Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 204
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Chembiochem ; 25(11): e202300854, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38613434

RESUMEN

The utilization of the glycated amino acids formyline and pyrraline as well as their peptide-bound derivatives by 14 Saccharomyces yeasts, including 6 beer yeasts (bottom and top fermenting), one wine yeast, 6 strains isolated from natural habitats and one laboratory reference yeast strain (wild type) was investigated. All yeasts were able to metabolize glycated amino acids via the Ehrlich pathway to the corresponding Ehrlich metabolites. While formyline and small amounts of pyrraline entered the yeast cells via passive diffusion, the amounts of dipeptide-bound MRPs, especially the dipeptides glycated at the C-terminus, decreased much faster, indicating an uptake into the yeast cells. Furthermore, the glycation-mediated hydrophobization in general leads to an faster degradation rate compared to the native lysine dipeptides. While the utilization of free formyline is yeast-specific, the amounts of (glycated) dipeptides decreased faster in the presence of brewer's yeasts, which also showed a higher formation rate of Ehrlich metabolites compared to naturally isolated strains. Due to rapid uptake of alanyl dipeptides, it can be assumed that the Ehrlich enzyme system of naturally isolated yeasts is overloaded and the intracellularly released MRP is primarily excreted from the cell. This indicates adaptation of technologically used yeasts to (glycated) dipeptides as a nitrogen source.


Asunto(s)
Dipéptidos , Norleucina , Dipéptidos/metabolismo , Dipéptidos/química , Norleucina/metabolismo , Norleucina/análogos & derivados , Norleucina/química , Saccharomyces/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilación , Pirroles
2.
Int J Mol Sci ; 23(10)2022 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-35628524

RESUMEN

2-Amino-3-methylhexanoic acid (AMHA) was synthetized as a non-natural amino acid more than 70 years ago; however, its possible function as an inducer of plant resistance has not been reported. Plant resistance inducers, also known as plant elicitors, are becoming a novel and important development direction in crop protection and pest management. We found that free AMHA accumulated in the mycelia but not in fermentation broths of four fungal species, Magnaporthe oryzae and three Alternaria spp. We unequivocally confirmed that AMHA is a naturally occurring endogenous (2S, 3S)-α-amino acid, based on isolation, purification and structural analyses. Further experiments demonstrated that AMHA has potent activity-enhancing resistance against extreme temperature stresses in several plant species. It is also highly active against fungal, bacterial and viral diseases by inducing plant resistance. AMHA pretreatment strongly protected wheat against powdery mildew, Arabidopsis against Pseudomonas syringae DC3000 and tobacco against Tomato spotted wilt virus. AMHA exhibits a great potential to become a unique natural elicitor protecting plants against biotic and abiotic stresses.


Asunto(s)
Arabidopsis , Regulación de la Expresión Génica de las Plantas , Aminoácidos/metabolismo , Arabidopsis/metabolismo , Norleucina/análogos & derivados , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Temperatura
3.
PLoS Comput Biol ; 16(1): e1007600, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31917825

RESUMEN

Designed enzymes are of fundamental and technological interest. Experimental directed evolution still has significant limitations, and computational approaches are a complementary route. A designed enzyme should satisfy multiple criteria: stability, substrate binding, transition state binding. Such multi-objective design is computationally challenging. Two recent studies used adaptive importance sampling Monte Carlo to redesign proteins for ligand binding. By first flattening the energy landscape of the apo protein, they obtained positive design for the bound state and negative design for the unbound. We have now extended the method to design an enzyme for specific transition state binding, i.e., for its catalytic power. We considered methionyl-tRNA synthetase (MetRS), which attaches methionine (Met) to its cognate tRNA, establishing codon identity. Previously, MetRS and other synthetases have been redesigned by experimental directed evolution to accept noncanonical amino acids as substrates, leading to genetic code expansion. Here, we have redesigned MetRS computationally to bind several ligands: the Met analog azidonorleucine, methionyl-adenylate (MetAMP), and the activated ligands that form the transition state for MetAMP production. Enzyme mutants known to have azidonorleucine activity were recovered by the design calculations, and 17 mutants predicted to bind MetAMP were characterized experimentally and all found to be active. Mutants predicted to have low activation free energies for MetAMP production were found to be active and the predicted reaction rates agreed well with the experimental values. We suggest the present method should become the paradigm for computational enzyme design.


Asunto(s)
Enzimas , Método de Montecarlo , Unión Proteica/genética , Ingeniería de Proteínas/métodos , Especificidad por Sustrato/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/química , Adenosina Monofosfato/metabolismo , Azidas/química , Azidas/metabolismo , Sitios de Unión/genética , Catálisis , Enzimas/química , Enzimas/genética , Enzimas/metabolismo , Metionina/análogos & derivados , Metionina/química , Metionina/metabolismo , Metionina-ARNt Ligasa/química , Metionina-ARNt Ligasa/genética , Metionina-ARNt Ligasa/metabolismo , Mutación/genética , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismo
4.
Cell Biol Int ; 45(3): 518-527, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32068315

RESUMEN

Arginine-deprivation therapy is a rapidly developing metabolic anticancer approach. To overcome the resistance of some cancer cells to this monotherapy, rationally designed combination modalities are needed. In this report, we evaluated for the first time indospicine, an arginine analogue of Indigofera plant genus origin, as potential enhancer compound for the metabolic therapy that utilizes recombinant human arginase I. We demonstrate that indospicine at low micromolar concentrations is selectively toxic for human colorectal cancer cells only in the absence of arginine. In arginine-deprived cancer cells indospicine deregulates some prosurvival pathways (PI3K-Akt and MAPK) and activates mammalian target of rapamycin, exacerbates endoplasmic reticulum stress and triggers caspase-dependent apoptosis, which is reversed by the exposure to translation inhibitors. Simultaneously, indospicine is not degraded by recombinant human arginase I and does not inhibit this arginine-degrading enzyme at its effective dose. The obtained results emphasize the potential of arginine structural analogues as efficient components for combinatorial metabolic targeting of malignant cells.


Asunto(s)
Apoptosis/efectos de los fármacos , Arginina/deficiencia , Neoplasias/patología , Norleucina/análogos & derivados , Arginasa/metabolismo , Arginina/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Norleucina/química , Norleucina/farmacología , Biosíntesis de Proteínas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Especificidad por Sustrato/efectos de los fármacos
5.
Org Biomol Chem ; 20(1): 98-105, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34596204

RESUMEN

A new vobasine-tryptamine-based monoterpene indole alkaloid pseudodimer was isolated from the stem bark of Voacanga africana. As a minor constituent occurring in a thoroughly investigated plant, this molecule was targeted based on a molecular networking strategy and a rational MS2-guided phytochemical investigation led to its isolation. Its structure was formally established based on HRMS, 1D/2D NMR data, and the application of the tool Small Molecule Accurate Recognition Technology (SMART 2.0). Its absolute configuration was assigned by the exciton chirality method and TD-DFT ECD calculations. Besides featuring an unprecedented intermonomeric linkage in the small group of vobasine/tryptamine hybrids, pyrrovobasine also represents the first pyrraline-containing representative in the whole monoterpene indole alkaloids group. Biosynthetic hypotheses possibly underpinning these structural oddities are proposed here.


Asunto(s)
Alcaloides Indólicos/química , Aprendizaje Automático , Monoterpenos/química , Norleucina/análogos & derivados , Pirroles/química , Alquilación , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Norleucina/química , Voacanga/química
6.
J Nanobiotechnology ; 19(1): 295, 2021 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-34583708

RESUMEN

Fluorescent labeling and dynamic tracking is a powerful tool for exploring virus infection mechanisms. However, for small-sized viruses, virus tracking studies are usually hindered by a lack of appropriate labeling methods that do not dampen virus yield or infectivity. Here, we report a universal strategy for labeling viruses with chemical dyes and Quantum dots (QDs). Enterovirus 71 (EV71) was produced in a cell line that stably expresses a mutant methionyl-tRNA synthetase (MetRS), which can charge azidonorleucine (ANL) to the methionine sites of viral proteins during translation. Then, the ANL-containing virus was easily labeled with DBCO-AF647 and DBCO-QDs. The labeled virus shows sufficient yield and no obvious decrease in infectivity and can be used for imaging the virus entry process. Using the labeled EV71, different functions of scavenger receptor class B, member 2 (SCARB2), and heparan sulfate (HS) in EV71 infection were comparatively studied. The cell entry process of a strong HS-binding EV71 strain was investigated by real-time dynamic visualization of EV71-QDs in living cells. Taken together, our study described a universal biocompatible virus labeling method, visualized the dynamic viral entry process, and reported details of the receptor usage of EV71.


Asunto(s)
Enterovirus/metabolismo , Puntos Cuánticos/química , Receptores Virales/metabolismo , Animales , Azidas , Línea Celular , Chlorocebus aethiops , Enterovirus/genética , Enterovirus Humano A/genética , Enterovirus Humano A/metabolismo , Células HeLa , Humanos , Norleucina/análogos & derivados , Receptores Depuradores/metabolismo , Células Vero , Proteínas Virales , Internalización del Virus
7.
Cell Mol Biol Lett ; 25: 17, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32174982

RESUMEN

BACKGROUND: High levels of the post-translational modification O-GlcNAcylation (O-GlcNAc) are found in multiple cancers, including bladder cancer. Autophagy, which can be induced by stress from post-translational modifications, plays a critical role in maintaining cellular homeostasis and regulating tumorigenesis. The impact of O-GlcNAcylation on autophagy in bladder cancer remains unclear. Here, we evaluate the change in autophagic activity in response to O-GlcNAcylation and explore the potential mechanisms. METHODS: O-GlcNAcylation levels in bladder cancer cells were altered through pharmacological or genetic manipulations: treating with 6-diazo-5-oxo-norleucine (DON) or thiamet-G (TG) or up- and downregulation of O-GlcNAc transferase (OGT) or O-GlcNAcase (OGA). Autophagy was determined using fluorescence microscopy and western blotting. Co-immunoprecipitation (Co-IP) assays were performed to evaluate whether the autophagy regulator AMP-activated protein kinase (AMPK) was O-GlcNAc modified. RESULTS: Cellular autophagic flux was strikingly enhanced as a result of O-GlcNAcylation suppression, whereas it decreased at high O-GlcNAcylation levels. Phosphorylation of AMPK increased after the suppression of O-GlcNAcylation. We found that O-GlcNAcylation of AMPK suppressed the activity of this regulator, thereby inhibiting ULK1 activity and autophagy. CONCLUSION: We characterized a new function of O-GlcNAcylation in the suppression of autophagy via regulation of AMPK. GRAPHICAL ABSTRACT: Blockage of O-linked GlcNAcylation induces AMPK dependent autophagy in bladder cancer cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Autofagia/genética , N-Acetilglucosaminiltransferasas/metabolismo , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Neoplasias de la Vejiga Urinaria/metabolismo , beta-N-Acetilhexosaminidasas/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Acilación/efectos de los fármacos , Acilación/genética , Autofagia/efectos de los fármacos , Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Homólogo de la Proteína 1 Relacionada con la Autofagia/metabolismo , Compuestos Azo/farmacología , Línea Celular Tumoral , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , N-Acetilglucosaminiltransferasas/genética , Norleucina/análogos & derivados , Norleucina/farmacología , Fosforilación , Procesamiento Proteico-Postraduccional/genética , Piranos/farmacología , ARN Interferente Pequeño , Tiazoles/farmacología , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética , beta-N-Acetilhexosaminidasas/genética
8.
Mar Drugs ; 17(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757046

RESUMEN

Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.


Asunto(s)
Organismos Acuáticos/química , Histidina/farmacología , Compuestos de Azufre/farmacología , gamma-Glutamiltransferasa/antagonistas & inhibidores , Compuestos Azo/farmacología , Proliferación Celular/efectos de los fármacos , Desarrollo de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Pruebas de Enzimas , Glutatión/metabolismo , Células HEK293 , Histidina/química , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Norleucina/análogos & derivados , Norleucina/farmacología , Especificidad por Sustrato , Compuestos de Azufre/química , Pruebas de Toxicidad , gamma-Glutamiltransferasa/metabolismo
9.
J Sci Food Agric ; 98(9): 3225-3233, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-29280151

RESUMEN

Pyrraline and pentosidine are advanced Maillard reaction products derived from the reaction of glucose with the lysine amino group on proteins. They have been implicated in uremia, diabetes, and related complications, including inflammation, retinopathy, and nephropathy. This review focuses on the formation mechanism, human potential risks, and detections of pentosidine and pyrraline and lays the foundation for further study of pentosidine and pyrraline. © 2017 Society of Chemical Industry.


Asunto(s)
Arginina/análogos & derivados , Análisis de los Alimentos , Lisina/análogos & derivados , Norleucina/análogos & derivados , Pirroles/efectos adversos , Pirroles/análisis , Arginina/efectos adversos , Arginina/análisis , Arginina/química , Reactivos de Enlaces Cruzados , Complicaciones de la Diabetes/inducido químicamente , Diabetes Mellitus/inducido químicamente , Glucosa/química , Productos Finales de Glicación Avanzada , Humanos , Inflamación/inducido químicamente , Lisina/efectos adversos , Lisina/análisis , Lisina/química , Estructura Molecular , Norleucina/efectos adversos , Norleucina/análisis , Norleucina/química , Pirroles/química , Factores de Riesgo , Uremia/inducido químicamente
10.
Chembiochem ; 18(3): 266-275, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27900834

RESUMEN

The yeast Saccharomyces cerevisiae transforms branched-chain and aromatic amino acids into higher alcohols in the Ehrlich pathway. During microbiological culturing and industrial fermentations, this yeast is confronted with amino acids modified by reducing sugars in the Maillard reaction (glycation). In order to gain some preliminary insight into the physiological "handling" of glycated amino acids by yeasts, individual Maillard reaction products (MRPs: fructosyllysine, carboxymethyllysine, pyrraline, formyline, maltosine, methylglyoxal-derived hydroimidazolone) were administered to two strains of S. cerevisiae in a rich medium. Only formyline was converted into the corresponding α-hydroxy acid, to a small extent (10 %). Dipeptide-bound pyrraline and maltosine were removed from the medium with concomitant emergence of several metabolites. Pyrraline was mainly converted into the corresponding Ehrlich alcohol (20-60 %) and maltosine into the corresponding α-hydroxy acid (40-60 %). Five specific metabolites of glycated amino acids were synthesized and characterized. We show for the first time that S. cerevisiae can use glycated amino acids as a nitrogen source and transform them into new metabolites, provided that the substances can be transported across the cell membrane.


Asunto(s)
Aminoácidos/metabolismo , Dipéptidos/metabolismo , Saccharomyces cerevisiae/metabolismo , Aminoácidos/química , Cromatografía Líquida de Alta Presión , Cromatografía de Fase Inversa , Dipéptidos/química , Glicosilación , Reacción de Maillard , Norleucina/análogos & derivados , Norleucina/análisis , Norleucina/metabolismo , Estabilidad Proteica , Piridonas/análisis , Piridonas/metabolismo , Pirroles/análisis , Pirroles/metabolismo , Espectrofotometría Infrarroja , Espectrometría de Masas en Tándem
11.
Toxicol Mech Methods ; 27(7): 518-527, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28552037

RESUMEN

DON (6-diazo-5-oxo-l-norleucine), a glutamine antagonist, was demonstrated to exhibit analgesic, antibacterial, antiviral and anticancer properties. The study was performed to characterize its in vitro and in vivo genetic toxicity potential. DON was tested in the bacterial reverse mutation assay (Ames test) using Salmonella typhimurium tester strains (TA98, TA100, TA1535 and TA1537) and Escherichia coli tester strain (WP2 uvrA) with and without S9 and also with reductive S9. In addition, DON was tested for the chromosome aberrations in Chinese hamster ovary (CHO) cells with or without S9 to evaluate the clastogenic potential. Furthermore, DON was also evaluated for its in vivo clastogenic activity by detecting micronuclei in polychromatic erythrocyte (PCE) cells in bone marrow collected from the male mice dosed intravenously with 500, 100, 10, 1 and 0.1 mg/kg at 24 and 48-h post-dose. The Ames mutagenicity assay showed no positive mutagenic responses. However, the in vitro chromosome aberration assay demonstrated dose dependent statistically positive increase in structural aberrations at 4 and 20-h exposure without S9 and also at 4-h exposure with S9. The in vivo micronucleus assay also revealed a statistically positive response for micronucleus formation at 500, 100 and 10 mg/kg at 24 and 48-h post-dose. Thus, DON appears to be negative in the Ames test but positive in the in vitro chromosome aberration assay and in the in vivo micronucleus assay. In conclusion, the results indicate DON is a genotoxic compound with a plausible epigenetic mechanism.


Asunto(s)
Compuestos Azo/toxicidad , Aberraciones Cromosómicas/efectos de los fármacos , Células Precursoras Eritroides/efectos de los fármacos , Glutamina/antagonistas & inhibidores , Mutágenos/toxicidad , Neurotransmisores/toxicidad , Norleucina/análogos & derivados , Activación Metabólica , Animales , Arocloros/farmacología , Compuestos Azo/administración & dosificación , Compuestos Azo/metabolismo , Células CHO , Cricetinae , Cricetulus , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/farmacología , Masculino , Mesocricetus , Ratones Endogámicos ICR , Pruebas de Micronúcleos , Microsomas Hepáticos/efectos de los fármacos , Microsomas Hepáticos/enzimología , Microsomas Hepáticos/metabolismo , Pruebas de Mutagenicidad , Mutágenos/administración & dosificación , Mutágenos/metabolismo , Neurotransmisores/administración & dosificación , Neurotransmisores/metabolismo , Norleucina/administración & dosificación , Norleucina/metabolismo , Norleucina/toxicidad , Ratas Sprague-Dawley , Pruebas de Toxicidad Aguda
12.
Angew Chem Int Ed Engl ; 56(6): 1643-1647, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28042700

RESUMEN

Using amber suppression in coordination with a mutant pyrrolysyl-tRNA synthetase-tRNAPyl pair, azidonorleucine is genetically encoded in E. coli. Its genetic incorporation followed by traceless Staudinger ligation with a phosphinothioester allows the convenient synthesis of a protein with a site-specifically installed lysine acylation. By simply changing the phosphinothioester identity, any lysine acylation type could be introduced. Using this approach, we demonstrated that both lysine acetylation and lysine succinylation can be installed selectively in ubiquitin and synthesized histone H3 with succinylation at its K4 position (H3K4su). Using an H3K4su-H4 tetramer as a substrate, we further confirmed that Sirt5 is an active histone desuccinylase. Lysine succinylation is a recently identified post-translational modification. The reported technique makes it possible to explicate regulatory functions of this modification in proteins.


Asunto(s)
Proteínas de Escherichia coli/genética , Escherichia coli/genética , Lisina/análisis , Procesamiento Proteico-Postraduccional , Acilación , Aminoacil-ARNt Sintetasas/genética , Azidas , Histonas/genética , Lisina/genética , Norleucina/análogos & derivados , Norleucina/genética
13.
Org Biomol Chem ; 14(28): 6826-32, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27338015

RESUMEN

Indospicine is a non-proteogenic amino acid that accumulates as the free amino acid in livestock grazing Indigofera plant species and causes both reproductive losses and hepatotoxic effects. An efficient synthetic route to l-indospicine from l-homoserine lactone is described. The methodology is applicable for the synthesis of both deuterium labelled isotopomers and structural analogues for utilisation in biological studies. The key steps are a zinc mediated Barbier reaction with acrylonitrile and a Pinner reaction that together introduce the target amidine moiety.


Asunto(s)
Indigofera/química , Norleucina/análogos & derivados , Acrilonitrilo/síntesis química , Acrilonitrilo/química , Cobre/química , Homoserina/síntesis química , Homoserina/química , Lactonas/síntesis química , Lactonas/química , Norleucina/síntesis química , Norleucina/química , Zinc/química
15.
Int J Mol Sci ; 17(7)2016 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-27384561

RESUMEN

Pyrraline, a causative factor for the recent epidemics of diabetes and cardiovascular disease, is also employed as an indicator to evaluate heat damage and formation of advanced glycation end-products (AGEs) in foods. Peptide-enriched drinks (PEDs) are broadly consumed worldwide due to rapid rate of absorption and perceived health effects. It can be hypothesized that PED is an important source of pyrraline, especially peptide bound pyrraline (Pep-Pyr). In this study we determined free-form pyrraline (Free-Pyr) and Pep-Pyr in drinks enriched with whey protein hydrolysate (WPH), soy protein hydrolysate (SPH) and collagen protein hydrolysate (CPH). A detection method was developed using ultrahigh-performance liquid chromatography with UV-visible detector coupled with tandem mass spectrometry after solid-phase extraction (SPE). The SPE led to excellent recovery rates ranging between 93.2% and 98.5% and a high reproducibility with relative standard deviations (RSD) of <5%. The limits of detection and quantification obtained were 30.4 and 70.3 ng/mL, respectively. Pep-Pyr was identified as the most abundant form (above 96 percent) of total pyrraline, whereas Free-Pyr was present in a small proportion (less than four percent) of total pyrraline. The results indicate that PED is an important extrinsic source of pyrraline, especially Pep-Pyr. As compared with CPH- and SPH-enriched drinks, WPH-enriched drinks contained high content of Pep-Pyr. The Pep-Pyr content is associated with the distribution of peptide lengths and the amino acid compositions of protein in PEDs.


Asunto(s)
Bebidas/análisis , Productos Finales de Glicación Avanzada/análisis , Norleucina/análogos & derivados , Péptidos/metabolismo , Pirroles/metabolismo , Espectrometría de Masas en Tándem , Cromatografía Líquida de Alta Presión , Productos Finales de Glicación Avanzada/aislamiento & purificación , Norleucina/química , Norleucina/metabolismo , Péptidos/química , Pirroles/química , Extracción en Fase Sólida
16.
Molecules ; 21(4): 463, 2016 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-27070556

RESUMEN

Peptide-bound advanced glycation end-products (peptide-bound AGEs) can be formed when peptides are heated with reducing saccharides. Pyrraline is the one of most commonly studied AGEs in foods, but the relative importance of the precursor peptide structure is uncertain. In the present study, model systems were prepared by heating peptides with glucose from 60 °C to 220 °C for up to 65 min, and the amounts of peptide-bound pyrraline formed were monitored to evaluate the effect of the neighboring amino acids on the peptide-bound pyrraline formation. The physico-chemical properties were introduced to explore the quantitative structure-reactivity relationships between physicochemical properties and peptide bound formation. 3-DG content in dipeptide-glucose model system was higher than that in the corresponding tripeptide-glucose model systems. Dipeptides produced higher amounts of peptide-bound pyrraline than the corresponding tripeptides. The peptide-bound pyrraline and 3-DG production were influenced by the physico-chemical properties of the side chain of amino acids adjacent to Lys in the following order: Lys-Leu/glucose > Lys-Ile/glucose > Lys-Val/ glucose > Lys-Thr/glucose > Lys-Ser/glucose > Lys-Ala/ glucose > Lys-Gly/glucose; Lys-Leu-Gly/glucose > Lys-Ile-Gly/glucose > Lys-Val-Gly/glucose > Lys-Thr-Gly/glucose > Lys-Ser-Gly/glucose > Lys-Ala-Gly/glucose > Lys-Gly-Gly/glucose. For the side chain of amino acids adjacent to Lys in dipeptides, residue volume, polarizability, molecular volume and localized electrical effect were positively related to the yield of peptide bound pyrraline, while hydrophobicity and pKb were negatively related to the yield of peptide bound pyrraline. In terms of side chain of amino acid adjacent to Lys in tripeptides, a similar result was observed, except hydrophobicity was positively related to the yield of peptide bound pyrraline.


Asunto(s)
Dipéptidos/química , Glucosa/química , Norleucina/análogos & derivados , Péptidos/química , Pirroles/química , Secuencia de Aminoácidos , Aminoácidos/química , Productos Finales de Glicación Avanzada/química , Reacción de Maillard , Modelos Moleculares , Norleucina/química , Fragmentos de Péptidos/química , Unión Proteica , Relación Estructura-Actividad Cuantitativa
17.
J Sci Food Agric ; 96(7): 2555-64, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26260362

RESUMEN

BACKGROUND: Pyrraline, a causative factor for various kinds of disease, is also used as a food contaminant to evaluate the formation of advanced glycation end-products (AGEs) in diet foods. In this study, model systems consisting of lysine and different saccharides were heated at different times, temperatures and initial molar ratios of saccharide to lysine under microwave heating conditions in order to investigate the formation of pyrraline. RESULTS: Increase in initial molar ratio of saccharide to lysine could significantly promote the formation of pyrraline. Specifically, the pyrraline formation rate was influenced by the structure of saccharides involved in the reaction, and decreased in the following order: lactose > fructose > glucose > sucrose; the highest pyrraline was generated in lactose-lysine models. The maximum pyrraline was formed at 140 °C. Moreover, saccharides and lysine had different effects on the stability of pyrraline. Among the reactants, lysine was the major factor for the instability of pyrraline; a dipyrraline and a crosslink by pyrraline reacting with lysine could be formed. CONCLUSION: Pyrraline formation by the saccharide-lysine model system was a dynamic reaction, consisting not only of the pyrraline formation, but also pyrraline elimination with some formation of crosslinks. © 2015 Society of Chemical Industry.


Asunto(s)
Carbohidratos/química , Lisina/química , Reacción de Maillard , Norleucina/análogos & derivados , Pirroles/química , Calor , Estructura Molecular , Norleucina/química , Factores de Tiempo
18.
J Biol Chem ; 289(11): 7919-28, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24505139

RESUMEN

The Maillard reaction (also referred to as "glycation") takes place between reducing sugars and compounds with free amino groups during thermal processing of foods. In the final stage of the complex reaction cascade, the so-called advanced glycation end products (AGEs) are formed, including proteins with various glycation structures. It has been suggested that some AGEs could have immunostimulatory effects. Here, we aimed to identify specific glycation structure(s) that could influence the T-cell immunogenicity and potential allergenicity of food allergens, using ovalbumin (OVA, an egg white allergen) as a model allergen. OVA was specifically modified with representative glycation structures: N(ε)-carboxymethyl lysine (CM-OVA), N(ε)-carboxyethyl lysine (CE-OVA), pyrraline (Pyr-OVA), or methylglyoxal-derived arginine derivatives (MGO-OVA). As well as AGE-OVA, a crude glycation product in thermal incubation of OVA with glucose, only Pyr-OVA, and not other modified OVAs, was efficiently taken up by bone marrow-derived murine dendritic cells (BMDCs). The uptake of Pyr-OVA was reduced in scavenger receptor class A (SR-A)-deficient BMDCs, but not in cells treated with inhibitors of scavenger receptor class B, galectin-3, or blocking antibodies against CD36, suggesting that pyrraline binds to SR-A. Compared with other modified OVAs, Pyr-OVA induced higher activation of OVA-specific CD4(+) T-cells in co-culture with BMDCs. Furthermore, compared with native OVA, AGE-OVA and Pyr-OVA induced higher IgE production in mice. Pyrraline could induce better allergen uptake by DCs via association with SR-A and subsequently enhance CD4(+) T-cell activation and IgE production. Our findings help us to understand how Maillard reaction enhances the potential allergenicity of food allergens.


Asunto(s)
Alérgenos/química , Linfocitos T CD4-Positivos/citología , Hipersensibilidad a los Alimentos/inmunología , Norleucina/análogos & derivados , Ovalbúmina/química , Pirroles/química , Animales , Células de la Médula Ósea/citología , Carbohidratos/química , Técnicas de Cocultivo , Citocinas/metabolismo , Células Dendríticas/inmunología , Ensayo de Inmunoadsorción Enzimática , Femenino , Activación de Linfocitos , Reacción de Maillard , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Norleucina/química , Estructura Secundaria de Proteína , Receptores Depuradores/química
19.
Clin Chem Lab Med ; 52(1): 61-7, 2014 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23492561

RESUMEN

Food allergies are abnormal responses to a food triggered by the immune system. The majority of allergenic foods are often subjected to thermal processing before consumption. The Maillard reaction is a non-enzymatic reaction between reducing sugars and compounds with free amino groups such as amino acids and proteins, and takes place during thermal processing and storage of foods. Among many other effects the reaction leads to modification of proteins with various types of glycation structures such as Nε-(carboxymethyl-)lysine (CML), pentosidine, pyrraline and methylglyoxal-H1, which are collectively called advanced glycation end-products (AGEs). Notably, evidence has accumulated that some glycation structures of AGEs function as immune epitopes. Here we discuss the possible involvement of food allergen AGEs in the pathogenesis of food allergies.


Asunto(s)
Hipersensibilidad a los Alimentos/patología , Reacción de Maillard , Arginina/análogos & derivados , Arginina/química , Arginina/metabolismo , Células Dendríticas/inmunología , Hipersensibilidad a los Alimentos/inmunología , Hipersensibilidad a los Alimentos/metabolismo , Productos Finales de Glicación Avanzada/metabolismo , Humanos , Inmunoglobulina E/metabolismo , Lisina/análogos & derivados , Lisina/química , Lisina/inmunología , Lisina/metabolismo , Norleucina/análogos & derivados , Norleucina/química , Norleucina/metabolismo , Pirroles/química , Pirroles/metabolismo , Receptores Depuradores/metabolismo , Linfocitos T/inmunología
20.
ACS Chem Neurosci ; 15(19): 3473-3481, 2024 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-39307974

RESUMEN

Elucidating the mechanisms by which protein synthesis contributes to complex biological processes has remained a challenging endeavor. This is particularly true in the field of neuroscience, where multiple, tightly regulated periods of new protein synthesis in different cell-types are thought to facilitate intricate neurological functions, such as memory formation. Current methods for labeling the de novo proteome have lacked the spatial and temporal resolution to accurately discriminate these overlapping and often competing windows of mRNA translation. To address this technological limitation, here we describe a novel, light-inducible specific method for labeling newly synthesized proteins within a targeted cell-type.By developing Opto-ANL, a photocaged version of the nonendogenous amino acid azidonorleucine (ANL), we can selectively label newly synthesized proteins in specific cell-types through the targeted expression of a mutant methionyl-tRNA synthetase (L274G-MetRS). We demonstrate that Opto-ANL can be rapidly uncaged by UV light treatment in both cell culture and mouse brain slices, with Opto-ANL labeled proteins being able to be visualized via fluorescent noncanonical amino acid tagging. We also reveal that pretreatment with Opto-ANL not only allows for the period of de novo proteomic labeling to be tightly controlled, but also improves labeling efficiency compared to regular ANL. To demonstrate the potential applications of this novel technique, we use Opto-ANL to detect insulin-induced increases in protein synthesis and to label the excitatory neuronal de novo proteome in mouse brain slices. We believe that this application of photopharmacology will allow researchers to generate novel insights into how the translational landscape is altered across cell-types during complex neurological phenomena such as memory formation.


Asunto(s)
Biosíntesis de Proteínas , Proteoma , Animales , Proteoma/metabolismo , Ratones , Biosíntesis de Proteínas/fisiología , Humanos , Neuronas/metabolismo , Norleucina/análogos & derivados , Norleucina/metabolismo , Metionina-ARNt Ligasa/metabolismo , Proteómica/métodos , Encéfalo/metabolismo , Luz , Ratones Endogámicos C57BL , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA