Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Bioconjug Chem ; 35(2): 187-202, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38318778

RESUMEN

To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.


Asunto(s)
Doxorrubicina/análogos & derivados , Sarcoma de Ewing , Humanos , Sarcoma de Ewing/tratamiento farmacológico , Nanoconjugados/uso terapéutico , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos/uso terapéutico , Línea Celular Tumoral
2.
Arch Microbiol ; 205(5): 170, 2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37017767

RESUMEN

Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.


Asunto(s)
Amebiasis , Amebicidas , Balamuthia mandrillaris , Naegleria fowleri , Humanos , Anfotericina B/farmacología , Metronidazol/farmacología , Metronidazol/uso terapéutico , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Estudios Prospectivos , Amebicidas/química , Amebicidas/farmacología , Sulfametoxazol/farmacología , Sulfametoxazol/uso terapéutico , Amebiasis/tratamiento farmacológico , Amebiasis/parasitología
3.
J Nanobiotechnology ; 21(1): 246, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37528408

RESUMEN

Type 2 diabetes mellitus (T2DM) predominantly considered a metabolic disease is now being considered an inflammatory disease as well due to the involvement of meta-inflammation. Obesity-induced adipose tissue inflammation (ATI) is one of the earliest phenomena in the case of meta-inflammation, leading to the advent of insulin resistance (IR) and T2DM. The key events of ATI are orchestrated by macrophages, which aggravate the inflammatory state in the tissue upon activation, ultimately leading to systemic chronic low-grade inflammation and Non-Alcoholic Steatohepatitis (NASH) through the involvement of proinflammatory cytokines. The CD44 receptor on macrophages is overexpressed in ATI, NASH, and IR. Therefore, we developed a CD44 targeted Hyaluronic Acid functionalized Graphene Oxide Quantum Dots (GOQD-HA) nanocomposite for tissue-specific delivery of metformin. Metformin-loaded GOQD-HA (GOQD-HA-Met) successfully downregulated the expression of proinflammatory cytokines and restored antioxidant status at lower doses than free metformin in both palmitic acid-induced RAW264.7 cells and diet induced obese mice. Our study revealed that the GOQD-HA nanocarrier enhanced the efficacy of Metformin primarily by acting as a therapeutic agent apart from being a drug delivery platform. The therapeutic properties of GOQD-HA stem from both HA and GOQD having anti-inflammatory and antioxidant properties respectively. This study unravels the function of GOQD-HA as a targeted drug delivery option for metformin in meta-inflammation where the nanocarrier itself acts as a therapeutic agent.


Asunto(s)
Diabetes Mellitus Tipo 2 , Metformina , Enfermedad del Hígado Graso no Alcohólico , Puntos Cuánticos , Animales , Ratones , Ácido Hialurónico/uso terapéutico , Puntos Cuánticos/uso terapéutico , Nanoconjugados/uso terapéutico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Antioxidantes/uso terapéutico , Inflamación/tratamiento farmacológico , Citocinas , Metformina/farmacología , Metformina/uso terapéutico
4.
Med Mycol ; 60(2)2022 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-34958385

RESUMEN

Vulvovaginal candidiasis (VVC) is a commonly occurring yeast infection caused by Candida species in women. Among Candida species, C. albicans is the predominant member that causes vaginal candidiasis followed by Candida glabrata. Biofilm formation by Candida albicans on the vaginal mucosal tissue leads to VVC infection and is one of the factors for a commensal organism to get into virulent form leading to disease. In addition to that, morphological switching from yeast to hyphal form increases the risk of pathogenesis as it aids in tissue invasion. In this study, jacalin, a phytolectin complexed copper sulfide nanoparticles (NPs) have been explored to eradicate the mono and mixed species biofilms formed by fluconazole-resistant C. albicans and C. glabrata isolated from VVC patients. NPs along with standard antifungals like micafungin and amphotericin B have been evaluated to explore interaction behavior and we observed synergistic interactions between them. Microscopic techniques like light microscopy, phase contrast microscopy, scanning electron microscopy, confocal laser scanning microscopy were used to visualize the inhibition of biofilm by NPs and in synergistic combinations with standard antifungals. Real-time PCR analysis was carried out to study the expression pattern of the highly virulent genes which are responsible for yeast to hyphal switch, drug resistance and biofilm formation upon treatment with NPs in combination with standard antifungals. The current study shows that lectin-conjugated NPs with standard antifungals might be a different means to disrupt the mixed species population of Candida spp. that causes VVC. LAY SUMMARY: The present study focuses on exploiting the high biding affinity between the cell surface glycans present in Candida cells and the plant lectin, Jacalin. Jacalin serves as a 'Trojan Horse' wherein the lectin-coupled nanoparticles show a high efficacy when compared with the unconjugated nanoparticles. The present approach also improves the anti-biofilm activity of the antifungal drugs against drug-resistant Candida strains.


Asunto(s)
Candidiasis Vulvovaginal , Animales , Antifúngicos/farmacología , Antifúngicos/uso terapéutico , Biopelículas , Candida , Candida albicans , Candidiasis Vulvovaginal/tratamiento farmacológico , Candidiasis Vulvovaginal/veterinaria , Femenino , Pruebas de Sensibilidad Microbiana/veterinaria , Nanoconjugados/uso terapéutico , Virulencia
5.
J Nanobiotechnology ; 19(1): 182, 2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34127005

RESUMEN

BACKGROUND: Photodynamic therapy (PDT) may elicit antitumor immune response in addition to killing cancer cells. However, PDT as a monotherapy often fails to induce a strong immunity. Immune checkpoint inhibitors, which selectively block regulatory axes, may be used in combination with PDT to improve treatment outcomes. Indoleamine 2,3-dioxygenase (IDO) is an immunoregulatory enzyme and an important meditator of tumor immune escape. Combination therapy with PDT and IDO-targeted immune checkpoint blockage is promising but has been seldom been explored. METHODS: Herein we report a composite nanoparticle that allows for simultaneous delivery of photosensitizer and IDO inhibitor. Briefly, we separately load ZnF16Pc, a photosensitizer, and NLG919, an indoleamine 2,3-dioxygenase (IDO) inhibitor, into ferritin and poly(lactide-co-glycolic)-block-poly(ethylene glycol) (PEG-PLGA) nanoparticles; we then conjugate these two compartments to form a composite nanoparticle referred to as PPF NPs. We tested combination treatment with PPF NPs first in vitro and then in vivo in B16F10-tumor bearing C57/BL6 mice. RESULTS: Our results showed that PPF NPs can efficiently encapsulate both ZnF16Pc and NLG919. In vivo studies found that the combination treatment led to significantly improved tumor suppression and animal survival. Moreover, the treatment increased tumor infiltration of CD8+ T cells, while reducing frequencies of MDSCs and Tregs. 30% of the animals showed complete tumor eradication, and they successfully rejected a second tumor inoculation. Overall, our studies introduce a unique composite nanoplatform that allows for co-delivery of photosensitizer and IDO inhibitor with minimal inter-species interference, which is ideal for combination therapy.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/efectos de los fármacos , Nanoconjugados/uso terapéutico , Nanopartículas/uso terapéutico , Fotoquimioterapia/métodos , Animales , Linfocitos T CD8-positivos , Línea Celular Tumoral , Liberación de Fármacos , Inhibidores Enzimáticos/farmacología , Ferritinas , Humanos , Imidazoles , Isoindoles , Ratones , Células Supresoras de Origen Mieloide , Nanoconjugados/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico
6.
Nano Lett ; 20(4): 2396-2409, 2020 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-32125864

RESUMEN

Small-molecule therapeutics demonstrate suboptimal pharmacokinetics and bioavailability due to their hydrophobicity and size. One way to overcome these limitations-and improve their efficacy-is to use "stealth" macromolecular carriers that evade uptake by the reticuloendothelial system. Although unstructured polypeptides are of increasing interest as macromolecular drug carriers, current recombinant polypeptides in the clinical pipeline typically lack stealth properties. We address this challenge by developing new unstructured polypeptides, called zwitterionic polypeptides (ZIPPs), that exhibit "stealth" behavior in vivo. We show that conjugating paclitaxel to a ZIPP imparts amphiphilicity to the polypeptide chain that is sufficient to drive its self-assembly into micelles. This in turn increases the half-life of paclitaxel by 17-fold compared to free paclitaxel, and by 1.6-fold compared to the nonstealth control, i.e., ELP-paclitaxel. Treatment of mice bearing highly aggressive prostate or colon cancer with a single dose of ZIPP-paclitaxel nanoparticles leads to near-complete eradication of the tumor, and these nanoparticles have a wider therapeutic window than Abraxane, an FDA-approved taxane nanoformulation.


Asunto(s)
Paclitaxel Unido a Albúmina/uso terapéutico , Antineoplásicos/uso terapéutico , Nanoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Paclitaxel/uso terapéutico , Péptidos/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Línea Celular Tumoral , Humanos , Ratones , Ratones Desnudos , Nanoconjugados/análisis , Paclitaxel/farmacocinética , Péptidos/farmacocinética , Resultado del Tratamiento
7.
Int J Mol Sci ; 22(11)2021 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-34073117

RESUMEN

We currently lack effective treatments for the devastating loss of neural function associated with spinal cord injury (SCI). In this study, we evaluated a combination therapy comprising human neural stem cells derived from induced pluripotent stem cells (iPSC-NSC), human mesenchymal stem cells (MSC), and a pH-responsive polyacetal-curcumin nanoconjugate (PA-C) that allows the sustained release of curcumin. In vitro analysis demonstrated that PA-C treatment protected iPSC-NSC from oxidative damage in vitro, while MSC co-culture prevented lipopolysaccharide-induced activation of nuclear factor-κB (NF-κB) in iPSC-NSC. Then, we evaluated the combination of PA-C delivery into the intrathecal space in a rat model of contusive SCI with stem cell transplantation. While we failed to observe significant improvements in locomotor function (BBB scale) in treated animals, histological analysis revealed that PA-C-treated or PA-C and iPSC-NSC + MSC-treated animals displayed significantly smaller scars, while PA-C and iPSC-NSC + MSC treatment induced the preservation of ß-III Tubulin-positive axons. iPSC-NSC + MSC transplantation fostered the preservation of motoneurons and myelinated tracts, while PA-C treatment polarized microglia into an anti-inflammatory phenotype. Overall, the combination of stem cell transplantation and PA-C treatment confers higher neuroprotective effects compared to individual treatments.


Asunto(s)
Curcumina/farmacología , Trasplante de Células Madre Mesenquimatosas , Nanoconjugados/uso terapéutico , Fármacos Neuroprotectores/farmacología , Recuperación de la Función , Traumatismos de la Médula Espinal/terapia , Acetales/uso terapéutico , Animales , Células Cultivadas , Femenino , Humanos , Células Madre Pluripotentes Inducidas , Células Madre Mesenquimatosas , Células-Madre Neurales , Polímeros/uso terapéutico , Ratas , Ratas Sprague-Dawley
8.
Nano Lett ; 19(8): 5515-5523, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31362507

RESUMEN

Designing simple-structured nanomedicine without lacking key functionalities, thereby avoiding incomplete damage or relapse of tumor with the administration of a safe dose, is pivotal for successful cancer nanotherapy. We herein presented a nanomedicine of photodynamic therapy (PDT) that simply assembled amphiphilic macromolecules of poly-l-lysine conjugating with photosensitizers onto hydrophobic upconverting nanoparticles. We demonstrated that the nanoformulation, despite its simple structure and synthesis, simultaneously possesses multiple features, including substantial payload of photosensitizers, avid cellular internalization both in vitro and in vivo, efficient diffusion and broad distribution in tumor lesion, and potent fatality for cancer stem cells that are refractory to other therapy modalities. Because of the combination of these functionalities, the tumors in mice were eradicated and no relapse was observed after at least 40 days, just with an extremely low intraperitoneal injection dose of 5.6 mg/kg. Our results suggested a strategy for designing multifunctional nanomedicines with simple construct and efficacious therapeutic response and presented the promising potential of PDT for a radical cure of cancer.


Asunto(s)
Nanoconjugados/uso terapéutico , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Línea Celular Tumoral , Células HeLa , Humanos , Ratones , Nanoconjugados/administración & dosificación , Nanoconjugados/química , Recurrencia Local de Neoplasia/prevención & control , Células Madre Neoplásicas/efectos de los fármacos , Fotoquimioterapia , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Polilisina/administración & dosificación , Polilisina/análogos & derivados , Polilisina/uso terapéutico
9.
Nano Lett ; 19(8): 5587-5594, 2019 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-31260628

RESUMEN

In breast cancer chemophotothermal therapy, it is a great challenge for the development of multifunctional nanoagents for precision targeting and the effective treatment of tumors, especially for metastasis. Herein, we successfully design and synthesize a multifunctional black phosphorus (BP)-based nanoagent, BP/DTX@PLGA, to address this challenge. In this composite nanoagent, BP quantum dots (BPQDs) are loaded into poly(lactic-co-glycolic acid) (PLGA) with additional conjugation of a chemotherapeutic agent, docetaxel (DTX). The in vivo distribution results demonstrate that BP/DTX@PLGA shows striking tropism for targeting both primary tumors and lung metastatic tumors. Moreover, BP/DTX@PLGA exhibits outstanding controllable chemophotothermal combinatory therapeutics, which dramatically improves the efficacy of photothermal tumor ablation when combined with near-light irradiation. Mechanistically, accelerated DTX release from the nanocomplex upon heating and thermal treatment per se synergistically incurs apoptosis-dependent cell death, resulting in the elimination of lung metastasis. Meanwhile, in vitro and in vivo results further confirm that BP/DTX@PLGA possesses good biocompatibility. This study provides a promising BP-based multimodal nanoagent to constrain cancer metastasis.


Asunto(s)
Antineoplásicos/uso terapéutico , Docetaxel/uso terapéutico , Neoplasias Mamarias Animales/terapia , Nanoconjugados/uso terapéutico , Fósforo/uso terapéutico , Animales , Antineoplásicos/farmacocinética , Docetaxel/farmacocinética , Femenino , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Neoplasias Pulmonares/terapia , Neoplasias Mamarias Animales/patología , Ratones , Metástasis de la Neoplasia/patología , Metástasis de la Neoplasia/terapia , Fósforo/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacocinética , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/uso terapéutico
10.
Nano Lett ; 19(11): 7573-7587, 2019 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-31518145

RESUMEN

Despite untiring efforts to develop therapies for pancreatic ductal adenocarcinoma (PDAC), survival statistics remain dismal, necessitating distinct approaches. Photodynamic priming (PDP), which improves drug delivery and combination regimens, as well as tumor photodestruction are key attributes of photodynamic therapy (PDT), making it a distinctive clinical option for PDAC. Localized, high-payload nanomedicine-assisted delivery of photosensitizers (PSs), with molecular specificity and controlled photoactivation, thus becomes critical in order to reduce collateral toxicity during more expansive photodynamic activation procedures with curative intent. As such, targeted photoactivable lipid-based nanomedicines are an ideal candidate but have failed to provide greater than two-fold cancer cell selectivity, if at all, due to their extensive multivariant physical, optical, and chemical complexity. Here, we report (1) a systematic multivariant tuning approach to engineer (Cet, anti-EGFR mAb) photoimmunonanoconjugates (PINs), and (2) stroma-rich heterotypic PDAC in vitro and in vivo models incorporating patient-derived pancreatic cancer-associated fibroblasts (PCAFs) that recapitulate the desmoplasia observed in the clinic. These offer a comprehensive, disease-specific framework for the development of Cet-PINs. Specificity-tuning of the PINs, in terms of PS lipid anchoring, electrostatic modulation, Cet orientation, and Cet surface densities, achieved ∼16-fold binding specificities and rapid penetration of the heterotypic organoids within 1 h, thereby providing a ∼16-fold enhancement in molecular targeted NIR photodestruction. As a demonstration of their inherent amenability for multifunctionality, encapsulation of high payloads of gemcitabine hydrochloride, 5-fluorouracil, and oxaliplatin within the Cet-PINs further improved their antitumor efficacy in the heterotypic organoids. In heterotypic desmoplastic tumors, the Cet-PINs efficiently penetrated up to 470 µm away from blood vessels, and photodynamic activation resulted in substantial tumor necrosis, which was not elicited in T47D tumors (low EGFR) or when using untargeted constructs in both tumor types. Photodynamic activation of the Cet-PINs in the heterotypic desmoplastic tumors resulted in collagen photomodulation, with a 1.5-fold reduction in collagen density, suggesting that PDP may also hold potential for conquering desmoplasia. The in vivo safety profile of photodynamic activation of the Cet-PINs was also substantially improved, as compared to the untargeted constructs. While treatment using the Cet-PINs did not cause any detriment to the mice's health or to healthy proximal tissue, photodynamic activation of untargeted constructs induced severe acute cachexia and weight loss in all treated mice, with substantial peripheral skin necrosis, muscle necrosis, and bowel perforation. This study is the first report demonstrating the true value of molecular targeting for NIR-activable PINs. These constructs integrate high payload delivery, efficient photodestruction, molecular precision, and collagen photomodulation in desmoplastic PDAC tumors in a single treatment using a single construct. Such combined PIN platforms and heterocellular models open up an array of further multiplexed combination therapies to synergistically control desmoplastic tumor progression and extend PDAC patient survival.


Asunto(s)
Carcinoma Ductal Pancreático/tratamiento farmacológico , Inmunoconjugados/uso terapéutico , Nanoconjugados/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Animales , Anticuerpos Monoclonales/uso terapéutico , Fibroblastos Asociados al Cáncer/efectos de los fármacos , Fibroblastos Asociados al Cáncer/patología , Carcinoma Ductal Pancreático/patología , Sistemas de Liberación de Medicamentos/métodos , Receptores ErbB/antagonistas & inhibidores , Humanos , Inmunoconjugados/administración & dosificación , Ratones , Nanoconjugados/administración & dosificación , Nanomedicina/métodos , Organoides/efectos de los fármacos , Organoides/patología , Neoplasias Pancreáticas/patología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación
11.
Nanomedicine ; 21: 102061, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31344499

RESUMEN

Targeted DNA nanoparticles have been identified as one of the most promising nanocarriers in anti-glioma drug delivery. We established a multifunctional nanosystem for targeted glioma therapy. Tetrahedral framework nucleic acid (tFNA), entering U87MG cells and bEnd.3 cells, was chosen to deliver two aptamers, GMT8 and Gint4.T, and paclitaxel. GMT8 and Gint4.T, which specifically bind with U87MG cells and with PDGFRß, were linked with tFNA, to form Gint4.T-tFNA-GMT8 (GTG). GTG was efficiently internalized by U87MG and bEnd.3 cells and penetrated an in-vitro blood-brain-barrier model. GTG loaded with paclitaxel (GPC) had potentiated anti-glioma efficacy. It inhibited the proliferation, migration, and invasion of U87MG cells, and enhanced apoptosis induction in these cells. The expression of apoptosis-related proteins was significantly changed after treatment with GPC, confirming apoptosis induction. Our study demonstrated that the combination of GTG and paclitaxel has great potential for glioma treatment and tFNA shows great promise for use in drug delivery.


Asunto(s)
Aptámeros de Nucleótidos , Barrera Hematoencefálica , Neoplasias Encefálicas , Glioblastoma , Nanoconjugados , Paclitaxel , Animales , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacocinética , Aptámeros de Nucleótidos/farmacología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Paclitaxel/química , Paclitaxel/farmacocinética , Paclitaxel/farmacología , Ratas
12.
Nanomedicine ; 21: 102068, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31374249

RESUMEN

Colon adenocarcinoma is the third most common cause of cancer-related deaths worldwide owing to its aggressive nature. Here, we developed a novel oral drug delivery system (DDS) that comprised active targeted nanoparticles made from gelatin and chitosan (non-toxic polymers). The nanoparticles were fabricated using a complex coacervation method, which was accompanied by conjugation of wheat germ agglutinin (WGA) onto their surface by glutaraldehyde cross-linking. Specifically, we integrated 5-fluorouracil (5-FU), the first-line treatment agent against colon cancer, and (-)-epigallocatechin-3-gallate (EGCG), which inhibits tumor growth via anti-angiogenesis and apoptosis-inducing effects, into the nanoparticles, named WGA-EF-NP. The 5-FU and EGCG co-loaded nanoparticles showed sustained drug release, enhanced cellular uptake, and longer circulation time. WGA-EF-NP exhibited superior anti-tumor activity and pro-apoptotic efficacy compared to the drugs and nanoparticles without WGA decoration owing to better bioavailability and longer circulation time in vivo. Thus, WGA-EF-NP shows promise as a DDS for enhanced efficacy against colon cancer.


Asunto(s)
Apoptosis/efectos de los fármacos , Catequina/análogos & derivados , Neoplasias del Colon , Fluorouracilo , Nanoconjugados , Neovascularización Patológica , Aglutininas del Germen de Trigo , Animales , Catequina/química , Catequina/farmacocinética , Catequina/farmacología , Neoplasias del Colon/irrigación sanguínea , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Fluorouracilo/química , Fluorouracilo/farmacocinética , Fluorouracilo/farmacología , Células HT29 , Humanos , Ratones , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Aglutininas del Germen de Trigo/química , Aglutininas del Germen de Trigo/farmacocinética , Aglutininas del Germen de Trigo/farmacología , Ensayos Antitumor por Modelo de Xenoinjerto
13.
Nano Lett ; 18(9): 5488-5498, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30067910

RESUMEN

Malignant gliomas are the most common primary brain tumors and are associated with aggressive growth, high morbidity, and mortality. Aberrant mesenchymal-epithelial transition factor (MET) activation occurs in approximately 30% of glioma patients and correlates with poor prognosis, elevated invasion, and increased drug resistance. Therefore, MET has emerged as an attractive target for glioma therapy. In this study, we developed a novel nanoinhibitor by conjugating MET-targeting cMBP peptides on the G4 dendrimer. Compared to the binding affinity of the free peptide ( KD = 3.96 × 10-7 M), the binding affinity of the nanoinhibitor to MET increased 3 orders of magnitude to 1.32 × 10-10 M. This nanoinhibitor efficiently reduced the proliferation and invasion of human glioblastoma U87MG cells in vitro by blocking MET signaling with remarkably attenuated levels of phosphorylated MET ( pMET) and its downstream signaling proteins, such as pAKT and pERK1/2. Although no obvious therapeutic effect was observed after treatment with free cBMP peptide, in vivo T2-weighted magnetic resonance imaging (MRI) showed a significant delay in tumor growth after intravenous injection of the nanoinhibitor. The medium survival in mouse models was extended by 59%, which is similar to the effects of PF-04217903, a small molecule MET inhibitor currently in clinical trials. Immunoblotting studies of tumor homogenate verified that the nanoinhibitor restrained glioma growth by blocking MET downstream signaling. pMET and its downstream proteins pAKT and pERK1/2, which are involved in the survival and invasion of cancer cells, decreased in the nanoinhibitor-treated group by 44.2%, 62.2%, and 32.3%, respectively, compared with those in the control group. In summary, we developed a peptide-functionalized MET nanoinhibitor that showed extremely high binding affinity to MET and effectively inhibited glioma growth by blocking MET downstream signaling. To the best of our knowledge, this is the first report of therapeutic inhibition of glioma growth by blocking MET signaling with a novel nanoinhibitor. Compared to antibodies and chemical inhibitors in clinical trials, the nanoinhibitor blocks MET signaling and provides a new approach for the treatment of glioma with the advantages of high efficiency, affordability, and, most importantly, potentially reduced drug resistance.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Dendrímeros/uso terapéutico , Glioma/tratamiento farmacológico , Nanoconjugados/uso terapéutico , Péptidos/uso terapéutico , Proteínas Proto-Oncogénicas c-met/metabolismo , Transducción de Señal/efectos de los fármacos , Animales , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Dendrímeros/química , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Glioma/metabolismo , Glioma/patología , Humanos , Ratones , Nanoconjugados/química , Nylons/química , Péptidos/química
14.
Bioconjug Chem ; 29(3): 813-823, 2018 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-29148731

RESUMEN

Current strategies for treating autoimmunity involve the administration of broad-acting immunosuppressive agents that impair healthy immunity. Intravenous (i.v.) administration of poly(lactide- co-glycolide) nanoparticles (NPs) containing disease-relevant antigens (Ag-NPs) have demonstrated antigen (Ag)-specific immune tolerance in models of autoimmunity. However, subcutaneous (s.c.) delivery of Ag-NPs has not been effective. This investigation tested the hypothesis that codelivery of the immunomodulatory cytokine, transforming growth factor beta 1 (TGF-ß), on Ag-NPs would modulate the immune response to Ag-NPs and improve the efficiency of tolerance induction. TGF-ß was coupled to the surface of Ag-NPs such that the loadings of Ag and TGF-ß were independently tunable. The particles demonstrated bioactive delivery of Ag and TGF-ß in vitro by reducing the inflammatory phenotype of bone marrow-derived dendritic cells and inducing regulatory T cells in a coculture system. Using an in vivo mouse model for multiple sclerosis, experimental autoimmune encephalomyelitis, TGF-ß codelivery on Ag-NPs resulted in improved efficacy at lower doses by i.v. administration and significantly reduced disease severity by s.c. administration. This study demonstrates that the codelivery of immunomodulatory cytokines on Ag-NPs may enhance the efficacy of Ag-specific tolerance therapies by programming Ag presenting cells for more efficient tolerance induction.


Asunto(s)
Antígenos/administración & dosificación , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Factores Inmunológicos/administración & dosificación , Esclerosis Múltiple/tratamiento farmacológico , Nanoconjugados/administración & dosificación , Poliglactina 910/administración & dosificación , Factor de Crecimiento Transformador beta/administración & dosificación , Animales , Antígenos/química , Antígenos/uso terapéutico , Células Cultivadas , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Tolerancia Inmunológica/efectos de los fármacos , Factores Inmunológicos/química , Factores Inmunológicos/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Esclerosis Múltiple/inmunología , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Poliglactina 910/química , Poliglactina 910/uso terapéutico , Factor de Crecimiento Transformador beta/química , Factor de Crecimiento Transformador beta/uso terapéutico
15.
Pharm Res ; 35(12): 237, 2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30324329

RESUMEN

Malaria is one of the oldest infectious diseases that afflict humans and its history extends back for millennia. It was once prevalent throughout the globe but today it is mainly endemic to tropical regions like sub-Saharan Africa and South-east Asia. Ironically, treatment for malaria has existed for centuries yet it still exerts an enormous death toll. This contradiction is attributed in part to the rapid development of resistance by the malaria parasite to chemotherapeutic drugs. In turn, resistance has been fuelled by poor patient compliance to the relatively toxic antimalarial drugs. While drug toxicity and poor pharmacological potentials have been addressed or ameliorated with various nanomedicine drug delivery systems in diseases like cancer, no clinically significant success story has been reported for malaria. There have been several reviews on the application of nanomedicine technologies, especially drug encapsulation, to malaria treatment. Here we extend the scope of the collation of the nanomedicine research literature to polymer therapeutics technology. We first discuss the history of the disease and how a flurry of scientific breakthroughs in the latter part of the nineteenth century provided scientific understanding of the disease. This is followed by a review of the disease biology and the major antimalarial chemotherapy. The achievements of nanomedicine in cancer and other infectious diseases are discussed to draw parallels with malaria. A review of the current state of the research into malaria nanomedicines, both encapsulation and polymer therapeutics polymer-drug conjugation technologies, is covered and we conclude with a consideration of the opportunities and challenges offered by both technologies.


Asunto(s)
Antimaláricos/química , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico , Nanoconjugados/química , Nanoconjugados/uso terapéutico , Polímeros/química , Polímeros/uso terapéutico , Animales , Antimaláricos/farmacocinética , Antimaláricos/farmacología , Sistemas de Liberación de Medicamentos/métodos , Humanos , Malaria/fisiopatología , Nanomedicina/métodos , Plasmodium/efectos de los fármacos , Polímeros/farmacocinética , Polímeros/farmacología
16.
Sci Prog ; 101(3): 273-292, 2018 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-30071918

RESUMEN

Delivery of imaging agents and pharmaceutical payloads to the central nervous system (CNS) is essential for efficient diagnosis and treatment of brain diseases. However, therapeutic delivery is often restricted by the blood-brain barrier (BBB), which prevents transport of clinical compounds to their region of interest. This review discusses the methods that have been used to avoid or overcome this barrier, presenting the use of biologically-derived nanomaterial systems as an efficient strategy for the diagnosis and treatment of CNS diseases. Biological nanomaterials have many advantages over synthetic systems, including being biodegradable, biocompatible, easily surface functionalised for conjugation of targeting moieties, and are often able to self-assemble. These abilities are discussed in relation to various systems, including liposomes, dendrimers, and viral nanoparticles.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Dendrímeros/química , Nanoconjugados/química , Nanopartículas/química , Animales , Permeabilidad Capilar , Dendrímeros/farmacocinética , Dendrímeros/uso terapéutico , Liberación de Fármacos , Humanos , Nanoconjugados/uso terapéutico , Nanopartículas/uso terapéutico
17.
J Nanosci Nanotechnol ; 18(10): 6765-6775, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29954492

RESUMEN

Despite several advancements in the biomedical sciences, an efficient cancer therapy still remains a challenge. Nanomedicines have shown potential to overcome certain roadblocks faced in the existing treatment modalities. Losartan potassium (LP) which is a known vasodilator also exhibits anti fibrolytic and anti-metastatic properties altogether. Further, also being a potential angiotensin II type 1 receptor antagonist, it has been well explored for down regulating tumourogenic biomarkers like VEGF-A (Vascular endothelial growth factor A) and suppression of neovascularization, making it a suitable drug to target for cancer treatment. Besides this, it too reflected the stimulation of pro apoptotic signaling pathways. But due to its lower bioavailability and extensive hepatic metabolism its therapeutic index reduces down. Thus, the present study is focused on designing a nano-delivery system using graphene oxide (GO) as a nano-vehicle and conjugated the LP with it. Then, the successful synthesis of GO and GO-LP nano conjugates were characterized by high-resolution transmission electron microscopy, X-ray diffraction, FTIR and UV visible spectroscopy, confirming the formation of nanosheets. The qualitative morphological evaluation of NB41A3 neuroblastoma cell line treated with bare GO, LP and GO-LP using microscopy and DAPI staining revealed the inhibitory action of GO-LP nano conjugate on cell proliferation. Additionally, the cytotoxicity was also estimated using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), Nitric oxide (NO) and Lactate dehydrogenase (LDH) assays. The results show that GO-LP significantly suppresses the cell viability in comparison to control and bare GO suggesting that the designed system may express its potential to be used with existing chemo drugs for the treatment of neural cancers.


Asunto(s)
Antineoplásicos/uso terapéutico , Grafito/uso terapéutico , Losartán/uso terapéutico , Nanoconjugados/uso terapéutico , Neuroblastoma/tratamiento farmacológico , Bloqueadores del Receptor Tipo 1 de Angiotensina II/química , Bloqueadores del Receptor Tipo 1 de Angiotensina II/uso terapéutico , Animales , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Grafito/química , Losartán/análogos & derivados , Ratones , Nanoconjugados/química
18.
Zhonghua Zhong Liu Za Zhi ; 40(8): 587-593, 2018 Aug 23.
Artículo en Zh | MEDLINE | ID: mdl-30139028

RESUMEN

Objective: To construct superparamagnetic iron oxide nanoparticles (SPIONs) coated on trastuzumab and indocyanine green (ICG) and then investigate whether the coated nanoparticles (NPs) targeted to human epidermal growth factor receptor-2 (HER-2) receptors on breast cancer cells in vitro and in vivo. Methods: The Fe(3)O(4)-trastuzumab-ICG NPs were constructed. And a series of characteristics of the NPs were evaluated. The uptake ability of SK-BR-3, a HER-2 positive breast cancer cell, was observed by transmission electron microscopy. Then the NPs were injected in the tail veins of SK-BR-3 xenograft tumor-bearing mice to observe the aggregation of NPs in the tumor sites by MRI and fluorescent imaging. Furthermore, when the NPs was gathered at the tumor sites, the near infrared thermal imaging system was used to monitor the tumor temperature after the near infrared radiation. Results: The successfully constructed Fe(3)O(4)-trastuzumab-ICG NPs had the size of (25.93±4.25) nm. The absorption peak was 828 nm, which was as same as the emission wavelength of ICG. The NPs had a high relaxation rate of approximately 107.65 mM(-1)·s(-1). The maximum temperature of NPs solution could reach to 57.8℃ after continuous near infrared laser irradiation. The transmission electron microscopy imaging revealed that the NPs could target and enter into the endoplasmic reticulum of SK-BR-3 cells. MRI analysis showed the lowest T(2) relaxation time in the tumor sites 24 h after tail vein injection of the NPs. The △T(2) of the tumor sites in the Fe(3)O(4)-trastuzumab-ICG group (30.7±4.8) ms was higher compared with that of control group (3.1±1.1) ms, Fe(3)O(4)-IgG-ICG group (4.4±0.9) ms and trastuzumab + Fe(3)O(4)-trastuzumab-ICG group (11.3±3.8) ms., respectively, all showing statistically significant differences (P<0.05). The fluorescence imaging revealed that the NPs was concentrated transiently in the intraperitoneal organs and tumor sites, then excreted into the bladder. After 24 h, there was an obvious aggregation in the tumor sites. The near infrared thermal imaging experiments showed that the temperature of tumor sites in Fe(3)O(4)-trastuzumab-ICG group could go up to 49.4℃ after continuous near infrared light irradiation. Conclusion: The newly constructed Fe(3)O(4)-trastuzumab-ICG NPs have the potential to act as a multifunctional imaging agent and a powerful tool for photothermal therapy for HER-2 positive breast cancer.


Asunto(s)
Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/terapia , Nanoconjugados/uso terapéutico , Fototerapia/métodos , Receptor ErbB-2/metabolismo , Trastuzumab/uso terapéutico , Animales , Antineoplásicos Inmunológicos/farmacocinética , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Retículo Endoplásmico/metabolismo , Femenino , Compuestos Ferrosos/administración & dosificación , Compuestos Ferrosos/farmacocinética , Xenoinjertos , Calor/uso terapéutico , Humanos , Verde de Indocianina/administración & dosificación , Verde de Indocianina/farmacocinética , Imagen por Resonancia Magnética/métodos , Ratones , Microscopía Electrónica de Transmisión , Imagen Óptica/métodos , Trastuzumab/farmacocinética
19.
Radiology ; 285(3): 809-819, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28707960

RESUMEN

Purpose To demonstrate that anti-MG1 conjugated hybrid magnetic gold nanoparticles (HNPs) act as a catalyst during photothermal ablation (PTA) of colorectal liver metastases, and thus increase ablation zones. Materials and Methods All experiments were performed with approval of the institutional animal care and use committee. Therapeutic and diagnostic multifunctional HNPs conjugated with anti-MG1 monoclonal antibodies were synthesized, and the coupling efficiency was determined. Livers of 19 Wistar rats were implanted with 5 × 106 rat colorectal liver metastasis cell line cells. The rats were divided into three groups according to injection: anti-MG1-coupled HNPs (n = 6), HNPs only (n = 6), and cells only (control group, n = 7). Voxel-wise R2 and R2* magnetic resonance (MR) imaging measurements were obtained before, immediately after, and 24 hours after injection. PTA was then performed with a fiber-coupled near-infrared (808 nm) diode laser with laser power of 0.56 W/cm2 for 3 minutes, while temperature changes were measured. Tumors were assessed for necrosis with hematoxylin-eosin staining. Organs were analyzed with inductively coupled plasma mass spectrometry to assess biodistribution. Therapeutic efficacy and tumor necrosis area were compared by using a one-way analysis of variance with post hoc analysis for statistically significant differences. Results The coupling efficiency was 22 µg/mg (55%). Significant differences were found between preinfusion and 24-hour postinfusion measurements of both T2 (repeated measures analysis of variance, P = .025) and T2* (P < .001). Significant differences also existed for T2* measurements between the anti-MG1 HNP and HNP-only groups (P = .034). Mean temperature ± standard deviation with PTA in the anti-MG1-coated HNP, HNP, and control groups was 50.2°C ± 7.8, 51°C ± 4.4, and 39.5°C ± 2.0, respectively. Inductively coupled plasma mass spectrometry revealed significant tumor targeting and splenic sequestration. Mean percentages of tumor necrosis in the anti-MG1-coated HNP, HNP, and control groups were 38% ± 29, 14% ± 17, and 7% ± 8, respectively (P = .043). Conclusion Targeted monoclonal antibody-conjugated HNPs can serve as a catalyst for photothermal ablation of colorectal liver metastases by increasing ablation zones. © RSNA, 2017.


Asunto(s)
Neoplasias Colorrectales/terapia , Oro/uso terapéutico , Neoplasias Hepáticas/secundario , Neoplasias Hepáticas/terapia , Terapia por Luz de Baja Intensidad/métodos , Nanopartículas de Magnetita/uso terapéutico , Nanoconjugados/uso terapéutico , Animales , Anticuerpos Monoclonales/farmacocinética , Línea Celular Tumoral , Neoplasias Colorrectales/inmunología , Neoplasias Colorrectales/patología , Hipertermia Inducida/métodos , Neoplasias Hepáticas/inmunología , Mucina 5B/inmunología , Ratas , Ratas Wistar , Resultado del Tratamiento
20.
Radiology ; 285(3): 699-701, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29155621

RESUMEN

Image-guided percutaneous thermal ablation has been one of the principal tools in management of unresectable liver malignancies, including colorectal liver metastases (CRLM) ( 1 ). Currently, however, this technique is suitable mainly for tumors less than 4-5 cm in diameter and also results in incomplete ablation at tumor margins ( 2 ). To solve these problems, efforts have been made to combine thermal ablation with other treatment options, such as systemic and intra-arterial administration of therapeutics ( 3 - 5 ). In this issue of Radiology, White et al ( 6 ) introduced their work on development of an alternative approach by using biofunctionalized hybrid magnetic gold nanoparticles (HNPs) as catalysts for photothermal ablation of CRLM. They found that (a) the targeted (anti-MG1) HNPs are noncytotoxic and have greater than 20% intratumoral accumulation and (b) systemic administration of anti-MG1 HNPs can enlarge a tumor's necrotic zone with photothermal ablation. The results of this study establish the proof of the concept that targeted HNPs can enhance the therapeutic effect of photothermal ablation, which presents an exciting strategy for complete removal of CRLM by integrating two rapidly advancing scientific fields-interventional radiology and nanotechnology.


Asunto(s)
Neoplasias Colorrectales/secundario , Neoplasias Colorrectales/terapia , Neoplasias Hepáticas/patología , Terapia Molecular Dirigida/tendencias , Nanoconjugados/uso terapéutico , Fototerapia/tendencias , Investigación Biomédica Traslacional/tendencias , Animales , Disciplinas de las Ciencias Biológicas/tendencias , Neoplasias Colorrectales/patología , Humanos , Hipertermia Inducida/tendencias , Neoplasias Hepáticas/terapia , Nanoconjugados/química , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA