuestos/química
19.
Int J Mol Sci ; 24(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37373219

RESUMEN

In the present work, superparamagnetic adsorbents based on 3-aminopropyltrimethoxy silane (APTMS)-coated maghemite (γFe2O3@SiO2-NH2) and cobalt ferrite (CoFe2O4@SiO2-NH2) nanoparticles were prepared and characterized using transmission-electron microscopy (TEM/HRTEM/EDXS), Fourier-transform infrared spectroscopy (FTIR), specific surface-area measurements (BET), zeta potential (ζ) measurements, thermogravimetric analysis (TGA), and magnetometry (VSM). The adsorption of Dy3+, Tb3+, and Hg2+ ions onto adsorbent surfaces in model salt solutions was tested. The adsorption was evaluated in terms of adsorption efficiency (%), adsorption capacity (mg/g), and desorption efficiency (%) based on the results of inductively coupled plasma optical emission spectrometry (ICP-OES). Both adsorbents, γFe2O3@SiO2-NH2 and CoFe2O4@SiO2-NH2, showed high adsorption efficiency toward Dy3+, Tb3+, and Hg2+ ions, ranging from 83% to 98%, while the adsorption capacity reached the following values of Dy3+, Tb3+, and Hg2+, in descending order: Tb (4.7 mg/g) > Dy (4.0 mg/g) > Hg (2.1 mg/g) for γFe2O3@SiO2-NH2; and Tb (6.2 mg/g) > Dy (4.7 mg/g) > Hg (1.2 mg/g) for CoFe2O4@SiO2-NH2. The results of the desorption with 100% of the desorbed Dy3+, Tb3+, and Hg2+ ions in an acidic medium indicated the reusability of both adsorbents. A cytotoxicity assessment of the adsorbents on human-skeletal-muscle derived cells (SKMDCs), human fibroblasts, murine macrophage cells (RAW264.7), and human-umbilical-vein endothelial cells (HUVECs) was conducted. The survival, mortality, and hatching percentages of zebrafish embryos were monitored. All the nanoparticles showed no toxicity in the zebrafish embryos until 96 hpf, even at a high concentration of 500 mg/L.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Humanos , Animales , Ratones , Pez Cebra , Dióxido de Silicio/química , Células Endoteliales , Mercurio/química , Iones , Nanopartículas Magnéticas de Óxido de Hierro , Adsorción , Cinética , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química
20.
J Environ Manage ; 326(Pt B): 116790, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36399809

RESUMEN

Biochar that is directly obtained by pyrolysis exhibits a low adsorption efficiency; furthermore, the process of recycling adsorbents is ineffective. To solve these problems, conventional chemical coprecipitation, sol-gel, multimetal multilayer loading and biomass pyrolysis coking processes have been integrated. After selecting specific components for structural design, a novel high-performance biochar adsorbent was obtained. The effects of the O2 concentration and temperature on the regeneration characteristics were explored. An isothermal regeneration method to repair the deactivated adsorbent in a specific atmosphere was proposed, and the optimal regeneration mode and conditions were determined. The microscopic characteristics of the regenerated samples were revealed along with the mechanism of Hg0 removal and regeneration by using temperature-programmed desorption technology and adsorption kinetics. The results show that doping multiple metals can reduce the pyrolysis reaction barrier of the modified biomass. On the modified surface of the sample, the doped metals formed aggregated oxides, and the resulting synergistic effect enhanced the oxidative activity of the biochar carriers and the threshold effect of Ce oxide. The optimal regeneration conditions (5% O2 and 600 °C) effectively coordinated the competitive relationship between the deep carbonization process and the adsorption/oxidation site repair process; in addition, these conditions provided outstanding structure-effect connections between the physico-chemical properties and Hg0 removal efficiency of the regenerated samples. Hg0 adsorption by the regenerated samples is a multilayer mass transfer process that involves the coupling of physical and chemical effects, and the surface adsorption sites play a leading role.


Asunto(s)
Mercurio , Contaminantes Químicos del Agua , Mercurio/química , Carbón Orgánico/química , Pirólisis , Adsorción , Óxidos , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA