Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Development ; 141(4): 784-94, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24496616

RESUMEN

Air breathing is an essential motor function for vertebrates living on land. The rhythm that drives breathing is generated within the central nervous system and relayed via specialised subsets of spinal motor neurons to muscles that regulate lung volume. In mammals, a key respiratory muscle is the diaphragm, which is innervated by motor neurons in the phrenic nucleus. Remarkably, relatively little is known about how this crucial subtype of motor neuron is generated during embryogenesis. Here, we used direct differentiation of motor neurons from mouse embryonic stem cells as a tool to identify genes that direct phrenic neuron identity. We find that three determinants, Pou3f1, Hoxa5 and Notch, act in combination to promote a phrenic neuron molecular identity. We show that Notch signalling induces Pou3f1 in developing motor neurons in vitro and in vivo. This suggests that the phrenic neuron lineage is established through a local source of Notch ligand at mid-cervical levels. Furthermore, we find that the cadherins Pcdh10, which is regulated by Pou3f1 and Hoxa5, and Cdh10, which is controlled by Pou3f1, are both mediators of like-like clustering of motor neuron cell bodies. This specific Pcdh10/Cdh10 activity might provide the means by which phrenic neurons are assembled into a distinct nucleus. Our study provides a framework for understanding how phrenic neuron identity is conferred and will help to generate this rare and inaccessible yet vital neuronal subtype directly from pluripotent stem cells, thus facilitating subsequent functional investigations.


Asunto(s)
Cadherinas/metabolismo , Células Madre Embrionarias/citología , Neuronas Motoras/citología , Factor 6 de Transcripción de Unión a Octámeros/metabolismo , Nervio Frénico/embriología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Diafragma/inervación , Citometría de Flujo , Proteínas de Homeodominio/metabolismo , Ratones , Neuronas Motoras/fisiología , Fosfoproteínas/metabolismo , Nervio Frénico/citología , Protocadherinas , Reacción en Cadena en Tiempo Real de la Polimerasa , Receptores Notch/metabolismo , Transducción de Señal/genética , Factores de Transcripción , Transcriptoma
2.
Am J Physiol Lung Cell Mol Physiol ; 304(12): L817-30, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23585229

RESUMEN

Hox genes encode transcription factors governing complex developmental processes in several organs. A subset of Hox genes are expressed in the developing lung. Except for Hoxa5, the lack of overt lung phenotype in single mutants suggests that Hox genes may not play a predominant role in lung ontogeny or that functional redundancy may mask anomalies. In the Hox5 paralog group, both Hoxa5 and Hoxb5 genes are expressed in the lung mesenchyme whereas Hoxa5 is also expressed in the tracheal mesenchyme. Herein, we generated Hoxa5;Hoxb5 compound mutant mice to evaluate the relative contribution of each gene to lung development. Hoxa5;Hoxb5 mutants carrying the four mutated alleles displayed an aggravated lung phenotype, resulting in the death of the mutant pups at birth. Characterization of the phenotype highlighted the role of Hoxb5 in lung formation, the latter being involved in branching morphogenesis, goblet cell specification, and postnatal air space structure, revealing partial functional redundancy with Hoxa5. However, the Hoxb5 lung phenotypes were less severe than those seen in Hoxa5 mutants, likely because of Hoxa5 compensation. New specific roles for Hoxa5 were also unveiled, demonstrating the extensive contribution of Hoxa5 to the developing respiratory system. The exclusive expression of Hoxa5 in the trachea and the phrenic motor column likely underlies the Hoxa5-specific trachea and diaphragm phenotypes. Altogether, our observations establish that the Hoxa5 and Hoxb5 paralog genes shared some functions during lung morphogenesis, Hoxa5 playing a predominant role.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/genética , Pulmón/metabolismo , Morfogénesis/genética , Fosfoproteínas/genética , Animales , Diafragma/embriología , Diafragma/metabolismo , Embrión de Mamíferos , Femenino , Células Caliciformes/metabolismo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Homocigoto , Pulmón/embriología , Masculino , Ratones , Ratones Transgénicos , Fosfoproteínas/metabolismo , Nervio Frénico/embriología , Nervio Frénico/metabolismo , Tráquea/embriología , Tráquea/metabolismo , Factores de Transcripción
4.
Adv Exp Med Biol ; 669: 33-6, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20217316

RESUMEN

Although the phrenic motoneurons are relatively well-developed at the time of birth as compared to non-respiratory motoneurons, they show distinct anatomical changes during postnatal development. In the present review we summarize anatomical changes of phrenic motoneurons during pre- and postnatal development. Cell bodies of phrenic motoneurons migrate into the ventromedial region of the ventral horn of C3-C6 by E13-E14 in the rat. During development the sizes and surface areas of phrenic motoneurons are increased with changes in dendritic morphology.


Asunto(s)
Neuronas Motoras/citología , Nervio Frénico/citología , Nervio Frénico/crecimiento & desarrollo , Animales , Nervio Frénico/embriología
5.
Anat Sci Int ; 95(1): 143-152, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31414371

RESUMEN

We encountered a fetal pig with eventration of the diaphragm and pulmonary hypoplasia accompanied by phrenic nerve agenesis. The fetal pig was female measuring 34 cm in crown-rump length and about 1500 g in body weight. The diaphragm was a complete continuous sheet, but comprised a translucent membrane with residual muscular tissue only at the dorsolateral area of the right leaf of the diaphragm. The left leaf protruded extraordinarily toward the thoracic cavity. The left phrenic nerve was completely absent, while there was a slight remnant of the right phrenic nerve that supplied the dorsolateral muscular area of the right leaf. Both lungs were small, and the number of smaller bronchioles arising from the bronchioles was decreased to about half of that of the normal lung. Additionally, the right and left subclavius muscles and nerves could not be identified. These findings imply that the diaphragm, the subclavius muscle and nerves innervating them comprise a developmental module, which would secondarily affect lung development. It is considered that the present case is analogous to the animal model of congenital eventration of the diaphragm in humans.


Asunto(s)
Eventración Diafragmática/embriología , Nervio Frénico/anomalías , Nervio Frénico/embriología , Porcinos/embriología , Anomalías Múltiples/embriología , Anomalías Múltiples/patología , Animales , Eventración Diafragmática/patología , Modelos Animales de Enfermedad , Pulmón/anomalías , Pulmón/embriología , Pulmón/patología , Enfermedades Pulmonares/embriología , Enfermedades Pulmonares/patología , Nervio Frénico/patología
6.
J Appl Physiol (1985) ; 104(6): 1818-27, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18403452

RESUMEN

At the time of birth, respiratory muscles must be activated to sustain ventilation. The perinatal development of respiratory motor units (comprising an individual motoneuron and the muscle fibers it innervates) shows remarkable features that enable mammals to transition from in utero conditions to the air environment in which the remainder of their life will occur. In addition, significant postnatal maturation is necessary to provide for the range of motor behaviors necessary during breathing, swallowing, and speech. As the main inspiratory muscle, the diaphragm muscle (and the phrenic motoneurons that innervate it) plays a key role in accomplishing these behaviors. Considerable diversity exists across diaphragm motor units, but the determinant factors for this diversity are unknown. In recent years, the mechanisms underlying the development of respiratory motor units have received great attention, and this knowledge may provide the opportunity to design appropriate interventions for the treatment of respiratory disease not only in the perinatal period but likely also in the adult.


Asunto(s)
Diafragma/crecimiento & desarrollo , Diafragma/inervación , Neuronas Motoras/fisiología , Desarrollo de Músculos , Nervio Frénico/crecimiento & desarrollo , Respiración , Adaptación Fisiológica , Envejecimiento , Animales , Deglución , Diafragma/embriología , Humanos , Inhalación , Modelos Animales , Unión Neuromuscular/embriología , Unión Neuromuscular/crecimiento & desarrollo , Nervio Frénico/embriología , Habla
7.
Elife ; 62017 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-28639940

RESUMEN

The diaphragm muscle is essential for breathing in mammals. Its asymmetric elevation during contraction correlates with morphological features suggestive of inherent left-right (L/R) asymmetry. Whether this asymmetry is due to L versus R differences in the muscle or in the phrenic nerve activity is unknown. Here, we have combined the analysis of genetically modified mouse models with transcriptomic analysis to show that both the diaphragm muscle and phrenic nerves have asymmetries, which can be established independently of each other during early embryogenesis in pathway instructed by Nodal, a morphogen that also conveys asymmetry in other organs. We further found that phrenic motoneurons receive an early L/R genetic imprint, with L versus R differences both in Slit/Robo signaling and MMP2 activity and in the contribution of both pathways to establish phrenic nerve asymmetry. Our study therefore demonstrates L-R imprinting of spinal motoneurons and describes how L/R modulation of axon guidance signaling helps to match neural circuit formation to organ asymmetry.


Asunto(s)
Diafragma/embriología , Diafragma/inervación , Vías Nerviosas/embriología , Nervio Frénico/embriología , Animales , Animales Modificados Genéticamente , Perfilación de la Expresión Génica , Ratones , Neuronas Motoras/fisiología , Proteína Nodal/metabolismo , Transducción de Señal
8.
Exp Neurol ; 287(Pt 2): 137-143, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27181410

RESUMEN

The review outlines data consistent with the hypothesis that inspiratory drive transmission that generates fetal breathing movements (FBMs) is essential for the developmental plasticity of phrenic motoneurons (PMNs) and diaphragm musculature prior to birth. A systematic examination during the perinatal period demonstrated a very marked transformation of PMN and diaphragm properties coinciding with the onset and strengthening of inspiratory drive and FBMs in utero. This included studies of age-dependent changes of: i) morphology, neuronal coupling, passive and electrophysiological properties of PMNs; ii) rhythmic inspiratory activity in vitro; iii) FBMs generated in vivo detected by ultrasonography; iv) contractile and end-plate potential properties of diaphragm musculature. We also propose how the hypothesis can be further evaluated with studies of perinatal hypoglossal motoneuron-tongue musculature and the use of Dbx1 null mice that provide an experimental model lacking descending inspiratory drive transmission in utero.


Asunto(s)
Diafragma/fisiología , Inhalación/fisiología , Neuronas Motoras/fisiología , Plasticidad Neuronal/fisiología , Nervio Frénico , Animales , Feto , Humanos , Ratones , Nervio Frénico/citología , Nervio Frénico/embriología , Nervio Frénico/crecimiento & desarrollo
9.
J Neurosci ; 24(36): 7848-58, 2004 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-15356197

RESUMEN

The capacity of embryonic stem (ES) cells to form functional motoneurons (MNs) and appropriate connections with muscle was investigated in vitro. ES cells were obtained from a transgenic mouse line in which the gene for enhanced green fluorescent protein (eGFP) is expressed under the control of the promotor of the MN specific homeobox gene Hb9. ES cells were exposed to retinoic acid (RA) and sonic hedgehog agonist (Hh-Ag1.3) to stimulate differentiation into MNs marked by expression of eGFP and the cholinergic transmitter synthetic enzyme choline acetyltransferase. Whole-cell patch-clamp recordings were made from eGFP-labeled cells to investigate the development of functional characteristics of MNs. In voltage-clamp mode, currents, including EPSCs, were recorded in response to exogenous applications of GABA, glycine, and glutamate. EGFP-labeled neurons also express voltage-activated ion channels including fast-inactivating Na(+) channels, delayed rectifier and I(A)-type K(+) channels, and Ca(2+) channels. Current-clamp recordings demonstrated that eGFP-positive neurons generate repetitive trains of action potentials and that l-type Ca(2+) channels mediate sustained depolarizations. When cocultured with a muscle cell line, clustering of acetylcholine receptors on muscle fibers adjacent to developing axons was seen. Intracellular recordings of muscle fibers adjacent to eGFP-positive axons revealed endplate potentials that increased in amplitude and frequency after glutamate application and were sensitive to TTX and curare. In summary, our findings demonstrate that MNs derived from ES cells develop appropriate transmitter receptors, intrinsic properties necessary for appropriate patterns of action potential firing and functional synapses with muscle fibers.


Asunto(s)
Neuronas Motoras/fisiología , Células Madre Pluripotentes/citología , Acetilcolina/farmacología , Potenciales de Acción/efectos de los fármacos , Animales , Diferenciación Celular , Linaje de la Célula , Células Cultivadas/fisiología , Embrión de Pollo , Embrión de Mamíferos/citología , Regulación de la Expresión Génica , Genes Reporteros , Ácido Glutámico/farmacología , Glicina/farmacología , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas de Homeodominio/genética , Potenciales de la Membrana , Ratones , Ratones Transgénicos , Neuronas Motoras/citología , Neuronas Motoras/efectos de los fármacos , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Especificidad de Órganos , Organoides/efectos de los fármacos , Organoides/metabolismo , Técnicas de Placa-Clamp , Nervio Frénico/embriología , Nervio Frénico/fisiología , Regiones Promotoras Genéticas , Ratas , Tetrodotoxina/farmacología , Factores de Transcripción/genética , Tretinoina/farmacología , Ácido gamma-Aminobutírico/farmacología
10.
Folia Morphol (Warsz) ; 64(4): 253-68, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16425151

RESUMEN

In three human foetuses aged 15, 17, and 23 weeks the number of axons surrounded by single Schwann cells was counted. These Schwann cell/axon complexes form the Schwann units. The largest Schwann units in the foetus aged 15 weeks contained 232 axons, in the foetus of 17 weeks the number was 140 and in the foetus of 23 weeks the largest units contained 65 axons.


Asunto(s)
Axones/ultraestructura , Feto/anatomía & histología , Fibras Nerviosas Mielínicas/ultraestructura , Nervio Frénico/ultraestructura , Células de Schwann/ultraestructura , Femenino , Edad Gestacional , Humanos , Nervio Frénico/embriología , Embarazo
11.
J Comp Neurol ; 218(4): 365-77, 1983 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-6619320

RESUMEN

A study has been made of the growth of cervical nerves C3-C6 to the rat diaphragm. At 11 days of embryonic age these cervical nerves first project out of the spinal cord toward the cardinal veins and later form the left and right phrenic nerve trunks. During the next 2 days, the phrenic nerves grow caudally in close association with the cardinal veins toward the diaphragm. At the growing tips of these nerve trunks the growth cones of axons were observed every 1-2 micrometers. The last axon did not project more than 2 micrometers ahead of any neighbouring axons. At 14 days the phrenic nerves reach the level of the developing diaphragm and converge into pools of premuscle cells. Previous studies have suggested that the phrenic nerve enters the premuscle masses of the diaphragm at an early developmental stage when the premuscle masses are at approximately the segmental levels C3-C6. This study shows that the phrenic nerves must grow to more caudal levels in order to reach the premuscle cells of the diaphragm. Furthermore, the leading axons of the phrenic nerve trunk do not project in a pioneering fashion, far in advance of the trailing axons.


Asunto(s)
Diafragma/embriología , Nervio Frénico/embriología , Animales , Axones/fisiología , Recuento de Células , Microscopía Electrónica , Nervio Frénico/ultraestructura , Ratas , Ratas Endogámicas
12.
J Comp Neurol ; 382(4): 459-68, 1997 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-9184993

RESUMEN

The embryogenesis of the mammalian phrenic nerve and diaphragm continues to be poorly understood. The purpose of this study was to reexamine this general issue and resolve some long-standing controversies. Specifically, we examined 1) the migratory path and the initial target for phrenic axons; 2) the relationship between the phrenic nerve and the primordial diaphragm during descent from the cervical to the thoracic spinal cord levels; and 3) the nature of the interaction between the progression of phrenic nerve intramuscular branching, myoblast and/or myogenic cell migration, and diaphragmatic myotube formation. We demonstrate that a leading group of "pioneering" phrenic axons migrate along a well-defined track of neural cell adhesion molecule (NCAM)-expressing and low-affinity nerve growth factor (p75) receptor-expressing cells to reach the primordial diaphragm, the pleuroperitoneal fold, at embryonic day (E) 13. During the next day of development, the phrenic nerve and the primordial diaphragm descend together toward the level of the thoracic spinal cord. By E14.5, intramuscular branching has commenced. There is a tight spatiotemporal correlation between the outgrowth of intramuscular phrenic nerve branches, the distribution of myoblasts and/or myogenic cells, and the formation of myotubes within the developing diaphragm, implicating intimate mutual regulation.


Asunto(s)
Diafragma/embriología , Nervio Frénico/embriología , Animales , Axones/ultraestructura , Movimiento Celular/fisiología , Desarrollo Embrionario y Fetal/fisiología , Músculo Liso/embriología , Unión Neuromuscular/embriología , Peritoneo/embriología , Nervio Frénico/ultraestructura , Pleura/embriología , Ratas
13.
J Comp Neurol ; 382(4): 469-79, 1997 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-9184994

RESUMEN

This study examined the morphological changes that a homogeneous mammalian spinal motoneuron population undergoes during foetal development. Retrograde labelling of the phrenic nerve with the carbocyanine dye, DiI, was used to visualise developmental changes in phrenic motoneuron morphology within the cervical spinal cord of perinatal rats from embryonic day (E) 13.5 to birth (ca. E21). Groups of intimately associated phrenic somata had migrated into the ventromedial region of cervical segments C3-C6 by E14. This migration was followed by their progressive compaction into a tightly aligned column by E18. During this period, close contact was maintained between phrenic somata throughout the motor pool, suggestive of the presence of gap junctions. From E15 to E18, extensive dendritic arborisations fanned out dorsolaterally and ventromedially into the white matter and the floor plate. By E19, however, dendritic fasciculation and retraction and the extension of newly formed rostrocaudally projecting dendrites had resulted in the approximation of the dendritic morphology observed at birth. These data demonstrate that morphological maturation of phrenic motoneurons occurs subsequently to the onset of functional recruitment and the arrival of central processes of dorsal root ganglion neurons within the ventral horn (ca. E17). By birth, a number of immature features remain, including a larger proportion of neurites that project into the white matter and into the floor plate, the presence of growth cones on a number of dendrites, and close contact between populations of contralaterally derived dendrites.


Asunto(s)
Ganglios Espinales/embriología , Neuronas Motoras/ultraestructura , Nervio Frénico/embriología , Animales , Dendritas/ultraestructura , Desarrollo Embrionario y Fetal/fisiología , Ganglios Espinales/citología , Neuronas Aferentes/ultraestructura , Nervio Frénico/citología , Ratas , Ratas Sprague-Dawley
14.
J Comp Neurol ; 391(3): 275-92, 1998 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-9492201

RESUMEN

Polysialylation of the neural cell adhesion molecule (NCAM) converts it into an anti-adhesive molecule, attenuating intercellular adhesion and repelling apposed membranes. Previous studies have demonstrated that interaxonal repulsion, or defasciculation, induced by polysialylated NCAM (PSA-NCAM) expressed along outgrowing chick motor axons promotes intramuscular branching and facilitates differential guidance of segregating axonal populations. In the present study, we have examined the expression of PSA-NCAM in a developing mammalian motor system during axonal outgrowth, separation of distinct axonal populations, and intramuscular branching. Furthermore, we provide the first clear demonstration of the spatiotemporal modulation of PSA-NCAM expression on myotubes during each stage of myogenesis. Immunohistochemical labelling was used to compare the spatiotemporal pattern of PSA-NCAM expression with those of total-NCAM, the cell adhesion molecule L1, and growth associated protein (GAP-43) during development of the phrenic nerve and diaphragm of fetal rats (embryonic days, E11-E19). During segregation of phrenic and brachial axonal populations at the brachial plexus (E12.5-E13), PSA-NCAM expression was restricted to phrenics, being absent from brachial motoneurons. Both populations labelled equivalently for NCAM, L1, and GAP-43. We postulate that PSA-NCAM may be a component of the molecular machinery that specifically guides phrenic motoneuron growth at the brachial plexus. During diaphragmatic morphogenesis, PSA-NCAM expression: (i) remained high within the phrenic nerve throughout intramuscular branching; (ii) was transiently up-regulated on myotubes during myotube separation associated with primary and secondary myogenesis; (iii) was restricted to those regions of primary and secondary myotube membranes, which were juxtaposed and about to separate. These data suggest a role for PSA-NCAM in the guidance of specific subsets of mammalian motoneurons and in intramuscular branching, and demonstrate an intimate correlation between PSA-NCAM expression and myotube separation.


Asunto(s)
Axones/metabolismo , Neuronas Motoras/metabolismo , Músculos/anatomía & histología , Ácido N-Acetilneuramínico/química , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Animales , Biopolímeros , Plexo Braquial/embriología , Desarrollo Embrionario y Fetal/fisiología , Neuronas Motoras/ultraestructura , Músculos/embriología , Músculos/metabolismo , Moléculas de Adhesión de Célula Nerviosa/química , Nervio Frénico/embriología , Ratas , Raíces Nerviosas Espinales/embriología
15.
J Comp Neurol ; 455(4): 477-87, 2003 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-12508321

RESUMEN

Textbooks of embryology provide a standard set of drawings and text reflecting the traditional interpretation of phrenic nerve and diaphragm development based on anatomical dissections of embryonic tissue. Here, we revisit this issue, taking advantage of immunohistochemical markers for muscle precursors in conjunction with mouse mutants to perform a systematic examination of phrenic-diaphragm embryogenesis. This includes examining the spatiotemporal relationship of phrenic axon outgrowth and muscle precursors during different stages of myogenesis. Additionally, mutant mice lacking c-met receptors were used to visualize the mesenchymal substratum of the developing diaphragm in the absence of myogenic cells. We found no evidence for contributions to the diaphragm musculature from the lateral body wall, septum transversum, or esophageal mesenchyme, as standard dogma would state. Nor did the data support the hypothesis that the crural diaphragm is of distinct embryological origins. Rather, we found that myogenic cells and axons destined to form the neuromuscular component of the diaphragm coalesce within the pleuroperitoneal fold (PPF). It is the expansion of these components of the PPF that leads to the formation of the diaphragm. Furthermore, we extended these studies to examine the developing diaphragm in an animal model of congenital diaphragmatic hernia (CDH). We find that malformation of the PPF mesenchymal substratum leads to the defect characteristic of CDH. In summary, the data demonstrates that a significant revision of narratives describing normal and pathological development of the diaphragm is warranted.


Asunto(s)
Diafragma/anomalías , Hernia Diafragmática/patología , Hernias Diafragmáticas Congénitas , Nervio Frénico/embriología , Anomalías del Sistema Respiratorio/patología , Animales , División Celular , Movimiento Celular , Diafragma/inervación , Diafragma/patología , Modelos Animales de Enfermedad , Hernia Diafragmática/inducido químicamente , Ratones , Desarrollo de Músculos , Fibras Musculares Esqueléticas/citología , Éteres Fenílicos , Nervio Frénico/citología , Proteínas Proto-Oncogénicas c-met/deficiencia , Proteínas Proto-Oncogénicas c-met/genética , Ratas , Anomalías del Sistema Respiratorio/genética , Células Madre/citología , Células Madre/metabolismo
16.
J Appl Physiol (1985) ; 83(2): 338-47, 1997 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-9262424

RESUMEN

Congenital diaphragmatic hernia (CDH) is a developmental anomaly characterized by the malformation of the diaphragm and impaired lung development. In the present study, we tested several hypotheses regarding the pathogenesis of CDH, including those suggesting that the primary defect is due to abnormal 1) lung development, 2) phrenic nerve formation, 3) developmental processes underlying diaphragmatic myotube formation, 4) pleuroperitoneal canal closure, or 5) formation of the primordial diaphragm within the pleuroperitoneal fold. The 2,4-dichloro-phenyl-p-nitrophenyl ether (nitrofen)-induced CDH rat model was used for this study. The following parameters were compared between normal and herniated fetal rats at various stages of development: 1) weight, protein, and DNA content of lungs; 2) phrenic nerve diameter, axonal number, and motoneuron distribution; 3) formation of the phrenic nerve intramuscular branching pattern and diaphragmatic myotube formation; and 4) formation of the precursor of the diaphragmatic musculature, the pleuroperitoneal fold. We demonstrated that previously proposed theories regarding the primary role of the lung, phrenic nerve, myotube formation, and the closure of pleuroperitoneal canal in the pathogenesis of CDH are incorrect. Rather, the primary defect associated with CDH, at least in the nitrofen rat model, occurs at the earliest stage of diaphragm development, the formation of the pleuroperitoneal fold.


Asunto(s)
Hernia Diafragmática/embriología , Hernias Diafragmáticas Congénitas , Éteres Fenílicos , Animales , Diafragma/embriología , Desarrollo Embrionario y Fetal , Feto/fisiología , Pulmón/embriología , Nervio Frénico/embriología , Ratas/embriología , Ratas Sprague-Dawley
17.
Brain Res Dev Brain Res ; 114(2): 217-27, 1999 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-10320761

RESUMEN

Experiments were performed in vitro on foetal (embryonic days 18 to 21, E18-21) and newborn rat (postnatal days 0 to 3, P0-3) brainstem spinal cord preparations to analyse the perinatal developmental changes in the effects induced by substance P. Superfusion of the preparations with SP-containing artificial cerebrospinal fluid (aCSF) induced significant increase in the respiratory frequency of newborn rats (10-9 M), whereas concentration up to 10-7 M induced no change in foetal preparations. A whole cell patch clamp approach was used to record intracellularly from phrenic motoneurones. In newborn or E20-21 foetal rats SP-containing aCSF depolarised the phrenic motoneurones, increased their input resistance, reduced the rheobase current and shifted the frequency-intensity curves upward. In E18 foetal rats, no change was evoked by SP. A peptidase inhibitor mixture was used to block the enzymatic degradation of endogenous SP. This mixture was ineffective in changing the respiratory frequency in newborn and foetal preparations. In newborn rat phrenic motoneurones, the peptidase inhibitor mixture induced changes similar to those caused by SP but no change was induced in foetal rats. These results indicate that SP may modulate (i) the activity of the respiratory rhythm generator in newborn but not in foetal rats, and (ii) the activity of phrenic motoneurones at E20, E21 and in newborn rats but not at E18. Results obtained using the peptidase inhibitor mixture suggest that endogenous SP is probably not involved in the control of the respiratory rhythm in the prenatal period, but may influence the activity of the phrenic motoneurones after birth.


Asunto(s)
Envejecimiento/fisiología , Tronco Encefálico/efectos de los fármacos , Desarrollo Embrionario y Fetal/fisiología , Nervio Frénico/fisiología , Mecánica Respiratoria/fisiología , Médula Espinal/efectos de los fármacos , Sustancia P/farmacología , Animales , Animales Recién Nacidos , Tronco Encefálico/embriología , Tronco Encefálico/crecimiento & desarrollo , Feto , Edad Gestacional , Potenciales de la Membrana , Neuronas Motoras/fisiología , Naloxona/farmacología , Técnicas de Placa-Clamp , Nervio Frénico/embriología , Nervio Frénico/crecimiento & desarrollo , Ratas , Mecánica Respiratoria/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
18.
Anat Embryol (Berl) ; 169(2): 133-9, 1984.
Artículo en Inglés | MEDLINE | ID: mdl-6742452

RESUMEN

The purpose of this study was to determine whether hypoplasia of the lung bud might be responsible for cases of congenital diaphragmatic hernia (CDH). The lung bud normally develops in close association with the posthepatic mesenchymal plate ( PHMP ). The PHMP appears dorsal to the liver or on the ventral aspect of the pleuroperitoneal canal when the lung bud enters the pleuroperitoneal canal. Later, the PHMP grows to join the costal mesenchymal tissue via the pleuroperitoneal fold, thereby forming the primitive diaphragm. The present study found that the PHMP plays a cardinal role in the development of the diaphragm and that hypoplasia of the lung bud preceded hypoplasia of the PHMP in mice with CDH produced by the administration of Nitrofen to their pregnant mothers. This, along with findings related to the development of the phrenic nerve, makes it possible that pulmonary hypoplasia is a causal factor in the origin of congenital diaphragmatic hernia.


Asunto(s)
Hernias Diafragmáticas Congénitas , Animales , Diafragma/embriología , Hernia Diafragmática/embriología , Pulmón/embriología , Ratones , Ratones Endogámicos , Nervio Frénico/embriología
19.
Anat Embryol (Berl) ; 202(2): 159-77, 2000 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-10985434

RESUMEN

The development of phrenic motoneurons and descending bulbospinal projections to the cervical spinal cord have been examined in prenatal and early postnatal rats with the aid of the carbocyanine dyes DiI and DiA. Phrenic motoneurons could be identified by retrograde labelling as early as E13, while aggregation of phrenic motoneurons into a column and the formation of dendritic bundles became apparent from E16. The initial phrenic motoneuron dendritic bundles were oriented in the dorsolateral and ventromedial directions, while ventrolaterally directed bundles entering the marginal zone appeared by E16, and rostrocaudal bundles were clearly visible by E21. The column of phrenic motoneurons extended rostrocaudally from C2 to C6 at E13 and E14, but this became confined to the C3-5 segments by E21. Two-way tracing of connections between putative brainstem respiratory centres and cervical spinal cord with the carbocyanine dyes, DiI and DiA, indicated that brainstem bulbospinal neurons in the position of the adult ventral respiratory group (VRG) and medial parabrachial (MPB) nuclei appeared to project to the cervical cord white matter as early as E15 and may contribute axons to the grey matter of the cervical cord as early as E17 These findings are consistent with electrophysiological studies of respiratory function development in the fetal rat, which found relatively regular rhythmic phrenic discharge by E20 to 21. In summary, our findings indicate that the structural differentiation of phrenic motoneurons is well-advanced prior to birth and that the descending pathways involved in the control of respiratory function are in place several days before birth.


Asunto(s)
Tronco Encefálico/crecimiento & desarrollo , Nervio Frénico/crecimiento & desarrollo , Sistema Respiratorio/inervación , Animales , Transporte Axonal , Tronco Encefálico/embriología , Carbocianinas , Dendritas/ultraestructura , Femenino , Colorantes Fluorescentes , Neuronas Motoras/fisiología , Neuronas Motoras/ultraestructura , Vías Nerviosas/embriología , Vías Nerviosas/crecimiento & desarrollo , Vías Nerviosas/ultraestructura , Nervio Frénico/embriología , Nervio Frénico/ultraestructura , Embarazo , Compuestos de Piridinio , Ratas , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo
20.
Anat Embryol (Berl) ; 200(6): 625-43, 1999 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-10592066

RESUMEN

The development of the right phrenic nerve and the distribution of phrenic nerve afferents to the spinal cord have been examined with the aid of electron microscopy and carbocyanine dye retrograde diffusion along the phrenic nerve, respectively. The formation of fascicles in the right phrenic nerve commenced at E15, while Schwann cells penetrated the nerve from E17 and myelination began at P0. The total number of axons in the right phrenic nerve decreased from E15 (943, 965 in two animals) to E19 (539, 582), remained steady until P0 (564, 594) before rising to almost adult values by P7 (689, 934). The postnatal rise in number of axons appears to be due to a large influx of unmyelinated axons. Carbocyanine dye tracing revealed that at E13, neurons in dorsal root ganglia C(2) to C(6) contributed peripheral processes to the phrenic nerve. Phrenic afferents arrived in the spinal cord by E13 and penetrated the dorsal horn at E14. Three terminal fields for phrenic afferents became apparent by E17. These were:(1) in the central parts of laminae I to V, (2) medially in laminae V to VII or adjacent area X near the central canal, (3) in laminae VIII and IX, around the differentiating phrenic motoneurons. Around the time of birth, some phrenic afferents in the second group were distributed across the midline and could be seen to approach the ventromedial dendritic bundle of phrenic motoneurons on the contralateral side, but these were no longer seen by P4. Just before birth (E21), afferents in the third group divided into two further subsets, supplying the dorsolateral and ventromedial groups of phrenic motoneuron dendritic bundles, respectively. Our findings strongly suggest that phrenic afferent differentiation is largely complete by birth.


Asunto(s)
Vías Aferentes/embriología , Vías Aferentes/crecimiento & desarrollo , Axones/ultraestructura , Nervio Frénico/embriología , Nervio Frénico/crecimiento & desarrollo , Médula Espinal/embriología , Médula Espinal/crecimiento & desarrollo , Vías Aferentes/ultraestructura , Animales , Tamaño de la Célula , Vértebras Cervicales/embriología , Vértebras Cervicales/crecimiento & desarrollo , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Nervio Frénico/ultraestructura , Ratas , Ratas Wistar , Médula Espinal/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA