Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.376
Filtrar
Más filtros

Intervalo de año de publicación
1.
Cell ; 161(6): 1320-33, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-26027737

RESUMEN

A striking neurochemical form of compartmentalization has been found in the striatum of humans and other species, dividing it into striosomes and matrix. The function of this organization has been unclear, but the anatomical connections of striosomes indicate their relation to emotion-related brain regions, including the medial prefrontal cortex. We capitalized on this fact by combining pathway-specific optogenetics and electrophysiology in behaving rats to search for selective functions of striosomes. We demonstrate that a medial prefronto-striosomal circuit is selectively active in and causally necessary for cost-benefit decision-making under approach-avoidance conflict conditions known to evoke anxiety in humans. We show that this circuit has unique dynamic properties likely reflecting striatal interneuron function. These findings demonstrate that cognitive and emotion-related functions are, like sensory-motor processing, subject to encoding within compartmentally organized representations in the forebrain and suggest that striosome-targeting corticostriatal circuits can underlie neural processing of decisions fundamental for survival.


Asunto(s)
Conducta de Elección , Conflicto Psicológico , Toma de Decisiones , Corteza Prefrontal/fisiología , Animales , Núcleo Caudado/citología , Núcleo Caudado/fisiología , Ambiente , Giro del Cíngulo/citología , Giro del Cíngulo/fisiología , Aprendizaje por Laberinto , Corteza Prefrontal/citología , Ratas
2.
J Neurosci ; 44(2)2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-37963761

RESUMEN

Performance monitoring that supports ongoing behavioral adjustments is often examined in the context of either choice confidence for perceptual decisions (i.e., "did I get it right?") or reward expectation for reward-based decisions (i.e., "what reward will I receive?"). However, our understanding of how the brain encodes these distinct evaluative signals remains limited because they are easily conflated, particularly in commonly used two-alternative tasks with symmetric rewards for correct choices. Previously we used a motion-discrimination task with asymmetric rewards to identify neural substrates of forming reward-biased perceptual decisions in the caudate nucleus (part of the striatum in the basal ganglia) and the frontal eye field (FEF, in prefrontal cortex). Here we leveraged this task design to partially decouple estimates of accuracy and reward expectation and examine their impacts on subsequent decisions and their representations in those two brain areas. We identified distinguishable representations of these two evaluative signals in individual caudate and FEF neurons, with regional differences in their distribution patterns and time courses. We observed that well-trained monkeys (both sexes) used both evaluative signals, infrequently but consistently, to adjust their subsequent decisions. We found further that these behavioral adjustments had reliable relationships with the neural representations of both evaluative signals in caudate, but not FEF. These results suggest that the cortico-striatal decision network may use diverse evaluative signals to monitor and adjust decision-making behaviors, adding to our understanding of the different roles that the FEF and caudate nucleus play in a diversity of decision-related computations.


Asunto(s)
Núcleo Caudado , Motivación , Masculino , Femenino , Animales , Núcleo Caudado/fisiología , Toma de Decisiones/fisiología , Lóbulo Frontal/fisiología , Recompensa
3.
J Neurophysiol ; 131(6): 1083-1100, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38505898

RESUMEN

The striatum receives projections from multiple regions of the cerebral cortex consistent with the role of the basal ganglia in diverse motor, affective, and cognitive functions. Within the striatum, the caudate receives projections from association cortex, including multiple distinct regions of prefrontal cortex. Building on recent insights about the details of how juxtaposed cortical networks are specialized for distinct aspects of higher-order cognition, we revisited caudate organization using within-individual precision neuroimaging initially in two intensively scanned individuals (each scanned 31 times). Results revealed that the caudate has side-by-side regions that are coupled to at least five distinct distributed association networks, paralleling the organization observed in the cerebral cortex. We refer to these spatial groupings of regions as striatal association megaclusters. Correlation maps from closely juxtaposed seed regions placed within the megaclusters recapitulated the five distinct cortical networks, including their multiple spatially distributed regions. Striatal association megaclusters were explored in 15 additional participants (each scanned at least 8 times), finding that their presence generalizes to new participants. Analysis of the laterality of the regions within the megaclusters further revealed that they possess asymmetries paralleling their cortical counterparts. For example, caudate regions linked to the language network were left lateralized. These results extend the general notion of parallel specialized basal ganglia circuits with the additional discovery that, even within the caudate, there is fine-grained separation of multiple distinct higher-order networks that reflects the organization and lateralization found in the cerebral cortex.NEW & NOTEWORTHY An individualized precision neuroimaging approach reveals juxtaposed zones of the caudate that are coupled with five distinct networks in association cortex. The organization of these caudate zones recapitulates organization observed in the cerebral cortex and extends the notion of specialized basal ganglia circuits.


Asunto(s)
Núcleo Caudado , Humanos , Masculino , Adulto , Femenino , Núcleo Caudado/fisiología , Núcleo Caudado/diagnóstico por imagen , Cuerpo Estriado/fisiología , Cuerpo Estriado/diagnóstico por imagen , Corteza Cerebral/fisiología , Corteza Cerebral/diagnóstico por imagen , Imagen por Resonancia Magnética , Vías Nerviosas/fisiología , Vías Nerviosas/diagnóstico por imagen , Adulto Joven , Red Nerviosa/fisiología , Red Nerviosa/diagnóstico por imagen , Persona de Mediana Edad
4.
Brain Cogn ; 178: 106166, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38733655

RESUMEN

Although most category learning studies use feedback for training, little attention has been paid to how individuals utilize feedback implemented as gains or losses during categorization. We compared skilled categorization under three different conditions: Gain (earn points for correct answers), Gain and Loss (earn points for correct answers and lose points for wrong answers) and Correct or Wrong (accuracy feedback only). We also manipulated difficulty and point value, with near boundary stimuli having the highest number of points to win or lose, and stimuli far from the boundary having the lowest point value. We found that the tail of the caudate was sensitive to feedback condition, with highest activity when both Gain and Loss feedback were present and least activity when only Gain or accuracy feedback was present. We also found that activity across the caudate was affected by distance from the decision bound, with greatest activity for the near boundary high value stimuli, and lowest for far low value stimuli. Overall these results indicate that the tail of the caudate is sensitive not only to positive rewards but also to loss and punishment, consistent with recent animal research finding tail of the caudate activity in aversive learning.


Asunto(s)
Núcleo Caudado , Imagen por Resonancia Magnética , Humanos , Núcleo Caudado/fisiología , Masculino , Femenino , Adulto , Adulto Joven , Recompensa , Retroalimentación Psicológica/fisiología , Mapeo Encefálico/métodos , Formación de Concepto/fisiología
5.
Int J Mol Sci ; 25(11)2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38892125

RESUMEN

A total of 3102 neurons were recorded before and following acute and chronic methylphenidate (MPD) administration. Acute MPD exposure elicits mainly increases in neuronal and behavioral activity in dose-response characteristics. The response to chronic MPD exposure, as compared to acute 0.6, 2.5, or 10.0 mg/kg MPD administration, elicits electrophysiological and behavioral sensitization in some animals and electrophysiological and behavioral tolerance in others when the neuronal recording evaluations were performed based on the animals' behavioral responses, or amount of locomotor activity, to chronic MPD exposure. The majority of neurons recorded from those expressing behavioral sensitization responded to chronic MPD with further increases in firing rate as compared to the initial MPD responses. The majority of neurons recorded from animals expressing behavioral tolerance responded to chronic MPD with decreases in their firing rate as compared to the initial MPD exposures. Each of the six brain areas studied-the ventral tegmental area, locus coeruleus, dorsal raphe, nucleus accumbens, prefrontal cortex, and caudate nucleus (VTA, LC, DR, NAc, PFC, and CN)-responds significantly (p < 0.001) differently to MPD, suggesting that each one of the above brain areas exhibits different roles in the response to MPD. Moreover, this study demonstrates that it is essential to evaluate neuronal activity responses to psychostimulants based on the animals' behavioral responses to acute and chronic effects of the drug from several brain areas simultaneously to obtain accurate information on each area's role in response to the drug.


Asunto(s)
Conducta Animal , Núcleo Caudado , Metilfenidato , Neuronas , Núcleo Accumbens , Corteza Prefrontal , Área Tegmental Ventral , Animales , Metilfenidato/farmacología , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/fisiología , Ratas , Neuronas/efectos de los fármacos , Neuronas/fisiología , Neuronas/metabolismo , Núcleo Caudado/efectos de los fármacos , Núcleo Caudado/fisiología , Núcleo Caudado/metabolismo , Masculino , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/fisiología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiología , Conducta Animal/efectos de los fármacos , Locus Coeruleus/efectos de los fármacos , Locus Coeruleus/fisiología , Ratas Sprague-Dawley , Núcleo Dorsal del Rafe/efectos de los fármacos , Núcleo Dorsal del Rafe/fisiología , Núcleo Dorsal del Rafe/metabolismo , Estimulantes del Sistema Nervioso Central/farmacología
6.
J Neurosci ; 42(32): 6267-6275, 2022 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-35794012

RESUMEN

The orbitofrontal cortex (OFC) and its major downstream target within the basal ganglia-the rostromedial caudate nucleus (rmCD)-are involved in reward-value processing and goal-directed behavior. However, a causal contribution of the pathway linking these two structures to goal-directed behavior has not been established. Using the chemogenetic technology of designer receptors exclusively activated by designer drugs with a crossed inactivation design, we functionally and reversibly disrupted interactions between the OFC and rmCD in two male macaque monkeys. We injected an adeno-associated virus vector expressing an inhibitory designer receptor, hM4Di, into the OFC and contralateral rmCD, the expression of which was visualized in vivo by positron emission tomography and confirmed by postmortem immunohistochemistry. Functional disconnection of the OFC and rmCD resulted in a significant and reproducible loss of sensitivity to the cued reward value for goal-directed action. This decreased sensitivity was most prominent when monkeys had accumulated a certain amount of reward. These results provide causal evidence that the interaction between the OFC and the rmCD is needed for motivational control of action on the basis of the relative reward value and internal drive. This finding extends the current understanding of the physiological basis of psychiatric disorders in which goal-directed behavior is affected, such as obsessive-compulsive disorder.SIGNIFICANCE STATEMENT In daily life, we routinely adjust the speed and accuracy of our actions on the basis of the value of expected reward. Abnormalities in these kinds of motivational adjustments might be related to behaviors seen in psychiatric disorders such as obsessive-compulsive disorder. In the current study, we show that the connection from the orbitofrontal cortex to the rostromedial caudate nucleus is essential for motivational control of action in monkeys. This finding expands our knowledge about how the primate brain controls motivation and behavior and provides a particular insight into disorders like obsessive-compulsive disorder in which altered connectivity between the orbitofrontal cortex and the striatum has been implicated.


Asunto(s)
Núcleo Caudado , Motivación , Animales , Núcleo Caudado/fisiología , Objetivos , Humanos , Masculino , Corteza Prefrontal/fisiología , Recompensa
7.
PLoS Biol ; 18(3): e3000658, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32191695

RESUMEN

The ability to vocalize is ubiquitous in vertebrates, but neural networks underlying vocal control remain poorly understood. Here, we performed simultaneous neuronal recordings in the frontal cortex and dorsal striatum (caudate nucleus, CN) during the production of echolocation pulses and communication calls in bats. This approach allowed us to assess the general aspects underlying vocal production in mammals and the unique evolutionary adaptations of bat echolocation. Our data indicate that before vocalization, a distinctive change in high-gamma and beta oscillations (50-80 Hz and 12-30 Hz, respectively) takes place in the bat frontal cortex and dorsal striatum. Such precise fine-tuning of neural oscillations could allow animals to selectively activate motor programs required for the production of either echolocation or communication vocalizations. Moreover, the functional coupling between frontal and striatal areas, occurring in the theta oscillatory band (4-8 Hz), differs markedly at the millisecond level, depending on whether the animals are in a navigational mode (that is, emitting echolocation pulses) or in a social communication mode (emitting communication calls). Overall, this study indicates that fronto-striatal oscillations could provide a neural correlate for vocal control in bats.


Asunto(s)
Quirópteros/fisiología , Lóbulo Frontal/fisiología , Neostriado/fisiología , Vocalización Animal/fisiología , Animales , Núcleo Caudado/fisiología , Ecolocación/fisiología , Red Nerviosa/fisiología , Espectrografía del Sonido
8.
Proc Natl Acad Sci U S A ; 117(38): 23886-23897, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32900934

RESUMEN

Motor skill learning involves a complex process of generating novel movement patterns guided by evaluative feedback, such as a reward. Previous literature has suggested anteroposteriorly separated circuits in the striatum to be implicated in early goal-directed and later automatic stages of motor skill learning, respectively. However, the involvement of these circuits has not been well elucidated in human de novo motor skill learning, which requires learning arbitrary action-outcome associations and value-based action selection. To investigate this issue, we conducted a human functional MRI (fMRI) experiment in which participants learned to control a computer cursor by manipulating their right fingers. We discovered a double dissociation of fMRI activity in the anterior and posterior caudate nucleus, which was associated with performance in the early and late learning stages. Moreover, cognitive and sensorimotor cortico-caudate interactions predicted individual learning performance. Our results suggest parallel cortico-caudate networks operating in different stages of human de novo motor skill learning.


Asunto(s)
Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/fisiología , Aprendizaje/fisiología , Imagen por Resonancia Magnética , Destreza Motora/fisiología , Adolescente , Adulto , Femenino , Humanos , Masculino , Adulto Joven
9.
J Neurosci ; 41(2): 331-341, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33214318

RESUMEN

In complex everyday environments, action selection is critical for optimal goal-directed behavior. This refers to the process of choosing a proper action from the range of possible alternatives. The neural mechanisms underlying action selection and how these are affected by normal aging remain to be elucidated. In the present cross-sectional study, we studied processes of effector selection during a multilimb reaction time task in a lifespan sample of healthy human adults (N = 89; 20-75 years; 48 males, 41 females). Participants were instructed to react as quickly and accurately as possible to visually cued stimuli representing single-limb or combined upper and/or lower limb motions. Diffusion MRI was used to study structural connectivity between prefrontal and striatal regions as critical nodes for action selection. Behavioral findings revealed that increasing age was associated with slowing of action selection performance. At the neural level, aging had a negative impact on prefronto-striatal connectivity. Importantly, mediation analyses revealed that the negative association between action selection performance and age was mediated by prefronto-striatal connectivity, specifically the connections between left rostral medial frontal gyrus and left nucleus accumbens as well as right frontal pole and left caudate. These results highlight the potential role of prefronto-striatal white matter decline in poorer action selection performance of older adults.SIGNIFICANCE STATEMENT As a result of enhanced life expectancy, researchers have devoted increasing attention to the study of age-related alterations in cognitive and motor functions. Here we study associations between brain structure and behavior to reveal the impact of central neural white matter changes as a function of normal aging on action selection performance. We demonstrate the critical role of a reduction in prefronto-striatal structural connectivity in accounting for action selection performance deficits in healthy older adults. Preserving this cortico-subcortical pathway may be critical for behavioral flexibility and functional independence in older age.


Asunto(s)
Neostriado/anatomía & histología , Neostriado/fisiología , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/fisiología , Adulto , Anciano , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Estudios Transversales , Señales (Psicología) , Toma de Decisiones , Imagen de Difusión por Resonancia Magnética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Movimiento/fisiología , Neostriado/crecimiento & desarrollo , Vías Nerviosas/crecimiento & desarrollo , Núcleo Accumbens/fisiología , Estimulación Luminosa , Corteza Prefrontal/crecimiento & desarrollo , Tiempo de Reacción/fisiología , Adulto Joven
10.
Hum Brain Mapp ; 43(4): 1370-1380, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34826165

RESUMEN

The inverse base rate effect (IBRE) is a nonrational behavioral phenomenon in predictive learning. Canonically, participants learn that the AB stimulus compound leads to one outcome and that AC leads to another outcome, with AB being presented three times as often as AC. When subsequently presented with BC, the outcome associated with AC is preferentially selected, in opposition to the underlying base rates of the outcomes. The current leading explanation is based on error-driven learning. A key component of this account is prediction error, a concept previously linked to a number of brain areas including the anterior cingulate, the striatum, and the dorsolateral prefrontal cortex. The present work is the first fMRI study to directly examine the IBRE. Activations were noted in brain areas linked to prediction error, including the caudate body, the anterior cingulate, the ventromedial prefrontal cortex, and the right dorsolateral prefrontal cortex. Analyzing the difference in activations for singular key stimuli (B and C), as well as frequency matched controls, supports the predictions made by the error-driven learning account.


Asunto(s)
Mapeo Encefálico/métodos , Núcleo Caudado/fisiología , Aprendizaje/fisiología , Imagen por Resonancia Magnética/métodos , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Adulto , Núcleo Caudado/diagnóstico por imagen , Neurociencia Cognitiva/métodos , Humanos , Corteza Prefrontal/diagnóstico por imagen
11.
Neuroimage ; 238: 118268, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34139359

RESUMEN

Deception emerges in early childhood and prevails in adults. Activation patterns in previous adults' task-state functional magnetic resonance imaging (fMRI), though sensitive to state honesty on a specific decision, are less reliable reflecting trait honesty. Besides of state honesty, most previous neuroimaging studies about dishonesty suffer the generalization problem due to the major focus on adults with children unexplored. To investigate honesty associated functional brain networks variations, 98 healthy adults (Age: 18-28 y.o.; 49 males and 49 females) were invited to participate in a resting-state functional magnetic resonance imaging (rfMRI) study (Study 1). We investigated how functional connections between the caudate and the medial prefrontal cortex (mPFC) change among adults who differ in self-reported trait honesty. Results showed that adults with higher trait honesty have increased functional connectivity from the caudate to the mPFC, which is identified as an honesty-related hub region in global brain connectivity analysis and connects more tightly to a wide range of brain regions including the amygdala. Study 2 compared functional connectivity between children with high vs. low lying frequencies (Age: 6-16 y.o.; 61 males and 39 females) based on a publicly accessible database of rfMRI. Consistent with findings in adults, increased functional connectivity from the caudate to the mPFC was found in less frequently lying children. Despite different honesty indicators of self-reported honesty trait in adults and parent-reported lying patterns in children, consistent findings have been noted in the two samples with regards to functional connectivity variations between reward-related and self-related brain regions. These findings suggest functional connectivity alterations between the caudate and the mPFC contribute to honesty variations in both adults and children.


Asunto(s)
Núcleo Caudado/diagnóstico por imagen , Emociones/fisiología , Corteza Prefrontal/diagnóstico por imagen , Adolescente , Adulto , Núcleo Caudado/fisiología , Niño , Decepción , Femenino , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/fisiología , Corteza Prefrontal/fisiología , Adulto Joven
12.
Neuroimage ; 237: 118158, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-33991699

RESUMEN

While it is widely accepted that motor sequence learning (MSL) is supported by a prefrontal-mediated interaction between hippocampal and striatal networks, it remains unknown whether the functional responses of these networks can be modulated in humans with targeted experimental interventions. The present proof-of-concept study employed a multimodal neuroimaging approach, including functional magnetic resonance (MR) imaging and MR spectroscopy, to investigate whether individually-tailored theta-burst stimulation of the dorsolateral prefrontal cortex can modulate responses in the hippocampus and the basal ganglia during motor learning. Our results indicate that while stimulation did not modulate motor performance nor task-related brain activity, it influenced connectivity patterns within hippocampo-frontal and striatal networks. Stimulation also altered the relationship between the levels of gamma-aminobutyric acid (GABA) in the stimulated prefrontal cortex and learning-related changes in both activity and connectivity in fronto-striato-hippocampal networks. This study provides the first experimental evidence, to the best of our knowledge, that brain stimulation can alter motor learning-related functional responses in the striatum and hippocampus.


Asunto(s)
Núcleo Caudado/fisiología , Conectoma , Potenciales Evocados Motores/fisiología , Hipocampo/fisiología , Actividad Motora/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Aprendizaje Seriado/fisiología , Estimulación Magnética Transcraneal , Ácido gamma-Aminobutírico/metabolismo , Adulto , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Hipocampo/diagnóstico por imagen , Hipocampo/metabolismo , Humanos , Imagen por Resonancia Magnética , Espectroscopía de Resonancia Magnética , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Prueba de Estudio Conceptual , Adulto Joven
13.
Neuroimage ; 235: 118006, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33819611

RESUMEN

A wide homology between human and macaque striatum is often assumed as in both the striatum is involved in cognition, emotion and executive functions. However, differences in functional and structural organization between human and macaque striatum may reveal evolutionary divergence and shed light on human vulnerability to neuropsychiatric diseases. For instance, dopaminergic dysfunction of the human striatum is considered to be a pathophysiological underpinning of different disorders, such as Parkinson's disease (PD) and schizophrenia (SCZ). Previous investigations have found a wide similarity in structural connectivity of the striatum between human and macaque, leaving the cross-species comparison of its functional organization unknown. In this study, resting-state functional connectivity (RSFC) derived striatal parcels were compared based on their homologous cortico-striatal connectivity. The goal here was to identify striatal parcels whose connectivity is human-specific compared to macaque parcels. Functional parcellation revealed that the human striatum was split into dorsal, dorsomedial, and rostral caudate and ventral, central, and caudal putamen, while the macaque striatum was divided into dorsal, and rostral caudate and rostral, and caudal putamen. Cross-species comparison indicated dissimilar cortico-striatal RSFC of the topographically similar dorsal caudate. We probed clinical relevance of the striatal clusters by examining differences in their cortico-striatal RSFC and gray matter (GM) volume between patients (with PD and SCZ) and healthy controls. We found abnormal RSFC not only between dorsal caudate, but also between rostral caudate, ventral, central and caudal putamen and widespread cortical regions for both PD and SCZ patients. Also, we observed significant structural atrophy in rostral caudate, ventral and central putamen for both PD and SCZ while atrophy in the dorsal caudate was specific to PD. Taken together, our cross-species comparative results revealed shared and human-specific RSFC of different striatal clusters reinforcing the complex organization and function of the striatum. In addition, we provided a testable hypothesis that abnormalities in a region with human-specific connectivity, i.e., dorsal caudate, might be associated with neuropsychiatric disorders.


Asunto(s)
Núcleo Caudado/fisiología , Corteza Cerebral/fisiología , Conectoma , Red Nerviosa/fisiología , Enfermedad de Parkinson , Putamen/fisiología , Esquizofrenia , Adulto , Anciano , Animales , Núcleo Caudado/diagnóstico por imagen , Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Conjuntos de Datos como Asunto , Femenino , Humanos , Macaca , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Red Nerviosa/diagnóstico por imagen , Enfermedad de Parkinson/diagnóstico por imagen , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/fisiopatología , Putamen/diagnóstico por imagen , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Esquizofrenia/fisiopatología , Especificidad de la Especie , Adulto Joven
14.
PLoS Biol ; 16(10): e2005930, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30365496

RESUMEN

The basal ganglia are important for action selection. They are also implicated in perceptual and cognitive functions that seem far removed from motor control. Here, we tested whether the role of the basal ganglia in selection extends to nonmotor aspects of behavior by recording neuronal activity in the caudate nucleus while animals performed a covert spatial attention task. We found that caudate neurons strongly select the spatial location of the relevant stimulus throughout the task even in the absence of any overt action. This spatially selective activity was dependent on task and visual conditions and could be dissociated from goal-directed actions. Caudate activity was also sufficient to correctly identify every epoch in the covert attention task. These results provide a novel perspective on mechanisms of attention by demonstrating that the basal ganglia are involved in spatial selection and tracking of behavioral states even in the absence of overt orienting movements.


Asunto(s)
Núcleo Caudado/fisiología , Percepción Espacial/fisiología , Conducta Espacial/fisiología , Animales , Atención/fisiología , Ganglios Basales/fisiología , Señales (Psicología) , Macaca mulatta , Masculino , Movimiento , Neuronas , Primates , Desempeño Psicomotor/fisiología , Tiempo de Reacción/fisiología , Navegación Espacial/fisiología
15.
Cereb Cortex ; 30(10): 5471-5483, 2020 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-32500144

RESUMEN

Current models of decision-making assume that the brain gradually accumulates evidence and drifts toward a threshold that, once crossed, results in a choice selection. These models have been especially successful in primate research; however, transposing them to human fMRI paradigms has proved it to be challenging. Here, we exploit the face-selective visual system and test whether decoded emotional facial features from multivariate fMRI signals during a dynamic perceptual decision-making task are related to the parameters of computational models of decision-making. We show that trial-by-trial variations in the pattern of neural activity in the fusiform gyrus reflect facial emotional information and modulate drift rates during deliberation. We also observed an inverse-urgency signal based in the caudate nucleus that was independent of sensory information but appeared to slow decisions, particularly when information in the task was ambiguous. Taken together, our results characterize how decision parameters from a computational model (i.e., drift rate and urgency signal) are involved in perceptual decision-making and reflected in the activity of the human brain.


Asunto(s)
Núcleo Caudado/fisiología , Toma de Decisiones/fisiología , Reconocimiento Facial/fisiología , Lóbulo Temporal/fisiología , Adulto , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Modelos Neurológicos , Análisis Multivariante , Adulto Joven
16.
Cereb Cortex ; 30(5): 3340-3351, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31897476

RESUMEN

Pavlovian biases influence instrumental learning by coupling reward seeking with action invigoration and punishment avoidance with action suppression. Using a probabilistic go/no-go task designed to orthogonalize action (go/no-go) and valence (reward/punishment), recent studies have shown that the interaction between the two is dependent on the striatum and its key neuromodulator dopamine. Using this task, we sought to identify how structural and neuromodulatory age-related differences in the striatum may influence Pavlovian biases and instrumental learning in 25 young and 31 older adults. Computational modeling revealed a significant age-related reduction in reward and punishment sensitivity and marked (albeit not significant) reduction in learning rate and lapse rate (irreducible noise). Voxel-based morphometry analysis using 7 Tesla MRI images showed that individual differences in learning rate in older adults were related to the volume of the caudate nucleus. In contrast, dopamine synthesis capacity in the dorsal striatum, assessed using [18F]-DOPA positron emission tomography in 22 of these older adults, was not associated with learning performance and did not moderate the relationship between caudate volume and learning rate. This multiparametric approach suggests that age-related differences in striatal volume may influence learning proficiency in old age.


Asunto(s)
Envejecimiento/metabolismo , Condicionamiento Operante/fisiología , Dopamina/metabolismo , Neostriado/diagnóstico por imagen , Adulto , Anciano , Envejecimiento/fisiología , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Núcleo Caudado/patología , Núcleo Caudado/fisiología , Dihidroxifenilalanina/análogos & derivados , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neostriado/metabolismo , Neostriado/patología , Neostriado/fisiología , Tamaño de los Órganos , Tomografía de Emisión de Positrones , Castigo , Recompensa , Adulto Joven
17.
J Neurosci ; 39(10): 1793-1804, 2019 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-30626695

RESUMEN

Processing incentive and drive is essential for control of goal-directed behavior. The limbic part of the basal ganglia has been emphasized in these processes, yet the exact neuronal mechanism has remained elusive. In this study, we examined the neuronal activity of the ventral pallidum (VP) and its upstream area, the rostromedial caudate (rmCD), while two male macaque monkeys performed an instrumental lever release task in which a visual cue indicated the forthcoming reward size. We found that the activity of some neurons in VP and rmCD reflected the expected reward size transiently following the cue. Reward size coding appeared earlier and stronger in VP than in rmCD. We also found that the activity in these areas was modulated by the satiation level of monkeys, which also occurred more frequently in VP than in rmCD. The information regarding reward size and satiation level was independently signaled in the neuronal populations of these areas. The data thus highlighted the neuronal coding of key variables for goal-directed behavior in VP. Furthermore, pharmacological inactivation of VP induced more severe deficit of goal-directed behavior than inactivation of rmCD, which was indicated by abnormal error repetition and diminished satiation effect on the performance. These results suggest that VP encodes incentive value and internal drive and plays a pivotal role in the control of motivation to promote goal-directed behavior.SIGNIFICANCE STATEMENT The limbic part of the basal ganglia has been implicated in the motivational control of goal-directed action. Here, we investigated how the ventral pallidum (VP) and the rostromedial caudate (rmCD) encode incentive value and internal drive and control goal-directed behavior. Neuronal recording and subsequent pharmacological inactivation revealed that VP had stronger coding of reward size and satiation level than rmCD. Reward size and satiation level were independently encoded in the neuronal population of these areas. Furthermore, VP inactivation impaired goal-directed behavior more severely than rmCD inactivation. These results highlight the central role of VP in the motivational control of goal-directed action.


Asunto(s)
Prosencéfalo Basal/fisiología , Objetivos , Motivación/fisiología , Neuronas/fisiología , Desempeño Psicomotor/fisiología , Recompensa , Animales , Núcleo Caudado/fisiología , Macaca mulatta , Masculino , Respuesta de Saciedad , Percepción Visual/fisiología
18.
J Neurosci ; 39(8): 1436-1444, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30530859

RESUMEN

Dopamine (DA) levels in the striatum are increased by many therapeutic drugs, such as methylphenidate (MPH), which also alters behavioral and cognitive functions thought to be controlled by the PFC dose-dependently. We linked DA changes and functional connectivity (FC) using simultaneous [18F]fallypride PET and resting-state fMRI in awake male rhesus monkeys after oral administration of various doses of MPH. We found a negative correlation between [18F]fallypride nondisplaceable binding potential (BPND) and MPH dose in the head of the caudate (hCd), demonstrating increased extracellular DA resulting from MPH administration. The decreased BPND was negatively correlated with FC between the hCd and the PFC. Subsequent voxelwise analyses revealed negative correlations with FC between the hCd and the dorsolateral PFC, hippocampus, and precuneus. These results, showing that MPH-induced changes in DA levels in the hCd predict resting-state FC, shed light on a mechanism by which changes in striatal DA could influence function in the PFC.SIGNIFICANCE STATEMENT Dopamine transmission is thought to play an essential role in shaping large scale-neural networks that underlie cognitive functions. It is the target of therapeutic drugs, such as methylphenidate (Ritalin), which blocks the dopamine transporter, thereby increasing extracellular dopamine levels. Methylphenidate is used extensively to treat attention deficit hyperactivity disorder, even though its effects on cognitive functions and their underlying neural mechanisms are not well understood. To date, little is known about the link between changes in dopamine levels and changes in functional brain organization. Using simultaneous PET/MR imaging, we show that methylphenidate-induced changes in endogenous dopamine levels in the head of the caudate predict changes in resting-state functional connectivity between this structure and the prefrontal cortex, precuneus, and hippocampus.


Asunto(s)
Núcleo Caudado/fisiología , Conectoma , Inhibidores de Captación de Dopamina/farmacología , Corteza Prefrontal/fisiología , Animales , Benzamidas , Mapeo Encefálico , Núcleo Caudado/diagnóstico por imagen , Dopamina/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Relación Dosis-Respuesta a Droga , Radioisótopos de Flúor , Macaca mulatta , Imagen por Resonancia Magnética , Masculino , Metilfenidato/farmacología , Tomografía de Emisión de Positrones , Corteza Prefrontal/diagnóstico por imagen , Pirrolidinas , Radiofármacos
19.
Neuroimage ; 210: 116544, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31972284

RESUMEN

Non-heme iron accumulation contributes to age-related decline in brain structure and cognition via a cascade of oxidative stress and inflammation, although its effect on brain function is largely unexplored. Thus, we examine the impact of striatal iron on dynamic range of BOLD modulation to working memory load. N â€‹= â€‹166 healthy adults (age 20-94) underwent cognitive testing and an imaging session including n-back (0-, 2-, 3-, and 4-back fMRI), R2*-weighted imaging, and pcASL to measure cerebral blood flow. A statistical model was constructed to predict voxelwise BOLD modulation by age, striatal iron content and an age â€‹× â€‹iron interaction, controlling for cerebral blood flow, sex, and task response time. A significant interaction between age and striatal iron content on BOLD modulation was found selectively in the putamen, caudate, and inferior frontal gyrus. Greater iron was associated with reduced modulation to difficulty, particularly in middle-aged and younger adults with greater iron content. Further, iron-related decreases in modulation were associated with poorer executive function in an age-dependent manner. These results suggest that iron may contribute to differences in functional brain activation prior to older adulthood, highlighting the potential role of iron as an early factor contributing to trajectories of functional brain aging.


Asunto(s)
Envejecimiento/fisiología , Núcleo Caudado/fisiología , Función Ejecutiva/fisiología , Neuroimagen Funcional , Hierro/fisiología , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Desempeño Psicomotor/fisiología , Putamen/fisiología , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Envejecimiento/metabolismo , Núcleo Caudado/diagnóstico por imagen , Núcleo Caudado/metabolismo , Femenino , Humanos , Hierro/metabolismo , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo , Putamen/diagnóstico por imagen , Putamen/metabolismo , Adulto Joven
20.
J Neurochem ; 152(6): 650-662, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31608979

RESUMEN

The caudate nucleus (CN) and the putamen (PUT) as parts of the human striatum are distinguished by a marked heterogeneity in functional, anatomical, and neurochemical patterns. Our study aimed to document in detail the regional diversity in the distribution of dopamine (DA), serotonin, γ-aminobuturic acid, and choline acetyltransferase within the CN and PUT. For this purpose we dissected the CN as well as the PUT of 12 post-mortem brains of human subjects with no evidence of neurological and psychiatric disorders (38-81 years old) into about 80 tissue parts. We then investigated rostro-caudal, dorso-ventral, and medio-lateral gradients of these neurotransmitter markers. All parameters revealed higher levels, turnover rates, or activities in the PUT than in the CN. Within the PUT, DA levels increased continuously from rostral to caudal. In contrast, the lowest molar ratio of homovanillic acid to DA, a marker of DA turnover, coincided with highest DA levels in the caudal PUT, the part of the striatum with the highest loss of DA in Parkinson's disease (N. Engl. J. Med., 318, 1988, 876). Highest DA concentrations were found in the most central areas both in the PUT and CN. We observed an age-dependent loss of DA in the PUT and CN that did not correspond to the loss described for Parkinson's disease indicating different mechanisms inducing the deficit of DA. Our data demonstrate a marked heterogeneity in the anatomical distribution of neurotransmitter markers in the human dorsal striatum indicating anatomical and functional diversity within this brain structure.


Asunto(s)
Biomarcadores/análisis , Núcleo Caudado/química , Neurotransmisores/análisis , Putamen/química , Adulto , Anciano , Anciano de 80 o más Años , Envejecimiento/fisiología , Núcleo Caudado/fisiología , Colina O-Acetiltransferasa/análisis , Dopamina/análisis , Femenino , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/metabolismo , Cambios Post Mortem , Putamen/fisiología , Serotonina/análisis , Ácido gamma-Aminobutírico/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA