RESUMEN
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Asunto(s)
Proteínas Bacterianas/metabolismo , Segregación Cromosómica , Cromosomas Bacterianos , Citidina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , Myxococcus xanthus/enzimología , Proteínas Bacterianas/genética , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , ADN Bacteriano/genética , Regulación Bacteriana de la Expresión Génica , Hidrólisis , Mutación , Myxococcus xanthus/genética , Conformación Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de TiempoRESUMEN
Encapsulins are protein nanocompartments that regulate cellular metabolism in several bacteria and archaea. Myxococcus xanthus encapsulins protect the bacterial cells against oxidative stress by sequestering cytosolic iron. These encapsulins are formed by the shell protein EncA and three cargo proteins: EncB, EncC, and EncD. EncB and EncC form rotationally symmetric decamers with ferroxidase centers (FOCs) that oxidize Fe+2 to Fe+3 for iron storage in mineral form. However, the structure and function of the third cargo protein, EncD, have yet to be determined. Here, we report the x-ray crystal structure of EncD in complex with flavin mononucleotide. EncD forms an α-helical hairpin arranged as an antiparallel dimer, but unlike other flavin-binding proteins, it has no ß-sheet, showing that EncD and its homologs represent a unique class of bacterial flavin-binding proteins. The cryo-EM structure of EncA-EncD encapsulins confirms that EncD binds to the interior of the EncA shell via its C-terminal targeting peptide. With only 100 amino acids, the EncD α-helical dimer forms the smallest flavin-binding domain observed to date. Unlike EncB and EncC, EncD lacks a FOC, and our biochemical results show that EncD instead is a NAD(P)H-dependent ferric reductase, indicating that the M. xanthus encapsulins act as an integrated system for iron homeostasis. Overall, this work contributes to our understanding of bacterial metabolism and could lead to the development of technologies for iron biomineralization and the production of iron-containing materials for the treatment of various diseases associated with oxidative stress.
Asunto(s)
Proteínas Bacterianas , FMN Reductasa , Myxococcus xanthus , Myxococcus xanthus/metabolismo , Myxococcus xanthus/enzimología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , FMN Reductasa/metabolismo , Cristalografía por Rayos X , Mononucleótido de Flavina/metabolismo , Hierro/metabolismo , Modelos Moleculares , Microscopía por CrioelectrónRESUMEN
Cell polarity oscillations in Myxococcus xanthus motility are driven by a prokaryotic small Ras-like GTPase, mutual gliding protein A (MglA), which switches from one cell pole to the other in response to extracellular signals. MglA dynamics is regulated by MglB, which functions both as a GTPase activating protein (GAP) and a guanine nucleotide exchange factor (GEF) for MglA. With an aim to dissect the asymmetric role of the two MglB protomers in the dual GAP and GEF activities, we generated a functional MglAB complex by coexpressing MglB with a linked construct of MglA and MglB. This strategy enabled us to generate mutations of individual MglB protomers (MglB1 or MglB2 linked to MglA) and delineate their role in GEF and GAP activities. We establish that the C-terminal helix of MglB1, but not MglB2, stimulates nucleotide exchange through a site away from the nucleotide-binding pocket, confirming an allosteric mechanism. Interaction between the N-terminal ß-strand of MglB1 and ß0 of MglA is essential for the optimal GEF activity of MglB. Specific residues of MglB2, which interact with Switch-I of MglA, partially contribute to its GAP activity. Thus, the role of the MglB2 protomer in the GAP activity of MglB is limited to restricting the conformation of MglA active site loops. The direct demonstration of the allosteric mechanism of GEF action provides us new insights into the regulation of small Ras-like GTPases, a feature potentially present in many uncharacterized GEFs.
Asunto(s)
Proteínas Bacterianas , Proteínas Activadoras de GTPasa , Myxococcus xanthus , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Activación Enzimática , Proteínas Activadoras de GTPasa/metabolismo , Proteínas Activadoras de GTPasa/genética , Proteínas Activadoras de GTPasa/química , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/química , Factores de Intercambio de Guanina Nucleótido/genética , Myxococcus xanthus/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/enzimología , Multimerización de Proteína , Modelos Moleculares , Estructura Cuaternaria de ProteínaRESUMEN
Mutual gliding motility A (MglA), a small Ras-like GTPase; Mutual gliding motility B (MglB), its GTPase activating protein (GAP); and Required for Motility Response Regulator (RomR), a protein that contains a response regulator receiver domain, are major components of a GTPase-dependent biochemical oscillator that drives cell polarity reversals in the bacterium Myxococcus xanthus. We report the crystal structure of a complex of M. xanthus MglA and MglB, which reveals that the C-terminal helix (Ct-helix) from one protomer of the dimeric MglB binds to a pocket distal to the active site of MglA. MglB increases the GTPase activity of MglA by reorientation of key catalytic residues of MglA (a GAP function) combined with allosteric regulation of nucleotide exchange by the Ct-helix (a guanine nucleotide exchange factor [GEF] function). The dual GAP-GEF activities of MglB accelerate the rate of GTP hydrolysis over multiple enzymatic cycles. Consistent with its GAP and GEF activities, MglB interacts with MglA bound to either GTP or GDP. The regulation is essential for cell polarity, because deletion of the Ct-helix causes bipolar localization of MglA, MglB, and RomR, thereby causing reversal defects in M. xanthus. A bioinformatics analysis reveals the presence of Ct-helix in homologues of MglB in other bacterial phyla, suggestive of the prevalence of the allosteric mechanism among other prokaryotic small Ras-like GTPases.
Asunto(s)
Locomoción , Myxococcus xanthus/enzimología , Proteínas ras/metabolismo , Regulación Alostérica , Sitios de Unión , Polaridad Celular , Conformación ProteicaRESUMEN
The rod-shaped cells of Myxococcus xanthus, a Gram-negative deltaproteobacterium, differentiate to environmentally resistant spores upon starvation or chemical stress. The environmental resistance depends on a spore coat polysaccharide that is synthesised by the ExoA-I proteins, some of which are part of a Wzx/Wzy-dependent pathway for polysaccharide synthesis and export; however, key components of this pathway have remained unidentified. Here, we identify and characterise two additional loci encoding proteins with homology to enzymes involved in polysaccharide synthesis and export, as well as sugar modification and show that six of the proteins encoded by these loci are essential for the formation of environmentally resistant spores. Our data support that MXAN_3260, renamed ExoM and MXAN_3026, renamed ExoJ, are the Wzx flippase and Wzy polymerase, respectively, responsible for translocation and polymerisation of the repeat unit of the spore coat polysaccharide. Moreover, we provide evidence that three glycosyltransferases (MXAN_3027/ExoK, MXAN_3262/ExoO and MXAN_3263/ExoP) and a polysaccharide deacetylase (MXAN_3259/ExoL) are important for formation of the intact spore coat, while ExoE is the polyisoprenyl-phosphate hexose-1-phosphate transferase responsible for initiating repeat unit synthesis, likely by transferring N-acetylgalactosamine-1-P to undecaprenyl-phosphate. Together, our data generate a more complete model of the Exo pathway for spore coat polysaccharide biosynthesis and export.
Asunto(s)
Glicosiltransferasas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Myxococcus xanthus/metabolismo , Polisacáridos Bacterianos/biosíntesis , Esporas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Glicosiltransferasas/genética , Proteínas de Transporte de Membrana/genética , Myxococcus xanthus/enzimología , Myxococcus xanthus/genética , Nucleotidiltransferasas/genética , Nucleotidiltransferasas/metabolismoRESUMEN
3',3'-cyclic GMP-AMP (cGAMP) is the third cyclic dinucleotide (CDN) to be discovered in bacteria. No activators of cGAMP signaling have yet been identified, and the signaling pathways for cGAMP have been inferred to display a narrow distribution based upon the characterized synthases, DncV and Hypr GGDEFs. Here, we report that the ubiquitous second messenger cyclic AMP (cAMP) is an activator of the Hypr GGDEF enzyme GacB from Myxococcus xanthus. Furthermore, we show that GacB is inhibited directly by cyclic di-GMP, which provides evidence for cross-regulation between different CDN pathways. Finally, we reveal that the HD-GYP enzyme PmxA is a cGAMP-specific phosphodiesterase (GAP) that promotes resistance to osmotic stress in M. xanthus. A signature amino acid change in PmxA was found to reprogram substrate specificity and was applied to predict the presence of non-canonical HD-GYP phosphodiesterases in many bacterial species, including phyla previously not known to utilize cGAMP signaling.
Asunto(s)
Proteínas Bacterianas/metabolismo , Myxococcus xanthus/enzimología , Nucleótidos Cíclicos/metabolismo , Hidrolasas Diéster Fosfóricas/metabolismoRESUMEN
NAD kinase is a crucial enzyme for production of NADP+. Myxococcus xanthus is a gram-negative soil bacterium that forms fruiting bodies and spores under starvation, and it accumulates polyphosphate (poly(P)) during early development. We found that M. xanthus NAD kinase (PanK) utilized both ATP and poly(P) as phosphoryl donors; therefore, PanK was designated as a poly(P)/ATP-NAD kinase. Unlike other poly(P)/ATP-NAD kinases, PanK hardly exhibited NADH kinase activity. The NAD kinase activity of PanK was inhibited by NADPH, but not NADH. Replacement of Thr-90 in the GGDGT motif of PanK with Asn decreased both ATP- and poly(P)-dependent NAD kinase activities; however, poly(P)-dependent NAD kinase activity was further decreased by approximately 6- to 10-fold compared with ATP-dependent NAD kinase activity, suggesting that Thr-90 in the GGDGT motif of PanK may be important for poly(P) utilization. PanK preferred ATP and short-chain poly(P) as phosphoryl donors. The Km of PanK for ATP, poly(P)4, and poly(P)10-15 was 0.66 mM, 0.08 mM, and 0.71 mM, respectively, and the catalytic efficiency (kcat/Km) for poly(P)4 was 2.4-fold higher than that for ATP, suggesting that M. xanthus under starvation conditions may be able to efficiently generate NADP+ using PanK, ATP, and poly(P).
Asunto(s)
Proteínas Bacterianas/metabolismo , Myxococcus xanthus/enzimología , NADP/metabolismo , Fosfotransferasas/metabolismo , Proteínas Bacterianas/genética , Cinética , Myxococcus xanthus/genética , Fosfotransferasas/genéticaRESUMEN
OBJECTIVE: To produce high concentrations of 13-hydroxy-14,15-epoxy-eicosatrienoic acid (14,15-hepoxilin B3, 14,15-HXB3) and 13,14,15-trihydroxy-eicosatrienoic acid (13,14,15-trioxilin B3, 13,14,15-TrXB3) from arachidonic acid (ARA) using microbial 15-lipoxygenase (15-LOX) without and with epoxide hydrolase (EH), respectively. RESULTS: The products obtained from the bioconversion of ARA by recombinant Escherichia coli cells containing Archangium violaceum 15-LOX without and with Myxococcus xanthus EH were identified as 14,15-HXB3 and 13,14,15-TrXB3, respectively. Under the optimal conditions of 30 g cells L-1, 200 mM ARA, 25 °C, and initial pH 7.5, the cells converted 200 mM ARA into 192 mM 14,15-HXB3 and 100 mM 13,14,15-TrXB3 for 150 min, with conversion yields of 96 and 51% and productivities of 77 and 40 mM h-1, respectively. CONCLUSION: These are the highest concentrations, productivities, and yields of hepoxilin and trioxilin from ARA reported thus far.
Asunto(s)
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Araquidonato 15-Lipooxigenasa/metabolismo , Ácidos Araquidónicos , Proteínas Bacterianas/metabolismo , Epóxido Hidrolasas/metabolismo , Ácido 8,11,14-Eicosatrienoico/química , Ácido 8,11,14-Eicosatrienoico/metabolismo , Araquidonato 15-Lipooxigenasa/genética , Ácidos Araquidónicos/química , Ácidos Araquidónicos/metabolismo , Proteínas Bacterianas/genética , Epóxido Hidrolasas/genética , Myxococcales/enzimología , Myxococcales/genética , Myxococcus xanthus/enzimología , Myxococcus xanthus/genéticaRESUMEN
The enzyme 3-methylglutaconyl coenzyme A (CoA) decarboxylase (called AibA/AibB) catalyzes the decarboxylation of 3-methylglutaconyl CoA to generate 3,3-dimethylacrylyl-CoA, representing an important step in the biosynthesis of isovaleryl-coenzyme A in Myxococcus xanthus when the regular pathway is blocked. A novel mechanism involving a pericyclic transition state has previously been proposed for this enzyme, making AibA/AibB unique among decarboxylases. Herein, density functional calculations are used to examine the energetic feasibility of this mechanism. It is shown that the intramolecular pericyclic reaction is associated with a very high energy barrier that is similar to the barrier of the same reaction in the absence of the enzyme. Instead, the calculations show that a direct decarboxylation mechanism has feasible energy barriers that are in line with the experimental observations.
Asunto(s)
Carboxiliasas/metabolismo , Coenzima A/metabolismo , Biocatálisis , Carboxiliasas/química , Descarboxilación , Teoría Funcional de la Densidad , Modelos Moleculares , Estructura Molecular , Myxococcus xanthus/enzimologíaRESUMEN
One mechanism by which bacteria and fungi produce bioactive natural products is the use of nonribosomal peptide synthetases (NRPSs). Many NRPSs in bacteria require members of the MbtH-like protein (MLP) superfamily for their solubility or function. Although MLPs are known to interact with the adenylation domains of NRPSs, the role MLPs play in NRPS enzymology has yet to be elucidated. MLPs are nearly always encoded within the biosynthetic gene clusters (BGCs) that also code for the NRPSs that interact with the MLP. Here, we identify 50 orphan MLPs from diverse bacteria. An orphan MLP is one that is encoded by a gene that is not directly adjacent to genes predicted to be involved in nonribosomal peptide biosynthesis. We targeted the orphan MLP MXAN_3118 from Myxococcus xanthus DK1622 for characterization. The M. xanthus DK1622 genome contains 15 NRPS-encoding BGCs but only one MLP-encoding gene (MXAN_3118). We tested the hypothesis that MXAN_3118 interacts with one or more NRPS using a combination of in vivo and in vitro assays. We determined that MXAN_3118 interacts with at least seven NRPSs from distinct BGCs. We show that one of these BGCs codes for NRPS enzymology that likely produces a valine-rich natural product that inhibits the clumping of M. xanthus DK1622 in liquid culture. MXAN_3118 is the first MLP to be identified that naturally interacts with multiple NRPS systems in a single organism. The finding of an MLP that naturally interacts with multiple NRPS systems suggests it may be harnessed as a "universal" MLP for generating functional hybrid NRPSs.IMPORTANCE MbtH-like proteins (MLPs) are essential accessory proteins for the function of many nonribosomal peptide synthetases (NRPSs). We identified 50 MLPs from diverse bacteria that are coded by genes that are not located near any NRPS-encoding biosynthetic gene clusters (BGCs). We define these as orphan MLPs because their NRPS partner(s) is unknown. Investigations into the orphan MLP from Myxococcus xanthus DK1622 determined that it interacts with NRPSs from at least seven distinct BGCs. Support for these MLP-NRPS interactions came from the use of a bacterial two-hybrid assay and copurification of the MLP with various NRPSs. The flexibility of this MLP to naturally interact with multiple NRPSs led us to hypothesize that this MLP may be used as a "universal" MLP during the construction of functional hybrid NRPSs.
Asunto(s)
Proteínas Bacterianas/metabolismo , Myxococcus xanthus/enzimología , Myxococcus xanthus/genética , Biosíntesis de Péptidos Independientes de Ácidos Nucleicos , Péptido Sintasas/metabolismo , Proteínas Bacterianas/genética , Familia de Multigenes , Péptido Sintasas/genéticaRESUMEN
Lipoxygenases (LOXs) catalyze the dioxygenation of PUFAs to produce regio- and stereospecific oxygenated fatty acids. The identification of regio- and stereospecific LOXs is important because their specific products are involved in different physiological activities in various organisms. Bacterial LOXs are found only in some proteobacteria and cyanobacteria, and they are not stable in vitro. Here, we used C20 and C22 PUFAs such as arachidonic acid (ARA), eicosapentaenoic acid, and docosahexaenoic acid to identify an 11S-specific LOX from the proteobacterium Myxococcus xanthus and explore its in vitro stability and activity. The activity and stability of M. xanthus ARA 11S-LOX as well as the production of 11S-hydroxyeicosatetraenoic acid from ARA were significantly increased by the addition of phosphatidylcholine, Ca2+, and coactosin-like protein (newly identified in the yeast Rhodosporidium toluroides) as stimulatory factors; in fact, LOX activity in the presence of all three factors increased approximately 3-fold. Our results indicate that these stimulatory factors can be used to increase the activity and stability of bacterial LOX and the production of bioactive hydroxy fatty acids, which can contribute to new academic research.
Asunto(s)
Araquidonato Lipooxigenasas/metabolismo , Myxococcus xanthus/enzimología , Araquidonato Lipooxigenasas/genética , Cinética , Mutagénesis Sitio-Dirigida , Fosfatidilcolinas/metabolismo , FilogeniaRESUMEN
The use of toxin to attack neighbours and immunity proteins to protect against toxin has been observed in bacterial conflicts, including kin discrimination. Here, we report a novel nuclease-toxin and its immunity protein function in the colony-merger incompatibility, a kind of bacterial kin discrimination, in Myxococcus xanthus DK1622. The MXAN_0049 gene was determined to be a genetic determinant for colony-merger incompatibility, and the incompatibility could be eliminated by deletion of the upstream co-transcribed MXAN_0050 gene. We demonstrated that the MXAN_0050 protein was a nuclease, and MXAN_0049 protein was able to bind to MXAN_0050 to block nuclease activity in vitro. Expression of MXAN_0050 in Escherichia coli inhibited cellular growth, and the inhibition effect could be recovered by co-expression of MXAN_0049. We found that deletion of the PAAR-encoding gene (MXAN_0044) or the type VI secretion system led to the colony-merger and co-existence with the ΔMXAN_0049 mutant, suggesting that they were associated with colony-merger incompatibility. Homologues of the nuclease-toxin and cognate immunity pair are widely distributed in bacteria. We propose a simplified model to explain the kin discrimination mechanism mediated by the nuclease-toxin and immunity protein.© 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Asunto(s)
Toxinas Bacterianas/inmunología , Desoxirribonucleasas/inmunología , Myxococcus xanthus/enzimología , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/genética , Desoxirribonucleasas/genética , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Myxococcus xanthus/genética , Myxococcus xanthus/inmunología , Eliminación de SecuenciaRESUMEN
Lipoxygenase (LOX) is the key enzyme involved in the synthesis of oxylipins as signaling compounds that are important for cell growth and development, inflammation, and pathogenesis in various organisms. The regiospecificity of LOX from Myxococcus xanthus, a gram-negative bacterium, was investigated. The enzyme catalyzed oxygenation at the n-9 position in C20 and C22 polyunsaturated fatty acids (PUFAs) to form 12S- and 14S-hydroxy fatty acids (HFAs), respectively, and oxygenation at the n-6 position in C18 PUFAs to form 13-HFAs. The 12S-form products of C20 and C22 PUFAs by M. xanthus LOX is the first report of bacterial LOXs. The residues involved in regiospecificity were determined to be Thr397, Ala461, and Ile664 by analyzing amino acid alignment and a homology model based on human arachidonate 15-LOX with a sequence identity of 25%. Among these variants, the regiospecificity of the T397Y variant for C20 and C22 PUFAs was changed. This may be because of the reduced size of the substrate-binding pocket by substitution of the smaller Thr to the larger Tyr residue. The T397Y variant catalyzed oxygenation at the n-6 position in C20 and C22 PUFAs to form 15- and 17-hydroperoxy fatty acids, respectively. However, the oxygenation position of T397Y for C18 PUFAs was not changed. The discovery of bacterial LOX with novel regiospecificity will facilitate the biosynthesis of regiospecificoxygenated signaling compounds.
Asunto(s)
Ácidos Grasos Insaturados/metabolismo , Lipooxigenasa/metabolismo , Myxococcus xanthus/enzimología , Secuencia de Aminoácidos/genética , Araquidonato 15-Lipooxigenasa/química , Lipooxigenasa/química , Lipooxigenasa/genética , Homología de Secuencia de Aminoácido , Especificidad por Sustrato/genética , Treonina/química , Treonina/genética , Treonina/metabolismo , Tirosina/química , Tirosina/genética , Tirosina/metabolismoRESUMEN
Polyphosphate kinase 1 (Ppk1) catalyzes reverse transfer of the terminal phosphate from ATP to form polyphosphate (polyP) and from polyP to form ATP, and is responsible for the synthesis of most of cellular polyPs. When Ppk1 from Myxococcus xanthus was incubated with 0.2 mM polyP60-70 and 1 mM ATP or ADP, the rate of ATP synthesis was approximately 1.5-fold higher than that of polyP synthesis. If in the same reaction the proportion of ADP in the ATP/ADP mixture exceeded one-third, the equilibrium shifted to ATP synthesis, suggesting that M. xanthus Ppk1 preferentially catalyzed ATP formation. At the same time, GTP and GDP were not recognized as substrates by Ppk1. In the absence of polyP, Ppk1 generated ATP and AMP from ADP, and ADP from ATP and AMP, suggesting that the enzyme catalyzed the transfer of a phosphate group between ADP molecules yielding ATP and AMP, thus exhibiting adenylate kinase activity.
Asunto(s)
Proteínas Bacterianas/metabolismo , Myxococcus xanthus/enzimología , Fosfotransferasas (Aceptor del Grupo Fosfato)/metabolismo , Adenosina Difosfato/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Cinética , Myxococcus xanthus/química , Myxococcus xanthus/genética , Fosfotransferasas (Aceptor del Grupo Fosfato)/química , Fosfotransferasas (Aceptor del Grupo Fosfato)/genéticaRESUMEN
Myxococcus xanthus generates diadenosine tetraphosphates (Ap4A) and diadenosine pentaphosphates (Ap5A) under various stress conditions. M. xanthus lysyl-tRNA synthetase (LysS) efficiently synthesizes Ap4A from ATP, Ap5A from ATP and adenosine tetraphosphate (Ap4), and Ap4 from ATP and triphosphate. To identify other M. xanthus enzymes that can catalyze Ap4A and Ap4 synthesis, 15 M. xanthus aminoacyl-tRNA synthetases (aaRSs), four acyl-CoA synthetases (Acys), three acetyl-CoA synthetases (Aces), phosphoglycerate kinase (Pgk), and adenylate kinase (Adk) were expressed in Escherichia coli and examined for Ap4A or Ap4 synthetase activity using ATP or ATP and triphosphate as substrates. Among the tested enzymes, LysS had the highest Ap4A synthetase activity. AlaRS, SerRS, and LeuRS1 showed high ADP synthetase activity with ATP as a substrate in the presence of pyrophosphatase, and also demonstrated the ability to produce Ap4 from ATP and triphosphate in the absence of pyrophosphatase. Ap4 formation by AlaRS, SerRS, and LeuRS1 was approximately 4- to 13-fold higher compared with that of Ap4A, suggesting that these enzymes prefer triphosphate over ATP as a substrate in the second reaction. Some of the recombinant M. xanthus Acys and Aces also synthesized Ap4 from ATP and triphosphate. However, Pgk was capable of catalyzing the production of Ap4 from ATP and 3-phosphoglycerate in the presence of Mg2+ and did not require triphosphate, suggesting that this enzyme is mainly responsible for Ap4 synthesis in M. xanthus.
Asunto(s)
Proteínas Bacterianas/metabolismo , Fosfatos de Dinucleósidos/biosíntesis , Myxococcus xanthus/enzimología , Adenosina/metabolismo , Aminoacil-ARNt Sintetasas/genética , Aminoacil-ARNt Sintetasas/metabolismo , Proteínas Bacterianas/genética , Biocatálisis , Vías Biosintéticas , Coenzima A Ligasas/genética , Coenzima A Ligasas/metabolismo , Fosfatos de Dinucleósidos/genética , Fosfatos de Dinucleósidos/metabolismo , Lisina-ARNt Ligasa/genética , Lisina-ARNt Ligasa/metabolismo , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismoRESUMEN
Prolyl oligopeptidase (POP, EC 3.4.21.26) is a cytosolic serine protease that hydrolyses proline containing small peptides. The members of prolyl oligopeptidase family play important roles in many physiological processes such as neurodegenerative diseases, maturation and degradation of peptide hormones. Thus the enzyme has been purified and characterized from various sources to elucidate the potential use as therapeutics. In this study recombinant Myxococcus xanthus prolyl oligopeptidase expressed in E. coli was purified 60.3 fold, using metal-chelate affinity and gel permeation chromatography. The recombinant enzyme had a monomeric molecular weight of 70 kDa. Isoelectric point of the enzyme was found to be approximately 6.3 by two-dimensional polyacrylamide gel electrophoresis. The optimum pH and temperature was estimated as 7.5 and 37 °C, respectively. The purified enzyme was stable in a pH range of 6.0-8.5 and thermally stable up to 37 °C. The Km and Vmax values were 0.2 mM and 3.42 µmol/min/mg. The proteolytic activity was inhibited by active-site inhibitors of serine protease, Z-Pro-Prolinal, PMSF, and metal ions, Cd2+, and Hg2+. Furthermore, the hydrolysis efficiency of the recombinant prolyl oligopeptidase was investigated with wheat gluten.
Asunto(s)
Proteínas Bacterianas , Myxococcus xanthus/genética , Serina Endopeptidasas , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Punto Isoeléctrico , Myxococcus xanthus/enzimología , Prolil Oligopeptidasas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Serina Endopeptidasas/biosíntesis , Serina Endopeptidasas/química , Serina Endopeptidasas/genética , Serina Endopeptidasas/aislamiento & purificaciónRESUMEN
The gene encoding a novel acidic lipoxygenase from Myxococcus xanthus DK1622 (accession: WP_011551853.1) was cloned into vector pET-28a and expressed in Escherichia coli BL21(DE3). The recombinant enzyme (rMxLOX), with a molecular weight of approximately 80 kDa, was purified to homogeneity using one-step nickel-affinity chromatography and showed an activity of 5.6 × 104 U/mg. The optimum pH and temperature for rMxLOX activity were found to be 3.0 and 30 °C, respectively. Purified rMxLOX exhibited activity towards linoleic acid and arachidonic acid as substrates, with linoleic acid being the better substrate (Km and kcat values of 0.048 mM and 13.3/s, respectively). The synthetic dye aniline blue was decolorized 69.7 ± 3.5%, following incubation with rMxLOX for 35 min. These results reveal the potential for the use of rMxLOX in the pulp, textile, and wastewater treatment industries.
Asunto(s)
Ácido Araquidónico/metabolismo , Proteínas Bacterianas/metabolismo , Ácido Linoleico/metabolismo , Lipooxigenasa/metabolismo , Myxococcus xanthus/química , Compuestos de Anilina/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Cromatografía de Afinidad , Clonación Molecular , Pruebas de Enzimas , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Lipooxigenasa/genética , Lipooxigenasa/aislamiento & purificación , Peso Molecular , Myxococcus xanthus/enzimología , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , TemperaturaRESUMEN
Persulfide dioxygenases (PDOs), also known as sulfur dioxygenases (SDOs), oxidize glutathione persulfide (GSSH) to sulfite and GSH. PDOs belong to the metallo-ß-lactamase superfamily and play critical roles in animals, plants, and microorganisms, including sulfide detoxification. The structures of two PDOs from human and Arabidopsis thaliana have been reported; however, little is known about the substrate binding and catalytic mechanism. The crystal structures of two bacterial PDOs from Pseudomonas putida and Myxococcus xanthus were determined at 1.5- and 2.5-Å resolution, respectively. The structures of both PDOs were homodimers, and their metal centers and ß-lactamase folds were superimposable with those of related enzymes, especially the glyoxalases II. The PDOs share similar Fe(II) coordination and a secondary coordination sphere-based hydrogen bond network that is absent in glyoxalases II, in which the corresponding residues are involved instead in coordinating a second metal ion. The crystal structure of the complex between the Pseudomonas PDO and GSH also reveals the similarity of substrate binding between it and glyoxalases II. Further analysis implicates an identical mode of substrate binding by known PDOs. Thus, the data not only reveal the differences in metal binding and coordination between the dioxygenases and the hydrolytic enzymes in the metallo-ß-lactamase superfamily, but also provide detailed information on substrate binding by PDOs.
Asunto(s)
Proteínas Bacterianas/química , Dioxigenasas/química , Myxococcus xanthus/enzimología , Pseudomonas putida/enzimología , beta-Lactamasas/química , Secuencia de Aminoácidos , Dominio Catalítico , Cristalografía por Rayos X , Glutatión , Enlace de Hidrógeno , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Cuaternaria de Proteína , Soluciones , Especificidad por SustratoRESUMEN
A Myxococcus xanthus gene, MXAN3487, was identified by transposon mutagenesis to be required for the expression of mcuABC, an operon coding for part of the chaperone-usher (CU) system in this bacterium. The MXAN3487 protein displays sequence and structural homology to adenosine 5'-phosphosulphate (APS) kinase family members and contains putative motifs for ATP and APS binding. Although the MXAN3487 locus is not linked to other sulphate assimilation genes, its protein product may have APS kinase activity in vivo and the importance of the ATP-binding site for activity was demonstrated. Expression of MXAN3487 was not affected by sulphate availability, suggesting that MXAN3487 may not function in a reductive sulphate assimilation pathway. Deletion of MXAN3487 significantly delayed fruiting body formation and the production of McuA, a spore coat protein secreted by the M. xanthus Mcu CU system. Based on these observations and data from our previous studies, we propose that MXAN3487 may phosphorylate molecules structurally related to APS, generating metabolites necessary for M. xanthus development, and that MXAN3487 exerts a positive effect on the mcuABC operon whose expression is morphogenesis dependent.
Asunto(s)
Regulación Bacteriana de la Expresión Génica , Myxococcus xanthus/enzimología , Myxococcus xanthus/crecimiento & desarrollo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esporas Bacterianas/crecimiento & desarrollo , Adenosina Fosfosulfato/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Elementos Transponibles de ADN , Técnicas de Inactivación de Genes , Mutagénesis Insercional , Unión ProteicaRESUMEN
A critical step in bacterial isoprenoid production is the synthesis of 3-hydroxy-3-methylglutaryl coenzymeâ A (HMG-CoA) catalyzed by HMG-CoA synthase (HMGCS). In myxobacteria, this enzyme is also involved in a recently discovered alternative and acetyl-CoA-dependent isovaleryl CoA biosynthesis pathway. Here we present crystal structures of MvaS, the HMGCS from Myxococcus xanthus, in complex with CoA and acetylated active site Cys115, with the second substrate acetoacetyl CoA and with the product of the condensation reaction, 3-hydroxy-3-methylglutaryl CoA. With these structures, we show that MvaS uses the common HMGCS enzymatic mechanism and provide evidence that dimerization plays a role in the formation and stability of the active site. Overall, MvaS shows features typical of the eukaryotic HMGCS and exhibits differences from homologues from Gram-positive bacteria. This study provides insights into myxobacterial alternative isovaleryl CoA biosynthesis and thereby extends the toolbox for the biotechnological production of renewable fuel and chemicals.