Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 705
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 85: 455-83, 2016 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26844394

RESUMEN

Nitrogenase is a versatile metalloenzyme that is capable of catalyzing two important reactions under ambient conditions: the reduction of nitrogen (N2) to ammonia (NH3), a key step in the global nitrogen cycle; and the reduction of carbon monoxide (CO) and carbon dioxide (CO2) to hydrocarbons, two reactions useful for recycling carbon waste into carbon fuel. The molybdenum (Mo)- and vanadium (V)-nitrogenases are two homologous members of this enzyme family. Each of them contains a P-cluster and a cofactor, two high-nuclearity metalloclusters that have crucial roles in catalysis. This review summarizes the progress that has been made in elucidating the biosynthetic mechanisms of the P-cluster and cofactor species of nitrogenase, focusing on what is known about the assembly mechanisms of the two metalloclusters in Mo-nitrogenase and giving a brief account of the possible assembly schemes of their counterparts in V-nitrogenase, which are derived from the homology between the two nitrogenases.


Asunto(s)
Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Coenzimas/metabolismo , Molibdeno/metabolismo , Nitrogenasa/metabolismo , Subunidades de Proteína/metabolismo , Secuencia de Aminoácidos , Amoníaco/química , Amoníaco/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Coenzimas/química , Hierro/química , Hierro/metabolismo , Molibdeno/química , Nitrógeno/química , Nitrógeno/metabolismo , Nitrogenasa/química , Nitrogenasa/genética , Oxidación-Reducción , Subunidades de Proteína/química , Subunidades de Proteína/genética , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Vanadio/química , Vanadio/metabolismo
2.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38319744

RESUMEN

Nitrogen is essential for all organisms, but biological nitrogen fixation (BNF) occurs only in a small fraction of prokaryotes. Previous studies divided nitrogenase-gene-carrying prokaryotes into Groups I to IV and provided evidence that BNF first evolved in bacteria. This study constructed a timetree of the evolution of nitrogen-fixation genes and estimated that archaea evolved BNF much later than bacteria and that nitrogen-fixing cyanobacteria evolved later than 1,900 MYA, considerably younger than the previous estimate of 2,200 MYA. Moreover, Groups III and II/I diverged ∼2,280 MYA, after the Kenorland supercontinent breakup (∼2,500-2,100 MYA) and the Great Oxidation Event (∼2,400-2,100 MYA); Groups III and Vnf/Anf diverged ∼2,086 MYA, after the Yarrabubba impact (∼2,229 MYA); and Groups II and I diverged ∼1,920 MYA, after the Vredefort impact (∼2,023 MYA). In summary, this study provided a timescale of BNF events and discussed the possible effects of geological events on BNF evolution.


Asunto(s)
Cianobacterias , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Cianobacterias/genética , Archaea/metabolismo , Nitrógeno
3.
Mol Biol Evol ; 41(4)2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38526235

RESUMEN

Molecular innovations within key metabolisms can have profound impacts on element cycling and ecological distribution. Yet, much of the molecular foundations of early evolved enzymes and metabolisms are unknown. Here, we bring one such mystery to relief by probing the birth and evolution of the G-subunit protein, an integral component of certain members of the nitrogenase family, the only enzymes capable of biological nitrogen fixation. The G-subunit is a Paleoproterozoic-age orphan protein that appears more than 1 billion years after the origin of nitrogenases. We show that the G-subunit arose with novel nitrogenase metal dependence and the ecological expansion of nitrogen-fixing microbes following the transition in environmental metal availabilities and atmospheric oxygenation that began ∼2.5 billion years ago. We identify molecular features that suggest early G-subunit proteins mediated cofactor or protein interactions required for novel metal dependency, priming ancient nitrogenases and their hosts to exploit these newly diversified geochemical environments. We further examined the degree of functional specialization in G-subunit evolution with extant and ancestral homologs using laboratory reconstruction experiments. Our results indicate that permanent recruitment of the orphan protein depended on the prior establishment of conserved molecular features and showcase how contingent evolutionary novelties might shape ecologically important microbial innovations.


Asunto(s)
Fijación del Nitrógeno , Nitrogenasa , Nitrogenasa/genética , Nitrogenasa/química , Nitrogenasa/metabolismo , Fijación del Nitrógeno/genética , Nitrógeno/metabolismo
4.
Proc Natl Acad Sci U S A ; 119(49): e2215855119, 2022 12 06.
Artículo en Inglés | MEDLINE | ID: mdl-36459643

RESUMEN

Most diazotrophs fix nitrogen only under nitrogen-limiting conditions, for example, in the presence of relatively low concentrations of NH4+ (0 to 2 mM). However, Paenibacillus sabinae T27 exhibits an unusual pattern of nitrogen regulation of nitrogen fixation, since although nitrogenase activities are high under nitrogen-limiting conditions (0 to 3 mM NH4+) and are repressed under conditions of nitrogen sufficiency (4 to 30 mM NH4+), nitrogenase activity is reestablished when very high levels of NH4+ (30 to 300 mM) are present in the medium. To further understand this pattern of nitrogen fixation regulation, we carried out transcriptome analyses of P. sabinae T27 in response to increasing ammonium concentrations. As anticipated, the nif genes were highly expressed, either in the absence of fixed nitrogen or in the presence of a high concentration of NH4+ (100 mM), but were subject to negative feedback regulation at an intermediate concentration of NH4+ (10 mM). Among the differentially expressed genes, ald1, encoding alanine dehydrogenase (ADH1), was highly expressed in the presence of a high level of NH4+ (100 mM). Mutation and complementation experiments revealed that ald1 is required for nitrogen fixation at high ammonium concentrations. We demonstrate that alanine, synthesized by ADH1 from pyruvate and NH4+, inhibits GS activity, leading to a low intracellular glutamine concentration that prevents feedback inhibition of GS and mimics nitrogen limitation, enabling activation of nif transcription by the nitrogen-responsive regulator GlnR in the presence of high levels of extracellular ammonium.


Asunto(s)
Alanina-Deshidrogenasa , Compuestos de Amonio , Fijación del Nitrógeno/genética , Alanina/genética , Nitrógeno , Ácido Pirúvico , Nitrogenasa/genética
5.
PLoS Genet ; 18(6): e1010276, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35727841

RESUMEN

Due to the costly energy demands of nitrogen (N) fixation, diazotrophic bacteria have evolved complex regulatory networks that permit expression of the catalyst nitrogenase only under conditions of N starvation, whereas the same condition stimulates upregulation of high-affinity ammonia (NH3) assimilation by glutamine synthetase (GS), preventing excess release of excess NH3 for plants. Diazotrophic bacteria can be engineered to excrete NH3 by interference with GS, however control is required to minimise growth penalties and prevent unintended provision of NH3 to non-target plants. Here, we tested two strategies to control GS regulation and NH3 excretion in our model cereal symbiont Azorhizobium caulinodans AcLP, a derivative of ORS571. We first attempted to recapitulate previous work where mutation of both PII homologues glnB and glnK stimulated GS shutdown but found that one of these genes was essential for growth. Secondly, we expressed unidirectional adenylyl transferases (uATs) in a ΔglnE mutant of AcLP which permitted strong GS shutdown and excretion of NH3 derived from N2 fixation and completely alleviated negative feedback regulation on nitrogenase expression. We placed a uAT allele under control of the NifA-dependent promoter PnifH, permitting GS shutdown and NH3 excretion specifically under microaerobic conditions, the same cue that initiates N2 fixation, then deleted nifA and transferred a rhizopine nifAL94Q/D95Q-rpoN controller plasmid into this strain, permitting coupled rhizopine-dependent activation of N2 fixation and NH3 excretion. This highly sophisticated and multi-layered control circuitry brings us a step closer to the development of a "synthetic symbioses" where N2 fixation and NH3 excretion could be specifically activated in diazotrophic bacteria colonising transgenic rhizopine producing cereals, targeting delivery of fixed N to the crop while preventing interaction with non-target plants.


Asunto(s)
Azorhizobium caulinodans , Fijación del Nitrógeno , Amoníaco/metabolismo , Azorhizobium caulinodans/genética , Azorhizobium caulinodans/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Glutamato-Amoníaco Ligasa/genética , Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo
6.
Proc Natl Acad Sci U S A ; 119(16): e2117465119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412890

RESUMEN

Engineering N2-fixing symbioses between cereals and diazotrophic bacteria represents a promising strategy to sustainably deliver biologically fixed nitrogen (N) in agriculture. We previously developed novel transkingdom signaling between plants and bacteria, through plant production of the bacterial signal rhizopine, allowing control of bacterial gene expression in association with the plant. Here, we have developed both a homozygous rhizopine producing (RhiP) barley line and a hybrid rhizopine uptake system that conveys upon our model bacterium Azorhizobium caulinodans ORS571 (Ac) 103-fold improved sensitivity for rhizopine perception. Using this improved genetic circuitry, we established tight rhizopine-dependent transcriptional control of the nitrogenase master regulator nifA and the N metabolism σ-factor rpoN, which drove nitrogenase expression and activity in vitro and in situ by bacteria colonizing RhiP barley roots. Although in situ nitrogenase activity was suboptimally effective relative to the wild-type strain, activation was specific to RhiP barley and was not observed on the roots of wild-type plants. This work represents a key milestone toward the development of a synthetic plant-controlled symbiosis in which the bacteria fix N2 only when in contact with the desired host plant and are prevented from interaction with nontarget plant species.


Asunto(s)
Azorhizobium caulinodans , Grano Comestible , Hordeum , Fijación del Nitrógeno , Nitrogenasa , Raíces de Plantas , Azorhizobium caulinodans/enzimología , Azorhizobium caulinodans/genética , Grano Comestible/microbiología , Hordeum/microbiología , Inositol/análogos & derivados , Inositol/genética , Inositol/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Raíces de Plantas/microbiología , Simbiosis
7.
Annu Rev Biochem ; 78: 701-22, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19489731

RESUMEN

Nitrogen-fixing bacteria catalyze the reduction of dinitrogen (N(2)) to two ammonia molecules (NH(3)), the major contribution of fixed nitrogen to the biogeochemical nitrogen cycle. The most widely studied nitrogenase is the molybdenum (Mo)-dependent enzyme. The reduction of N(2) by this enzyme involves the transient interaction of two component proteins, designated the iron (Fe) protein and the MoFe protein, and minimally requires 16 magnesium ATP (MgATP), eight protons, and eight electrons. The current state of knowledge on how these proteins and small molecules together effect the reduction of N(2) to ammonia is reviewed. Included is a summary of the roles of the Fe protein and MgATP hydrolysis, information on the roles of the two metal clusters contained in the MoFe protein in catalysis, insights gained from recent success in trapping substrates and inhibitors at the active-site metal cluster FeMo cofactor, and finally, considerations of the mechanism of N(2) reduction catalyzed by nitrogenase.


Asunto(s)
Molibdoferredoxina/metabolismo , Nitrogenasa/metabolismo , Bacterias/enzimología , Bacterias/metabolismo , Molibdoferredoxina/química , Fijación del Nitrógeno , Nitrogenasa/química , Nitrogenasa/genética
8.
Crit Rev Biochem Mol Biol ; 57(5-6): 492-538, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36877487

RESUMEN

Understanding how Nature accomplishes the reduction of inert nitrogen gas to form metabolically tractable ammonia at ambient temperature and pressure has challenged scientists for more than a century. Such an understanding is a key aspect toward accomplishing the transfer of the genetic determinants of biological nitrogen fixation to crop plants as well as for the development of improved synthetic catalysts based on the biological mechanism. Over the past 30 years, the free-living nitrogen-fixing bacterium Azotobacter vinelandii emerged as a preferred model organism for mechanistic, structural, genetic, and physiological studies aimed at understanding biological nitrogen fixation. This review provides a contemporary overview of these studies and places them within the context of their historical development.


Asunto(s)
Azotobacter vinelandii , Fijación del Nitrógeno , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Nitrogenasa/química , Nitrogenasa/genética , Nitrogenasa/metabolismo , Amoníaco , Nitrógeno
9.
Plant Cell Physiol ; 65(6): 1050-1064, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38305573

RESUMEN

In the genome of the heterocystous cyanobacterium Calothrix sp. NIES-4101 (NIES-4101), the four genes essential for nitrogen fixation (nifB, nifH, nifD and nifK) are highly fragmented into 13 parts in a 350-kb chromosomal region, and four of these parts are encoded in the reverse strand. Such a complex fragmentation feature makes it difficult to restore the intact nifBHDK genes by the excision mechanism found in the nifD gene of the Anabaena sp. PCC 7120 heterocyst. To examine the nitrogen-fixing ability of NIES-4101, we confirmed that NIES-4101 grew well on a combined nitrogen-free medium and showed high nitrogenase activity, which strongly suggested that the complete nifBHDK genes are restored by a complex recombination process in heterocysts. Next, we resequenced the genome prepared from cells grown under nitrogen-fixing conditions. Two contigs covering the complete nifHDK and nifB genes were found by de novo assembly of the sequencing reads. In addition, the DNA fragments covering the nifBHDK operon were successfully amplified by PCR. We propose that the process of nifBHDK restoration occurs as follows. First, the nifD-nifK genes are restored by four excision events. Then, the complete nifH and nifB genes are restored by two excision events followed by two successive inversion events between the inverted repeat sequences and one excision event, forming the functional nif gene cluster, nifB-fdxN-nifS-nifU-nifH-nifD-nifK. All genes coding recombinases responsible for these nine recombination events are located close to the terminal repeat sequences. The restoration of the nifBHDK genes in NIES-4101 is the most complex genome reorganization reported in heterocystous cyanobacteria.


Asunto(s)
Proteínas Bacterianas , Cianobacterias , Familia de Multigenes , Fijación del Nitrógeno , Recombinación Genética , Fijación del Nitrógeno/genética , Cianobacterias/genética , Cianobacterias/metabolismo , Recombinación Genética/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/genética , Genes Bacterianos
10.
Biochem Biophys Res Commun ; 728: 150345, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-38971001

RESUMEN

The transfer of nitrogen fixation (nif) genes from diazotrophs to non-diazotrophic hosts is of increasing interest for engineering biological nitrogen fixation. A recombinant Escherichia coli strain expressing Azotobacter vinelandii 18 nif genes (nifHDKBUSVQENXYWZMF, nifiscA, and nafU) were previously constructed and showed nitrogenase activity. In the present study, we constructed several E. coli strain derivatives in which all or some of the 18 nif genes were additionally integrated into the fliK locus of the chromosome in various combinations. E. coli derivatives with the chromosomal integration of nifiscA, nifU, and nifS, which are involved in the biosynthesis of the [4Fe-4S] cluster of dinitrogenase reductase, exhibited enhanced nitrogenase activity. We also revealed that overexpression of E. coli fldA and ydbK, which encode flavodoxin and flavodoxin-reducing enzyme, respectively, enhanced nitrogenase activity, likely by facilitating electron transfer to dinitrogenase reductase. The additional expression of nifM, putatively involved in maturation of dinitrogenase reductase, further enhanced nitrogenase activity and the amount of soluble NifH. By combining these factors, we successfully improved nitrogenase activity 10-fold.


Asunto(s)
Azotobacter vinelandii , Escherichia coli , Fijación del Nitrógeno , Nitrogenasa , Azotobacter vinelandii/genética , Azotobacter vinelandii/enzimología , Azotobacter vinelandii/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Nitrogenasa/metabolismo , Nitrogenasa/genética , Fijación del Nitrógeno/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
11.
Appl Environ Microbiol ; 90(3): e0209123, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38412007

RESUMEN

The novel genus Aquibium that lacks nitrogenase was recently reclassified from the Mesorhizobium genus. The genomes of Aquibium species isolated from water were smaller and had higher GC contents than those of Mesorhizobium species. Six Mesorhizobium species lacking nitrogenase were found to exhibit low similarity in the average nucleotide identity values to the other 24 Mesorhizobium species. Therefore, they were classified as the non-N2-fixing Mesorhizobium lineage (N-ML), an evolutionary intermediate species. The results of our phylogenomic analyses and the loss of Rhizobiales-specific fur/mur indicated that Mesorhizobium species may have evolved from Aquibium species through an ecological transition. Halotolerant and alkali-resistant Aquibium and Mesorhizobium microcysteis belonging to N-ML possessed many tripartite ATP-independent periplasmic transporter and sodium/proton antiporter subunits composed of seven genes (mrpABCDEFG). These genes were not present in the N2-fixing Mesorhizobium lineage (ML), suggesting that genes acquired for adaptation to highly saline and alkaline environments were lost during the evolution of ML as the habitat changed to soil. Land-to-water habitat changes in Aquibium species, close relatives of Mesorhizobium species, could have influenced their genomic evolution by the gain and loss of genes. Our study indicated that lineage-specific evolution could have played a significant role in shaping their genome architecture and conferring their ability to thrive in different habitats.IMPORTANCEPhylogenetic analyses revealed that the Aquibium lineage (AL) and non-N2-fixing Mesorhizobium lineage (N-ML) were monophyletically grouped into distinct clusters separate from the N2-fixing Mesorhizobium lineage (ML). The N-ML, an evolutionary intermediate species having characteristics of both ancestral and descendant species, could provide a genomic snapshot of the genetic changes that occur during adaptation. Genomic analyses of AL, N-ML, and ML revealed that changes in the levels of genes related to transporters, chemotaxis, and nitrogen fixation likely reflect adaptations to different environmental conditions. Our study sheds light on the complex and dynamic nature of the evolution of rhizobia in response to changes in their environment and highlights the crucial role of genomic analysis in understanding these processes.


Asunto(s)
Mesorhizobium , Mesorhizobium/genética , Fijación del Nitrógeno , Nitrogenasa/genética , Ecosistema , Agua , Simbiosis , Filogenia
12.
Plant Physiol ; 193(2): 1479-1490, 2023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37307568

RESUMEN

The endophytic nitrogen (N)-fixing bacterium A02 belongs to the genus Curtobacterium (Curtobacterium sp.) and is crucial for the N metabolism of cassava ( Manihot esculenta Crantz). We isolated the A02 strain from cassava cultivar SC205 and used the 15N isotope dilution method to study the impacts of A02 on growth and accumulation of N in cassava seedlings. Furthermore, the whole genome was sequenced to determine the N-fixation mechanism of A02. Compared with low N control (T1), inoculation with the A02 strain (T2) showed the highest increase in leaf and root dry weight of cassava seedlings, and 120.3 nmol/(mL·h) was the highest nitrogenase activity recorded in leaves, which were considered the main site for colonization and N-fixation. The genome of A02 was 3,555,568 bp in size and contained a circular chromosome and a plasmid. Comparison with the genomes of other short bacilli revealed that strain A02 showed evolutionary proximity to the endophytic bacterium NS330 (Curtobacterium citreum) isolated from rice (Oryza sativa) in India. The genome of A02 contained 13 nitrogen fixation (nif) genes, including 4 nifB, 1 nifR3, 2 nifH, 1 nifU, 1 nifD, 1 nifK, 1 nifE, 1 nifN, and 1 nifC, and formed a relatively complete N fixation gene cluster 8-kb long that accounted for 0.22% of the whole genome length. The nifHDK of strain A02 (Curtobacterium sp.) is identical to the Frankia alignment. Function prediction showed high copy number of the nifB gene was related to the oxygen protection mechanism. Our findings provide exciting information about the bacterial genome in relation to N support for transcriptomic and functional studies for increasing N use efficiency in cassava.


Asunto(s)
Manihot , Fijación del Nitrógeno , Fijación del Nitrógeno/genética , Manihot/genética , Manihot/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo , Secuencia de Bases , Bacterias/metabolismo , Nitrógeno/metabolismo
13.
PLoS Genet ; 17(6): e1009617, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34111137

RESUMEN

The energetic requirements for biological nitrogen fixation necessitate stringent regulation of this process in response to diverse environmental constraints. To ensure that the nitrogen fixation machinery is expressed only under appropriate physiological conditions, the dedicated NifL-NifA regulatory system, prevalent in Proteobacteria, plays a crucial role in integrating signals of the oxygen, carbon and nitrogen status to control transcription of nitrogen fixation (nif) genes. Greater understanding of the intricate molecular mechanisms driving transcriptional control of nif genes may provide a blueprint for engineering diazotrophs that associate with cereals. In this study, we investigated the properties of a single amino acid substitution in NifA, (NifA-E356K) which disrupts the hierarchy of nif regulation in response to carbon and nitrogen status in Azotobacter vinelandii. The NifA-E356K substitution enabled overexpression of nitrogenase in the presence of excess fixed nitrogen and release of ammonia outside the cell. However, both of these properties were conditional upon the nature of the carbon source. Our studies reveal that the uncoupling of nitrogen fixation from its assimilation is likely to result from feedback regulation of glutamine synthetase, allowing surplus fixed nitrogen to be excreted. Reciprocal substitutions in NifA from other Proteobacteria yielded similar properties to the A. vinelandii counterpart, suggesting that this variant protein may facilitate engineering of carbon source-dependent ammonia excretion amongst diverse members of this family.


Asunto(s)
Amoníaco/metabolismo , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Glutamato-Amoníaco Ligasa/genética , Nitrógeno/metabolismo , Nitrogenasa/genética , Factores de Transcripción/genética , Sustitución de Aminoácidos , Azotobacter vinelandii/enzimología , Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Glutamato-Amoníaco Ligasa/metabolismo , Mutación , Fijación del Nitrógeno , Nitrogenasa/metabolismo , Oxígeno/metabolismo , Suelo/química , Microbiología del Suelo , Factores de Transcripción/metabolismo , Transcripción Genética
14.
World J Microbiol Biotechnol ; 40(5): 136, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38499730

RESUMEN

Photosynthetic diazotrophs expressing iron-only (Fe-only) nitrogenase can be developed into a promising biofertilizer, as it is independent on the molybdenum availability in the soil. However, the expression of Fe-only nitrogenase in diazotrophs is repressed by the fixed nitrogen of the soil, limiting the efficiency of nitrogen fixation in farmland with low ammonium concentrations that are inadequate for sustainable crop growth. Here, we succeeded in constitutively expressing the Fe-only nitrogenase even in the presence of ammonium by controlling the transcription of Fe-only nitrogenase gene cluster (anfHDGK) with the transcriptional activator of Mo nitrogenase (NifA*) in several different ways, indicating that the engineered NifA* strains can be used as promising chassis cells for efficient expression of different types of nitrogenases. When applied as a biofertilizer, the engineered Rhodopseudomonas palustris effectively stimulated rice growth, contributing to the reduced use of chemical fertilizer and the development of sustainable agriculture.


Asunto(s)
Compuestos de Amonio , Oryza , Fijación del Nitrógeno , Nitrogenasa/genética , Nitrogenasa/metabolismo , Nitrógeno/metabolismo , Suelo
15.
Plant Mol Biol ; 112(4-5): 279-291, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37326800

RESUMEN

A long-held goal of synthetic biology has been the transfer of a bacterial nitrogen-fixation pathway into plants to reduce the use of chemical fertiliser on crops such as rice, wheat and maize. There are three classes of bacterial nitrogenase, named after their metal requirements, containing either a MoFe-, VFe- or FeFe-cofactor, that converts N2 gas to ammonia. Relative to the Mo-nitrogenase the Fe-nitrogenase is not as efficient for catalysis but has less complex genetic and metallocluster requirements, features that may be preferable for engineering into crops. Here we report the successful targeting of bacterial Fe-nitrogenase proteins, AnfD, AnfK, AnfG and AnfH, to plant mitochondria. When expressed as a single protein AnfD was mostly insoluble in plant mitochondria, but coexpression of AnfD with AnfK improved its solubility. Using affinity-based purification of mitochondrially expressed AnfK or AnfG we were able to demonstrate a strong interaction of AnfD with AnfK and a weaker interaction of AnfG with AnfDK. This work establishes that the structural components of the Fe-nitrogenase can be engineered into plant mitochondria and form a complex, which will be a requirement for function. This report outlines the first use of Fe-nitrogenase proteins within a plant as a preliminary step towards engineering an alternative nitrogenase into crops.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Nitrogenasa/genética , Nitrogenasa/metabolismo , Azotobacter vinelandii/genética , Azotobacter vinelandii/metabolismo , Hierro , Fijación del Nitrógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
16.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36260513

RESUMEN

Ancestral sequence reconstruction (ASR) infers predicted ancestral states for sites within sequences and can constrain the functions and properties of ancestors of extant protein families. Here, we compare the likely sequences of inferred nitrogenase ancestors to extant nitrogenase sequence diversity. We show that the most-likely combinations of ancestral states for key substrate channel residues are not represented in extant sequence space, and rarely found within a more broadly defined physiochemical space-supporting that the earliest ancestors of extant nitrogenases likely had alternative substrate channel composition. These differences may indicate differing environmental selection pressures acting on nitrogenase substrate specificity in ancient environments. These results highlight ASR's potential as an in silico tool for developing hypotheses about ancestral enzyme functions, as well as improving hypothesis testing through more targeted in vitro and in vivo experiments.


Asunto(s)
Nitrogenasa , Proteínas , Nitrogenasa/genética , Nitrogenasa/química , Dominio Catalítico , Especificidad por Sustrato , Filogenia
17.
Mol Biol Evol ; 39(9)2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35993177

RESUMEN

The origin of nitrogen fixation is an important issue in evolutionary biology. While nitrogen is required by all living organisms, only a small fraction of bacteria and archaea can fix nitrogen. The prevailing view is that nitrogen fixation first evolved in archaea and was later transferred to bacteria. However, nitrogen-fixing (Nif) bacteria are far larger in number and far more diverse in ecological niches than Nif archaea. We, therefore, propose the bacteria-first hypothesis, which postulates that nitrogen fixation first evolved in bacteria and was later transferred to archaea. As >30,000 prokaryotic genomes have been sequenced, we conduct an in-depth comparison of the two hypotheses. We first identify the six genes involved in nitrogen fixation in all sequenced prokaryotic genomes and then reconstruct phylogenetic trees using the six Nif proteins individually or in combination. In each of these trees, the earliest lineages are bacterial Nif protein sequences and in the oldest clade (group) the archaeal sequences are all nested inside bacterial sequences, suggesting that the Nif proteins first evolved in bacteria. The bacteria-first hypothesis is further supported by the observation that the majority of Nif archaea carry the major bacterial Mo (molybdenum) transporter (ModABC) rather than the archaeal Mo transporter (WtpABC). Moreover, in our phylogeny of all available ModA and WtpA protein sequences, the earliest lineages are bacterial sequences while archaeal sequences are nested inside bacterial sequences. Furthermore, the bacteria-first hypothesis is supported by available isotopic data. In conclusion, our study strongly supports the bacteria-first hypothesis.


Asunto(s)
Fijación del Nitrógeno , Nitrogenasa , Archaea/genética , Archaea/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo , Filogenia
18.
Mol Microbiol ; 117(5): 1080-1088, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35220629

RESUMEN

Azotobacter vinelandii produces three genetically distinct, but structurally and mechanistically similar nitrogenase isozymes designated as Mo-dependent, V-dependent, or Fe-only based on the heterometal contained within their associated active site cofactors. These catalytic cofactors, which provide the site for N2 binding and reduction, are, respectively, designated as FeMo-cofactor, FeV-cofactor, and FeFe-cofactor. Fe-only nitrogenase is a poor catalyst for N2 fixation, when compared to the Mo-dependent and V-dependent nitrogenases and is only produced when neither Mo nor V is available. Under conditions favoring the production of Fe-only nitrogenase a gene product designated AnfO preserves the fidelity of Fe-only nitrogenase by preventing the misincorporation of FeV-cofactor, which results in the accumulation of a hybrid enzyme that cannot reduce N2 . These results are interpreted to indicate that AnfO controls the fidelity of Fe-only nitrogenase maturation during the physiological transition from conditions that favor V-dependent nitrogenase utilization to Fe-only nitrogenase utilization to support diazotrophic growth.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Azotobacter vinelandii/genética , Proteínas Bacterianas/metabolismo , Dominio Catalítico , Molibdoferredoxina/metabolismo , Nitrogenasa/genética , Nitrogenasa/metabolismo
19.
Mol Microbiol ; 118(1-2): 105-124, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35718936

RESUMEN

All diazotrophic bacteria and archaea isolated so far utilise a nitrogenase enzyme-containing molybdenum in the active site co-factor to fix atmospheric dinitrogen to ammonia. However, in addition to the Mo-dependent nitrogenase, some nitrogen-fixing prokaryotes also express genetically distinct alternative nitrogenase isoenzymes, namely the V-dependent and Fe-only nitrogenases, respectively. Nitrogenase isoenzymes are expressed hierarchically according to metal availability and catalytic efficiency. In proteobacteria, this hierarchy is maintained via stringent transcriptional regulation of gene clusters by dedicated bacterial enhancer-binding proteins (bEBPs). The model diazotroph Azotobacter vinelandii contains two paralogs of the vanadium nitrogenase activator VnfA (henceforth, VnfA1), designated VnfA2 and VnfA3, with unknown functions. Here we demonstrate that the VnfA1 and VnfA3 bEBPs bind to the same target promoters in the Azotobacter vinelandii genome and co-activate a subset of genes in the absence of V, including the structural genes for the Fe-only nitrogenase. Co-activation is inhibited by the presence of V and is dependent on an accessory protein VnfZ that is co-expressed with VnfA3. Our studies uncover a plethora of interactions between bEBPs required for nitrogen fixation, revealing the unprecedented potential for fine-tuning the expression of alternative nitrogenases in response to metal availability.


Asunto(s)
Azotobacter vinelandii , Nitrogenasa , Azotobacter vinelandii/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Isoenzimas/metabolismo , Metales/metabolismo , Molibdeno/metabolismo , Fijación del Nitrógeno/genética , Nitrogenasa/genética , Nitrogenasa/metabolismo
20.
Appl Environ Microbiol ; 89(9): e0103323, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-37695043

RESUMEN

All nitrogen-fixing bacteria and archaea (diazotrophs) use molybdenum (Mo) nitrogenase to reduce dinitrogen (N2) to ammonia, with some also containing vanadium (V) and iron-only (Fe) nitrogenases that lack Mo. Among diazotrophs, the regulation and usage of the alternative V-nitrogenase and Fe-nitrogenase in methanogens are largely unknown. Methanosarcina acetivorans contains nif, vnf, and anf gene clusters encoding putative Mo-nitrogenase, V-nitrogenase, and Fe-nitrogenase, respectively. This study investigated nitrogenase expression and growth by M. acetivorans in response to fixed nitrogen, Mo/V availability, and CRISPRi repression of the nif, vnf, and/or anf gene clusters. The availability of Mo and V significantly affected growth of M. acetivorans with N2 but not with NH4Cl. M. acetivorans exhibited the fastest growth rate and highest cell yield during growth with N2 in medium containing Mo, and the slowest growth in medium lacking Mo and V. qPCR analysis revealed the transcription of the nif operon is only moderately affected by depletion of fixed nitrogen and Mo, whereas vnf and anf transcription increased significantly when fixed nitrogen and Mo were depleted, with removal of Mo being key. Immunoblot analysis revealed Mo-nitrogenase is detected when fixed nitrogen is depleted regardless of Mo availability, while V-nitrogenase and Fe-nitrogenase are detected only in the absence of fixed nitrogen and Mo. CRISPRi repression studies revealed that V-nitrogenase and/or Fe-nitrogenase are required for Mo-independent diazotrophy, and unexpectedly that the expression of Mo-nitrogenase is also required. These results reveal that alternative nitrogenase production in M. acetivorans is tightly controlled and dependent on Mo-nitrogenase expression. IMPORTANCE Methanogens and closely related methanotrophs are the only archaea known or predicted to possess nitrogenase. Methanogens play critical roles in both the global biological nitrogen and carbon cycles. Moreover, methanogens are an ancient microbial lineage and nitrogenase likely originated in methanogens. An understanding of the usage and properties of nitrogenases in methanogens can provide new insight into the evolution of nitrogen fixation and aid in the development nitrogenase-based biotechnology. This study provides the first evidence that a methanogen can produce all three forms of nitrogenases, including simultaneously. The results reveal components of Mo-nitrogenase regulate or are needed to produce V-nitrogenase and Fe-nitrogenase in methanogens, a result not seen in bacteria. Overall, this study provides a foundation to understand the assembly, regulation, and activity of the alternative nitrogenases in methanogens.


Asunto(s)
Molibdeno , Nitrogenasa , Nitrogenasa/genética , Nitrogenasa/metabolismo , Molibdeno/metabolismo , Methanosarcina/genética , Methanosarcina/metabolismo , Nitrógeno/metabolismo , Fijación del Nitrógeno/genética , Archaea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA